Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • My alerts
  • Log in
  • Log out
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Enhancement of human eosinophil cytotoxicity and leukotriene synthesis by biosynthetic (recombinant) granulocyte-macrophage colony-stimulating factor.

D S Silberstein, W F Owen, J C Gasson, J F DiPersio, D W Golde, J C Bina, R Soberman, K F Austen and J R David
J Immunol November 15, 1986, 137 (10) 3290-3294;
D S Silberstein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W F Owen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J C Gasson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J F DiPersio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D W Golde
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J C Bina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Soberman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K F Austen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J R David
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Culture medium conditioned by activated human T lymphocytes enhances the in vitro cytotoxicity of purified human eosinophils toward Schistosoma mansoni larvae, suggesting the existence of a mechanism for T lymphocyte regulation of eosinophil function. Here we show that purified biosynthetic (recombinant) human T lymphocyte granulocyte-macrophage colony-stimulating factor (GM-CSF) enhanced markedly two eosinophil functions: cytotoxicity toward schistosomula by a mean of 676%, and calcium ionophore A23187-induced generation of leukotriene C4 (LTC4) by a mean of 135%. Augmentation of each eosinophil function by GM-CSF was time- and dose-dependent, with a dose-response relationship at concentrations between 1 and 20 pM. Tumor necrosis factor (TNF) enhanced eosinophil cytotoxicity with slower kinetics, a different dose-dependence relationship, and to a lower maximum, as compared with GM-CSF. There was no detectable effect of TNF on calcium ionophore A23187-induced generation of LTC4. The effect of GM-CSF on arachidonic acid metabolism to LTC4 reached a plateau with 60 min of incubation before stimulation with ionophore, and was characterized by an initial augmentation of the intracellular level of LTC4 and a subsequent increment in extracellular LTC4. Thus, GM-CSF can serve as a mediator for T lymphocyte regulation of functions of mature eosinophils. It is also the first defined macromolecule known to enhance metabolism of membrane-derived arachidonic acid via the 5-lipoxygenase pathway.

  • Copyright © 1986 by American Association of Immunologists

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$37.50

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 137, Issue 10
15 Nov 1986
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Enhancement of human eosinophil cytotoxicity and leukotriene synthesis by biosynthetic (recombinant) granulocyte-macrophage colony-stimulating factor.
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Enhancement of human eosinophil cytotoxicity and leukotriene synthesis by biosynthetic (recombinant) granulocyte-macrophage colony-stimulating factor.
D S Silberstein, W F Owen, J C Gasson, J F DiPersio, D W Golde, J C Bina, R Soberman, K F Austen, J R David
The Journal of Immunology November 15, 1986, 137 (10) 3290-3294;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Enhancement of human eosinophil cytotoxicity and leukotriene synthesis by biosynthetic (recombinant) granulocyte-macrophage colony-stimulating factor.
D S Silberstein, W F Owen, J C Gasson, J F DiPersio, D W Golde, J C Bina, R Soberman, K F Austen, J R David
The Journal of Immunology November 15, 1986, 137 (10) 3290-3294;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • FAR 889
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2022 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606