Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • Log in

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • Log in
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Characteristics and mechanism of IFN-gamma-induced protection of human tumor cells from lysis by lymphokine-activated killer cells.

R U de Fries and S H Golub
J Immunol May 15, 1988, 140 (10) 3686-3693;
R U de Fries
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S H Golub
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

IFN-gamma has been shown to reduce the sensitivity of tumor cells to lysis by NK cells. The close relationship between NK cells and lymphokine-activated killer (LAK) cells has prompted us to investigate whether IFN-gamma pre-treatment also affects the sensitivity of tumor cells to lysis by LAK. We have shown previously that IFN-gamma can induce a significant reduction in the sensitivity of both cultured and fresh (surgically obtained) human tumor cells to lysis by LAK. Herein we show that changes in the sensitivity to LAK lysis of cultured human tumor cells can be induced by as little as 1 to 10 U/ml of IFN-gamma; a dose well within the range that can be achieved in vivo. Protection is induced within hours after treatment with IFN-gamma and is dependent on the continued presence of IFN-gamma. Tumor cells cultured in IFN-gamma for several days remain less sensitive to lysis and do not become refractory to IFN-gamma-mediated protection. In the absence of IFN-gamma, treated tumor cells regain "normal" sensitivity to lysis within 48 to 72 h. We have also investigated the mechanisms by which IFN-gamma reduces tumor cell sensitivity to LAK lysis using cold target competition, monolayer depletion, direct binding, and kinetic assays. IFN-gamma pre-treatment does not alter the kinetics of tumor cell lysis by LAK. Our data are most compatible with a model in which IFN-gamma reduces the ability of a subpopulation of tumor cells to induce the LAK effector cell to initiate lysis. These results are closely parallel to observations made on the IFN-mediated protection of targets from NK lysis and support the notion that NK- and LAK-mediated lysis are closely related. These results may have significance in vivo because high levels of IFN-gamma may be present at the tumor site or may be induced after therapeutic immunomodulation.

  • Copyright © 1988 by American Association of Immunologists

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$37.50

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 140, Issue 10
15 May 1988
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Characteristics and mechanism of IFN-gamma-induced protection of human tumor cells from lysis by lymphokine-activated killer cells.
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Characteristics and mechanism of IFN-gamma-induced protection of human tumor cells from lysis by lymphokine-activated killer cells.
R U de Fries, S H Golub
The Journal of Immunology May 15, 1988, 140 (10) 3686-3693;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Characteristics and mechanism of IFN-gamma-induced protection of human tumor cells from lysis by lymphokine-activated killer cells.
R U de Fries, S H Golub
The Journal of Immunology May 15, 1988, 140 (10) 3686-3693;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • FAR 889
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2022 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606