Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Monkeypox and Other Poxvirus Articles
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons

User menu

  • Subscribe
  • Log in

Search

  • Advanced search
The Journal of Immunology
  • Other Publications
    • American Association of Immunologists
    • ImmunoHorizons
  • Subscribe
  • Log in
The Journal of Immunology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Next in The JI
    • Archive
    • Brief Reviews
    • Pillars of Immunology
    • Translating Immunology
    • Monkeypox and Other Poxvirus Articles
    • Most Read
    • Top Downloads
    • Annual Meeting Abstracts
  • COVID-19/SARS/MERS Articles
  • Info
    • About the Journal
    • For Authors
    • Journal Policies
    • Influence Statement
    • For Advertisers
  • Editors
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Journal Policies
  • Subscribe
    • Journal Subscriptions
    • Email Alerts
    • RSS Feeds
    • ImmunoCasts
  • More
    • Most Read
    • Most Cited
    • ImmunoCasts
    • AAI Disclaimer
    • Feedback
    • Help
    • Accessibility Statement
  • Follow The Journal of Immunology on Twitter
  • Follow The Journal of Immunology on RSS

Hapten-Specific IgE Antibody Responses in Mice

VII. Conversion of IgE “Non-Responder” Strains to IgE “Responders” by Elimination of Suppressor T Cell Activity

Nicholas Chiorazzi, David A. Fox and David H. Katz
J Immunol January 1, 1977, 118 (1) 48-54;
Nicholas Chiorazzi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David A. Fox
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David H. Katz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Mice of the inbred strains SJL (H-2s) and AKR (H-2k) are “non-responders” and “low-responders,” respectively, in terms of their capacity to develop antibody responses of the IgE class when immunized with conventional proteins and hapten-protein conjugates under conditions optimal for eliciting IgE responses in “high-responder” mice, such as BALB/c (H-2d), to these same antigens. For example, BALB/c mice preimmunized with ASC and then challenged 7 days later with DNP-ASC develop peak augmented primary IgE anti-DNP antibody responses of 320 PCA units, whereas SJL and AKR mice develop responses which are 16-fold and 4-fold lower, respectively. However, pretreatment of the latter two strains with appropriate doses of either x-irradiation (150 R), cyclophosphamide (100 mg/kg) or ALS (150 µl) before carrier-preimmunization strikingly enhances the magnitude of IgE antibody responses in such mice to levels as high as 64-fold above those of untreated control mice of the same strains.

Evidence obtained in these experiments indicates that the capacity of such maneuvers to convert poor IgE responders to high responder status reflects elimination of nonantigen-specific suppressor T lymphocytes which are naturally present and normally function to suppress or “dampen” the IgE antibody response in a relatively selective manner. It appears that these cells modulate IgE responses by acting at least at two distinct points: 1) The most effective activity seems to be at the level of induction of carrier-specific helper T cells; 2) A second locus of inhibitory activity is more distal in the response, either impeding helper T cell-B cell cooperative interactions or suppressing B cell differentiation and/or function directly. Taken collectively, these observations demonstrate that the state of poor responsiveness of the SJL and AKR strains for the IgE antibody class is not a reflection of a genetic inability to develop IgE responses but rather a manifestation of a genetic capability to actively inhibit IgE antibody synthesis.

Footnotes

  • ↵2 Supported by National Institutes of Health National Research Service Award 1-F32-AI-01965 from the National Institute of Allergy and Infectious Diseases. Present address: The Rockefeller University, 1230 York Avenue, New York, New York 10021.

  • ↵1 This work was supported by National Institutes of Health Grant AI-10630.

  • Received June 28, 1976.
  • Copyright © 1977 by The American Association of Immunologists, Inc.

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$37.50

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

In this issue

The Journal of Immunology
Vol. 118, Issue 1
1 Jan 1977
  • Table of Contents
  • Table of Contents (PDF)
  • Advertising (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Immunology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Hapten-Specific IgE Antibody Responses in Mice
(Your Name) has forwarded a page to you from The Journal of Immunology
(Your Name) thought you would like to see this page from the The Journal of Immunology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Hapten-Specific IgE Antibody Responses in Mice
Nicholas Chiorazzi, David A. Fox, David H. Katz
The Journal of Immunology January 1, 1977, 118 (1) 48-54;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Hapten-Specific IgE Antibody Responses in Mice
Nicholas Chiorazzi, David A. Fox, David H. Katz
The Journal of Immunology January 1, 1977, 118 (1) 48-54;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Ligand-Activated T Cell Growth Factor-Induced Proliferation: Absorption of T Cell Growth Factor by Activated T Cells
  • Role of Nominal Antigen and Ia Antigen in the Binding of Antigen-Specific T Lymphocytes to Macrophages
  • Role of Self Carriers in the Immune Response and Tolerance
Show more Cellular Immunology

Similar Articles

Navigate

  • Home
  • Current Issue
  • Next in The JI
  • Archive
  • Brief Reviews
  • Pillars of Immunology
  • Translating Immunology

For Authors

  • Submit a Manuscript
  • Instructions for Authors
  • About the Journal
  • Journal Policies
  • Editors

General Information

  • Advertisers
  • Subscribers
  • Rights and Permissions
  • Accessibility Statement
  • FAR 889
  • Privacy Policy
  • Disclaimer

Journal Services

  • Email Alerts
  • RSS Feeds
  • ImmunoCasts
  • Twitter

Copyright © 2022 by The American Association of Immunologists, Inc.

Print ISSN 0022-1767        Online ISSN 1550-6606