Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Monkeypox and Other Poxvirus Articles
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • My alerts
  • Log in
  • Log out
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Monkeypox and Other Poxvirus Articles
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Cryoglobulinemia induced by monoclonal immunoglobulin G rheumatoid factors derived from autoimmune MRL/MpJ-lpr/lpr mice.

Y Gyotoku, M Abdelmoula, F Spertini, S Izui and P H Lambert
J Immunol June 1, 1987, 138 (11) 3785-3792;
Y Gyotoku
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Abdelmoula
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F Spertini
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Izui
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P H Lambert
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

A MRL strain bearing the autosomal recessive mutant gene, lpr (lymphoproliferation), spontaneously develops, in addition to a lupus-like syndrome, unique serological and pathological manifestations. Production of high titers of IgG rheumatoid factors (RF) may be related to the formation of extremely large amounts of cryoglobulins and the development of tissue lesions such as necrotizing polyarteritis, arthritis, and glomerulonephritis. To analyze more directly the relationship of IgG RF to the development of cryoglobulins and tissue injuries, we have established four monoclonal IgG RF secreting hybridomas from unimmunized MRL-lpr/lpr mice and determined their pathogenic effects in normal strains of mice. All the monoclonal IgG RF obtained in this study were of the IgG3 subclass and generated cryoglobulins. However, the fact that not only IgG3 Rf monoclonals but also four of five non-RF IgG3 monoclonals were able to form cryoglobulins, which were composed exclusively of each IgG3 monoclonal, indicates that the IgG3 molecule has a unique physicochemical property to self-associate via nonimmunological interaction and the ability to form cryoglobulins. When the in vivo pathogenic activities of these IgG3 RF and non-RF monoclonals were examined, three of IgG3 RF monoclonals with the specificity to IgG2a were able to induce extensive pathologic manifestations including peripheral vasculitis and glomerulonephritis characteristic of patients with cryoglobulinemia. Our results indicate that the IgG3 itself, independently of its specificity, could be a potential source of cryoglobulins and IgG3 RF, combined with its activity of cryoglobulin formation, may play a significant role in the development of glomerulonephritis and cutaneous vascular lesions of ears and foot pads observed frequently in aged MRL-lpr/lpr mice.

  • Copyright © 1987 by American Association of Immunologists
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 138, Issue 11
1 Jun 1987
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Cryoglobulinemia induced by monoclonal immunoglobulin G rheumatoid factors derived from autoimmune MRL/MpJ-lpr/lpr mice.
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Cryoglobulinemia induced by monoclonal immunoglobulin G rheumatoid factors derived from autoimmune MRL/MpJ-lpr/lpr mice.
Y Gyotoku, M Abdelmoula, F Spertini, S Izui, P H Lambert
The Journal of Immunology June 1, 1987, 138 (11) 3785-3792;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Cryoglobulinemia induced by monoclonal immunoglobulin G rheumatoid factors derived from autoimmune MRL/MpJ-lpr/lpr mice.
Y Gyotoku, M Abdelmoula, F Spertini, S Izui, P H Lambert
The Journal of Immunology June 1, 1987, 138 (11) 3785-3792;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • FAR 889
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2022 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606