








in response to an allergen or a virus likely undergo analogous
activation and partake in immunoregulation at the infection
site, with an impact on surrounding leukocytes, through PMD
(Fig. 9C).
Eosinophilia correlated with reduced viral burden in allergen-

induced animal models with SeV and PVM (19, 20, 37).

Whereas the necessity for allergen exposure, release of eosinophil
granule proteins, and other mediators were important to mitigate
these viruses, a possible role for eosinophils in regulating cellular
immunity was not considered, perhaps because mice with elevated
eosinophils cleared these viruses prior to effective activation of
adaptive immune responses. Because cumulative host responses

FIGURE 7. Eosinophils accumulate in MLN

after IAV infection. Sections of MLN were

stained with H&E and eosinophil number was

determined per high-power field. Eosinophils

were identified by eosin dye uptake in cyto-

plasm and bilobed nuclei [arrowheads, (A and

D)]. Eosinophil recipient mice had more eo-

sinophils in the MLNs and PBV areas of the

lungs (A) at early and late times after influenza

virus infection (B and C). Mice that received

eosinophils after chronic airway remodeling

and influenza infection had even greater num-

bers of eosinophils in MLN and lungs (D–F).
n = 5 mice per timepoint per group. Results are

shown as the mean and SEM, and are repre-

sentative of two independent experiments.

Dotted lines represent eosinophils in naive mice

(B and C) and CA mice (E and F). Scale bar,

50 mm. *Significance with p , 0.05 by two-

way ANOVA with Sidak multiple comparisons

test. Eos, eosinophils.

FIGURE 8. Eosinophils promote CD8+ T cell activation

in an Ag-specific manner in culture. BMdEos or spleno-

cytes infected overnight with A/PR/08/1934 were able to

induce b-galactosidase expression by a virus NP-specific

T cell hybridoma (H 8Z-50.4). IAV NP peptide was used as

a positive control and yielded.200 blue spots per well. An

NP peptide from SeV was used as a negative control (A).

Data are shown as the mean and SD, and are representative

of two independent experiments. *Significance with p ,
0.05 by one-way ANOVA with Dunn multiple comparison

test, #p , 0.05 by Mann–Whitney U test when compared

with non-infected controls. BMdEos (pink arrows) that

were pulsed with PBS/scrambled OVA peptide (FILKSINE)/

OVA peptide (SIINFEKL) and cultured with OVA-specific

CD8+ T cells to visualize the formation of immune synapses

(B). Actin (blue) focusing and LFA-1 (yellow) polarization

were noted in Ag-recognizing CD8+ T cells in contact with

SIINFEKL peptide-pulsed eosinophils indicative of immune

synapse formation. Actin and LFA-1 remained diffused in

cells exposed to mock-pulsed or scrambled OVA. Scale bar,

2 mm, and applicable to all images. TMTC, too many to

count.
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differ based on the type of virus, it is also possible that eosinophil
responses are tailored to different viruses. In contrast to studies
with other respiratory viruses (18, 20, 37), mice with fungal
asthma infected with IAV had equivalent lung viral load at early
time points and the viral burden rapidly decreased upon CD8+

T cell recruitment (13). Because virus-specific CD8+ T cells are
vital to host defense against influenza (40, 41), and IAV-infected
eosinophil recipients showed a reduction in viral burden that
correlated with increased influx of CD8+ T cells, we hypothesized
that eosinophils may support CD8+ T cell immunity in response to
IAV. The strength and duration of Ag availability is associated
with the rate of CD8+ T cell differentiation (42). With their
abundance in the airways of AA+Flu mice (13), resistance to high
infectious dose, and ability to prime CD8+ T cells, eosinophils
may provide an auxiliary support function by increasing the va-
riety and availability of Ags, leading to more effective cellular
immunity. The low replicative capacity of IAV in eosinophils
suggests that IAV infection may be abortive in eosinophils similar
to professional APCs like DCs and macrophages (43). Similar to
APCs (44), eosinophils may also rely on infection to gather viral
peptides for presentation. Therefore, in a microenvironment that is

set up to harbor them, such as the allergic lungs, eosinophils may
play a supporting role for professional APCs like DCs to mediate
effective cellular immunity.
Professional APCs are more efficient at presenting Ags obtained

during active IAV infection to CD4+ T cells in the context of
MHCII than Ags acquired exogenously through endocytosis (44).
The discovery of MHCII (45–48) and costimulatory molecules
(49, 50) on eosinophils, as well as the demonstration of their
ability to produce cytokines (51), migrate to draining lymph nodes
(31, 52) and present Ags to CD4+ T cells (53, 54), have catego-
rized eosinophils as putative additional APCs in the immune
system. However, IAV did not regulate MHCII expression on
eosinophils in our studies (data not shown), and we did not ob-
serve significant changes in CD4+ T cells in IAV infections be-
tween models with and without eosinophils (13). However,
eosinophils can increase the number of DCs and CD4+ T cells in
the lymph nodes (55) and, together with their presence in the
thymus (56), suggest an ability to communicate with professional
APCs and regulate T cell responses. Eosinophil migration to
MLNs has been demonstrated in allergen models (57, 58), but
their presence in MLNs in respiratory viral infections has not been

FIGURE 9. Eosinophils may enhance cellular immunity by presenting viral Ag. Eosinophils exposed to wild-type PR8 were transferred into mice in-

fected with mutant PR8 with a targeted deletion in the immunodominant epitope of PA, and specific CD8+ T cells were probed at day 10 (A). CD8+ T cells

specific to PA were detected in the BAL, lungs, and spleens in mice that received BMdEos pulsed with wild-type PR8 (B). n = 5 per treatment per group.

Results are shown as the mean and IQR. *Significance with p , 0.05 by Mann–Whitney U test. We propose that eosinophils that are abundant in allergic

airways are activated by influenza virus and some migrate to the draining lymph nodes wherein they present viral Ags to CD8+ T cells resulting in activation

and proliferation of virus-specific cytotoxic T cells. Upon reaching the lungs, these CD8+ T cells will counter virus-infected cells directly and may

communicate with eosinophils for restimulation (C).
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shown. Although we did not measure migration directly, based on
the increased number of eosinophils in the MLNs after adoptive
transfer that preceded the infiltration of Flu-specific CD8+ T cell
in the recipient lungs, we postulate that eosinophils become in-
fected or capture viral Ag in the lungs and migrate to the T cell
zones of the lung draining lymph nodes to mediate T cell re-
sponses (Fig. 9). The means by which viral Ags are selected by
eosinophils and how they are loaded into MHCI molecules needs
further investigation.
Neutrophils (related granulocytes) promote antiviral immunity

by leaving a trail of CXCL12-loaded cellular particles to guide
antiviral CD8+ T cells to IAV-infected lungs (59). Further evidence
of neutrophils promoting CD8+ T cell recruitment during IAV
(60–62) demonstrate the immunoregulatory functions of gran-
ulocytes during viral infections and the importance of delineating
the mechanisms by which they do so. Although our findings
suggest a role for eosinophils in priming and regulating CD8+

T cell responses during IAV infections, an alternative explanation
may be that eosinophils transfer viral Ags to professional APCs
for cross-presentation to enhance cellular immunity by mediating
helper T cell responses. Although cross-presentation by DCs is
important to trigger antiviral CD8+ T cell responses against IAV,
viral defenses are known to hinder effective DC responses thereby
delaying or blunting T cell responses (63, 64). Because the
number of eosinophils in the airways of allergic hosts outweighs
most other cell types, additional effector functions of eosinophils
as regulators of cellular immunity may be a defense mechanism
that is beneficial to the allergic host infected with a fast-replicating
respiratory pathogen such as IAV.
Eosinophils also enhance antitumor immunity as their presence

leads to increased recruitment of activated CD8+ T cells, a re-
duction in tumor size, and an improvement in tumor vasculature
(32). These data are remarkably similar to our findings in IAV
infections. The data presented in this study have delineated a
mechanism by which eosinophils may aid in enhancing cellular
immunity to IAV in a host with allergic asthma (Fig. 9C). We
propose that lung eosinophils in allergen-provoked mice are well
positioned to respond to incoming pathogens and are activated by
IAV to undergo PMD, thereby increasing the cytokine load in the
microenvironment and activating host cell functions in situ. Viral
recognition may occur through the pattern recognition receptor
TLR3 (found elevated in our IAV model) in addition to other
receptors on infected eosinophils. Activated eosinophils that mi-
grate to MLNs may present viral Ag directly to CD8+ T cells,
which in turn migrate to the infection site, leading to a reduction
in viral burden through effector functions (granzyme and cytokine
release). The abundance of eosinophils in the lungs of allergic
mice increases the likelihood of restimulating activated CD8+

T cells at the infection site. The tertiary signals provided by eo-
sinophils in the MLN and the functional implications of
eosinophil-activated CD8+ T cells in IAV infections are currently
under investigation by our group. Because eosinophils can mod-
ulate DC responses (39, 65), it is possible that IAV-activated eo-
sinophils regulate DC functions in the MLNs or the lungs to
promote CD8+ T cells.
Eosinophils are multifunctional cells long considered to be

mediators of asthma severity. However, the local immunity and/or
regulation/repair hypothesis proposes that eosinophil recruitment
occurs in response to cell turnover in tissues and that eosinophils
contribute to immune responses in the microenvironment in an
attempt to regain tissue homeostasis (66). The data presented in
this study support this hypothesis in which eosinophils that are
dominant in the allergic airways contribute to antiviral immune
defenses against IAV infections by supporting CD8+ T cell re-

sponses. This improved understanding of eosinophil function
in antiviral host defense is therefore not only biologically inter-
esting, but is medically important in the context of understanding
the best course of treatment for asthmatics during influenza virus
infections.
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