Abstract
We have recently reported that IL 2-activated killer (LAK) cells are capable of lysing cultured human monocytes. In an effort to protect autologous monocytes from lysis, we treated monolayer cultures of adherent PBMC with various doses of human rIFN-gamma and assessed their susceptibility to LAK cells. IFN-gamma was shown to lessen the sensitivity of monocytes to lysis in a dose-dependent manner. Similar treatment of FMEX, an NK-resistant melanoma tumor cell line, with IFN-gamma did not affect its susceptibility to LAK lysis. Kinetic studies demonstrated that as little as 2 h incubation with IFN-gamma was sufficient for the protective effects to take effect. Additionally, monocytes that were pulsed with IFN-gamma for 2 h, washed, and then cultured in medium alone retained their resistance to lysis for at least 3 days. Cold target inhibition studies showed that IFN-treated and untreated monocytes could effectively compete with each other for binding sites on LAK cells. Furthermore, binding studies demonstrated that there was no significant difference between the number of conjugates formed by using either IFN-treated or untreated monocytes. This indicates that resistance to lysis induced by IFN treatment affects a post-binding event and not an initial recognition signal. From these studies, it was apparent that treatment of monocytes with IFN-gamma lessened their sensitivity to LAK-mediated lysis. Thus, it may be possible through a specific sequence of IFN-gamma and IL-2 treatment that LAK activity could be manipulated against some tumor cells, but not normal cells, to abrogate some of the toxicity seen with this type of cancer therapy.
- Copyright © 1988 by American Association of Immunologists
Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$37.50
Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.