Abstract
The genetic basis for the expression of a latent VH allotype in the rabbit was investigated. VH region cDNA libraries were produced from spleen mRNA derived from a homozygous a2a2 rabbit expressing an induced latent VHa1 allotype and, for comparison, from a normal homozygus a1a1 rabbit expressing nominal VHa1 allotype. The deduced amino acid sequences of the nominal VHa1 cDNA were concordant with previously published VHa1 protein sequences. A comparison of two complete VH-DH-JH and six partial VHa1 sequences reveals highly conserved sequence within VH framework regions (FR) and considerable diversity in complementarity-determining regions and D region sequences. Two functional JH genes or alleles are evident. Amino acid sequencing of the N-terminal 15 residues of pooled affinity-purified latent VHa1 H chain showed complete sequence identity with the nominal VHa1 sequences. Possible latent VHa1-encoding cDNA clones, derived from the a2a2 rabbit, were selected by hybridization with oligonucleotide probes corresponding to the VHa1 allotype-associated segments of the first and third framework regions (FR1 and FR3). cDNA sequence analysis reveals that the 5' untranslated regions of nominal and latent VHa1 cDNA were virtually identical to each other and to previously reported sequences associated with VHa2 and VHa-negative genes. Moreover, some latent VHa1 genes encode FR1 segments that are essentially homologous to the corresponding segment of a nominal VHa1 allotype. In contrast, other putative latent genes display blocks of VHa1 sequence in either FR1 or FR3 that are flanked by blocks of sequence identical to other rabbit VH genes (i.e., VHa2 or VHa-negative). These composite sequences may be directly encoded by composite germ-line VH genes or may be the products of somatically generated recombination or gene conversion between genes encoding latent and nominal allotypes. The data do not support the hypothesis that latent genes are the result of extensive modification by somatic point mutation.
- Copyright © 1988 by American Association of Immunologists
Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$37.50
Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.