Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • Log in

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • Log in
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Glucocorticoid receptors and corticosensitivity of human thymocytes at discrete stages of intrathymic differentiation.

F O Ranelletti, N Maggiano, F B Aiello, A Carbone, L M Larocca, P Musiani and M Piantelli
J Immunol January 15, 1987, 138 (2) 440-445;
F O Ranelletti
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N Maggiano
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F B Aiello
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Carbone
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L M Larocca
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Musiani
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Piantelli
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Human thymus is composed of several discrete compartments. Stage III thymocytes, located mainly in the medulla, stain brightly with anti-T3 monoclonal antibody; stage II thymocytes, located in the cortex, are T3- but react with T6 antibodies. The earliest identifiable intrathymic cell (stage I) expresses the sheep erythrocyte glycoprotein T11 but not T6 or T3 antigens. Within the thymus a phenotypically heterogeneous pool of proliferating lymphoblasts is present. This capacity to proliferate without in vitro activation is mainly attributable to thymocytes unable to respond to mitogens and expressing the cortical T6 marker. Both T3+ and T3-T6- cells respond to mitogen. However, in order to exhibit maximal proliferative responses, T3+ but not T3-T6- thymocytes require the addition of exogenous IL 2. Thymocyte subsets at distinct stages of intrathymic differentiation were then analyzed for glucocorticoid (GC) receptor content by using a whole cell assay with 3H-triamcinolone acetonide as tracer. The least mature T3-T6- thymocyte subset contained the highest levels of GC receptors . T3+ thymocytes exhibited a receptor content higher than that found in T6+ cells and similar to that reported for peripheral blood lymphocytes. Apart from the number, the GC receptor sites in all thymocyte subsets were similar in their affinities, kinetic characteristics, specificity for steroids, and ability to undergo translocation from cytoplasm to nucleus, and they behave in all these respects like binding sites of GC receptors in lymphoid and other cells. Independently of both phenotype and GC receptor content, all in vivo activated thymocytes (i.e., spontaneously proliferating cells) were similarly sensitive to the steroid inhibitory action in vitro. Both in the presence and in the absence of exogenous IL 1 or IL 2, the PHA-induced mitogenesis of T3-T6- cells was less inhibited by GC than that of T3+ thymocytes. Exogenous IL 1 and IL 2 were equally effective in removing, although not completely, the GC inhibition on T3-T6- proliferative responses to PHA. Relative to T3+ cell mitogenesis, only exogenous IL 2 was able to antagonize the steroid inhibitory action. The capacity observed in vitro of GC to differentially affect the proliferative potential or the cell viability of thymocytes belonging to functionally distinct subsets suggests that these hormones could regulate the intrathymic maturative pathways. Finally, although at present the physiologic relevance of the highest expression of GC receptors in intrathymic precursor cells remains unclear, the receptor density may be considered a marker of differentiation for the T lymphoid lineage.

  • Copyright © 1987 by American Association of Immunologists

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$37.50

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 138, Issue 2
15 Jan 1987
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Glucocorticoid receptors and corticosensitivity of human thymocytes at discrete stages of intrathymic differentiation.
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Glucocorticoid receptors and corticosensitivity of human thymocytes at discrete stages of intrathymic differentiation.
F O Ranelletti, N Maggiano, F B Aiello, A Carbone, L M Larocca, P Musiani, M Piantelli
The Journal of Immunology January 15, 1987, 138 (2) 440-445;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Glucocorticoid receptors and corticosensitivity of human thymocytes at discrete stages of intrathymic differentiation.
F O Ranelletti, N Maggiano, F B Aiello, A Carbone, L M Larocca, P Musiani, M Piantelli
The Journal of Immunology January 15, 1987, 138 (2) 440-445;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • FAR 889
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2022 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606