Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • Log in

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • Log in
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Regulation of MHC expression in vivo. Bacterial lipopolysaccharide induces class I and II MHC products in mouse tissues by a T cell-independent, cyclosporine-sensitive mechanism.

J Jephthah-Ochola, J Urmson, S Farkas and P F Halloran
J Immunol August 1, 1988, 141 (3) 792-800;
J Jephthah-Ochola
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Urmson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Farkas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P F Halloran
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The effect of injections of bacterial LPS on the expression of class I and II products of the MHC in mouse tissues was investigated. MHC products were assessed in tissue homogenates by radiolabeled antibody binding and in tissue sections by indirect immunoperoxidase (IIP) staining. In mice given two i.p. injections of LPS from Escherichia coli or Salmonella minnesota, there were increases in class I and II MHC products in kidney, liver, heart, lung, and pancreas. Focusing on the changes in kidney, we demonstrated that the increase in MHC expression occurred in tubules and, in the case of class I, in glomeruli. LPS treatment also increased the deposition of Ig in glomeruli. Expressed on a standard curve, the total kidney class I and II expression was elevated approximately 10-fold. Time course studies indicated that increased class I expression could be induced by a single LPS injection, whereas class II induction required a second injection. The induction was influenced by the LPS sensitivity of the mice, being much greater in LPS-sensitive C3H/HeSn mice than in LPS-resistant C3H/HeJ mice. LPS induced class I and II Ag in nude mice and in mice with severe combined immunodeficiency, indicating that T cells were not required. Nevertheless, the effect of LPS was inhibitable by cyclosporine and by a mAb against IFN-gamma indicating that IFN-gamma was required for the MHC induction. We conclude that LPS induces an increase in expression and a redistribution of MHC products in kidney and in other tissues by a T cell-independent, cyclosporine-sensitive pathway. These findings are probably related to the known ability of LPS to mediate release of IFN-gamma and other cytokines.

  • Copyright © 1988 by American Association of Immunologists

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$37.50

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 141, Issue 3
1 Aug 1988
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Regulation of MHC expression in vivo. Bacterial lipopolysaccharide induces class I and II MHC products in mouse tissues by a T cell-independent, cyclosporine-sensitive mechanism.
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Regulation of MHC expression in vivo. Bacterial lipopolysaccharide induces class I and II MHC products in mouse tissues by a T cell-independent, cyclosporine-sensitive mechanism.
J Jephthah-Ochola, J Urmson, S Farkas, P F Halloran
The Journal of Immunology August 1, 1988, 141 (3) 792-800;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Regulation of MHC expression in vivo. Bacterial lipopolysaccharide induces class I and II MHC products in mouse tissues by a T cell-independent, cyclosporine-sensitive mechanism.
J Jephthah-Ochola, J Urmson, S Farkas, P F Halloran
The Journal of Immunology August 1, 1988, 141 (3) 792-800;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • FAR 889
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2022 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606