Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • Log in

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • Log in
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Inhibition of LPS toxicity for macrophages by metallothionein-inducing agents.

S R Patierno, M Costa, V M Lewis and D L Peavy
J Immunol April 1, 1983, 130 (4) 1924-1929;
S R Patierno
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Costa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V M Lewis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D L Peavy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Parenteral administration of adrenal corticosteroids or particular transition metal salts are known to protect mice from the lethal effects of bacterial lipopolysaccharides (LPS). To determine if both groups of substances act through similar biologic mechanisms, their capacity to protect macrophages from the direct toxic effects of LPS was examined in vitro. When added simultaneously with LPS at culture initiation, 10 to 100 microM cortisone increased the viability of normal peritoneal macrophages as determined by trypan blue exclusion. Prednisolone and corticosterone protected LPS-treated macrophages at even lower concentrations (0.1 to 1 microM); estradiol and testosterone failed to alter cell viability at any concentration tested. Protection was dependent on de novo synthesis because inclusion of 20 nM actinomycin C1 or 1 microM cycloheximide with 10 microM corticosterone during a 4-hr pretreatment period blocked induction of the protective effect. Murine macrophages were also protected by micromolar concentrations of zinc, cadmium, mercury, and manganese, but not by calcium or lead. As was obtained with corticosteroids, heavy metal-induced protection depended on de novo RNA and protein synthesis. Because all substances that protected against LPS are known inducers of metallothionein in somatic cells, peritoneal macrophages were assayed for the presence of this unique, cytoplasmic protein. Within 2 to 8 hr, 10 microM cadmium caused three to fivefold increases in the incorporation of 35S-cysteine and in the binding of 203Hg into the TCA-soluble fraction of cell lysates that was excluded on centrifugally accelerated Sephadex G-10 columns. These results suggest macrophages may be protected from LPS-mediated cytotoxicity through synthesis of a sulfhydryl-rich, metal-binding protein. Although its mechanism of action remains unknown, it is proposed that metallothionein may function homeostatically by altering intracellular concentrations of zinc or may play a regulatory role by facilitating transfer of heavy metals among metal-requiring apoproteins.

  • Copyright © 1983 by American Association of Immunologists

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$37.50

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 130, Issue 4
1 Apr 1983
  • Table of Contents
  • Table of Contents (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Inhibition of LPS toxicity for macrophages by metallothionein-inducing agents.
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Inhibition of LPS toxicity for macrophages by metallothionein-inducing agents.
S R Patierno, M Costa, V M Lewis, D L Peavy
The Journal of Immunology April 1, 1983, 130 (4) 1924-1929;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Inhibition of LPS toxicity for macrophages by metallothionein-inducing agents.
S R Patierno, M Costa, V M Lewis, D L Peavy
The Journal of Immunology April 1, 1983, 130 (4) 1924-1929;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • FAR 889
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2022 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606