Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • My alerts
  • Log in
  • Log out
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Induction by IL 1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1).

M L Dustin, R Rothlein, A K Bhan, C A Dinarello and T A Springer
J Immunol July 1, 1986, 137 (1) 245-254;
M L Dustin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Rothlein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A K Bhan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C A Dinarello
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T A Springer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

ICAM-1 is a cell surface glycoprotein originally defined by a monoclonal antibody (MAb) that inhibits phorbol ester-stimulated leukocyte aggregation. Staining of frozen sections and immunofluorescence flow cytometry showed intercellular adhesion molecule-1 (ICAM-1) is expressed on non-hematopoietic cells such as vascular endothelial cells, thymic epithelial cells, certain other epithelial cells, and fibroblasts, and on hematopoietic cells such as tissue macrophages, mitogen-stimulated T lymphocyte blasts, and germinal center dendritic cells in tonsils, lymph nodes, and Peyer's patches. ICAM-1 staining on vascular endothelial cells is most intense in T cell areas in lymph nodes and tonsils showing reactive hyperplasia. ICAM-1 is expressed in low amounts on peripheral blood leukocytes. Phorbol ester-stimulated differentiation of myelomonocytic cell lines greatly increases ICAM-1 expression. ICAM-1 expression on dermal fibroblasts is increased threefold to fivefold by either interleukin 1 (IL 1) or interferon-gamma at 10 U/ml over a period of 4 or 10 hr, respectively. The induction is dependent on protein and mRNA synthesis and is reversible. ICAM-1 displays Mr heterogeneity in different cell types with a Mr of 97,000 on fibroblasts, 114,000 on the myelomonocytic cell line U937, and 90,000 on the B lymphoblastoid cell JY. ICAM-1 biosynthesis involves a Mr approximately 73,000 intracellular precursor. The non-N-glycosylated form resulting from tunicamycin treatment has a Mr of 55,000. ICAM-1 isolated from phorbol myristic acetate (PMA) stimulated U937 and from fibroblasts yields an identical major product of Mr = 60,000 after chemical deglycosylation. ICAM-1 MAb interferes with the adhesion of phytohemagglutinin blasts, and the adhesion of the cell line SKW3 to human dermal fibroblast cell layers. Pretreatment of fibroblasts but not lymphocytes with ICAM-1 MAb, and of lymphocytes but not fibroblasts with lymphocyte function-associated antigen 1 MAb inhibits adhesion. Intercellular adhesion is increased by prior exposure of fibroblasts to IL 1, and correlates with induction of ICAM-1.

  • Copyright © 1986 by American Association of Immunologists
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 137, Issue 1
1 Jul 1986
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Induction by IL 1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1).
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Induction by IL 1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1).
M L Dustin, R Rothlein, A K Bhan, C A Dinarello, T A Springer
The Journal of Immunology July 1, 1986, 137 (1) 245-254;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Induction by IL 1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1).
M L Dustin, R Rothlein, A K Bhan, C A Dinarello, T A Springer
The Journal of Immunology July 1, 1986, 137 (1) 245-254;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • FAR 889
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2022 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606