Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • Log in

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • Log in
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Changing processes from bone marrow-derived cultured mast cells to connective tissue-type mast cells in the peritoneal cavity of mast cell-deficient w/wv mice: association of proliferation arrest and differentiation.

T Nakano, Y Kanakura, H Asai and Y Kitamura
J Immunol January 15, 1987, 138 (2) 544-549;
T Nakano
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Kanakura
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Asai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Kitamura
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Connective tissue-type mast cells (CTMC) and mast cells grown in vitro exhibit many differences in morphology, biochemistry, and function. When cultured mast cells of WBB6F1-+/+ mouse origin were injected into the peritoneal cavity of genetically mast cell-deficient WBB6F1-W/Wv mice, however, the cultured mast cells acquired characteristics similar to CTMC. In this study, we analyzed the changing process. When the density of the cultured mast cells was measured by Percoll density gradient centrifugation, the proportion of dense mast cells increased after injection into the peritoneal cavity. Because the increase in proportion of dense mast cells paralleled the increase in proportion of heparin-containing mast cells, both parameters may be used as an index for differentiation activity of cultured mast cells into CTMC. When proliferation activity of mast cells was estimated by the incorporation of bromodeoxyuridine, the proliferation activity decreased after the i.p. transfer. Moreover, when cultured mast cells were recovered 10 wk after the i.p. transfer, the mast cells almost lost proliferation activity in the same culture condition that had been used for establishment of cultured mast cells from the bone marrow of WBB6F1-+/+ mice. These results demonstrate that the proliferation arrest and the acquisition of CTMC-like characters are associated after i.p. transfer of cultured mast cells.

  • Copyright © 1987 by American Association of Immunologists

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$37.50

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 138, Issue 2
15 Jan 1987
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Changing processes from bone marrow-derived cultured mast cells to connective tissue-type mast cells in the peritoneal cavity of mast cell-deficient w/wv mice: association of proliferation arrest and differentiation.
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Changing processes from bone marrow-derived cultured mast cells to connective tissue-type mast cells in the peritoneal cavity of mast cell-deficient w/wv mice: association of proliferation arrest and differentiation.
T Nakano, Y Kanakura, H Asai, Y Kitamura
The Journal of Immunology January 15, 1987, 138 (2) 544-549;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Changing processes from bone marrow-derived cultured mast cells to connective tissue-type mast cells in the peritoneal cavity of mast cell-deficient w/wv mice: association of proliferation arrest and differentiation.
T Nakano, Y Kanakura, H Asai, Y Kitamura
The Journal of Immunology January 15, 1987, 138 (2) 544-549;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • FAR 889
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2022 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606