Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • Log in

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • Log in
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Products of lipopolysaccharide-activated macrophages (tumor necrosis factor-alpha, transforming growth factor-beta) but not lipopolysaccharide modify DNA synthesis by rat trophoblast cells exhibiting the 80-kDa lipopolysaccharide-binding protein.

J S Hunt, M J Soares, M G Lei, R N Smith, D Wheaton, R A Atherton and D C Morrison
J Immunol September 1, 1989, 143 (5) 1606-1613;
J S Hunt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M J Soares
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M G Lei
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R N Smith
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Wheaton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R A Atherton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D C Morrison
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Pregnancy losses from gram negative bacterial infections could be caused by direct effects of LPS on placental cells, or indirectly via LPS activation of macrophages in the uteroplacental unit. To evaluate those alternatives, LPS, LPS-activated peritoneal cells, conditioned medium from LPS-activated peritoneal cells, and some purified and recombinant molecules known to be secreted by activated macrophages were tested for their abilities to modify DNA synthesis by rat trophoblast cells. Three trophoblast cell lines derived from midgestation placentas of outbred and inbred rats were used for the experiments. Although the 80-kDa LPS-binding protein was demonstrated on trophoblast cells, LPS alone had no effect on the ability of trophoblast cells to synthesize DNA. In cocultures, trophoblast cell DNA synthesis was slightly enhanced by low concentrations of both unstimulated and LPS-activated peritoneal cells. At higher concentrations, LPS-activated cells caused significant inhibition of DNA synthesis by trophoblast cells. Conditioned media from LPS-activated peritoneal cells were highly inhibitory to trophoblast cell DNA synthesis. When specific molecules likely to be components of those media were tested, IL-1 was found to have a modest but reproducible stimulatory effect and PGE2 did not change trophoblast cell incorporation of [3H]TdR. In contrast, trophoblast cell DNA synthesis was markedly inhibited in a dose-dependent manner by both TNF-alpha and TGF-beta 1. No differences in the sensitivity of trophoblast cells from outbred and inbred rats were observed. Given the limitations of the experimental model system, the results suggest that in cases of infection by gram-negative bacteria LPS may have an adverse effect on pregnancy by stimulating resident macrophages to generate and release molecules that are inhibitory to trophoblast cell DNA synthesis.

  • Copyright © 1989 by American Association of Immunologists

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$37.50

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 143, Issue 5
1 Sep 1989
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Products of lipopolysaccharide-activated macrophages (tumor necrosis factor-alpha, transforming growth factor-beta) but not lipopolysaccharide modify DNA synthesis by rat trophoblast cells exhibiting the 80-kDa lipopolysaccharide-binding protein.
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Products of lipopolysaccharide-activated macrophages (tumor necrosis factor-alpha, transforming growth factor-beta) but not lipopolysaccharide modify DNA synthesis by rat trophoblast cells exhibiting the 80-kDa lipopolysaccharide-binding protein.
J S Hunt, M J Soares, M G Lei, R N Smith, D Wheaton, R A Atherton, D C Morrison
The Journal of Immunology September 1, 1989, 143 (5) 1606-1613;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Products of lipopolysaccharide-activated macrophages (tumor necrosis factor-alpha, transforming growth factor-beta) but not lipopolysaccharide modify DNA synthesis by rat trophoblast cells exhibiting the 80-kDa lipopolysaccharide-binding protein.
J S Hunt, M J Soares, M G Lei, R N Smith, D Wheaton, R A Atherton, D C Morrison
The Journal of Immunology September 1, 1989, 143 (5) 1606-1613;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • FAR 889
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2022 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606