SARM1, Not MyD88, Mediates TLR7/TLR9-Induced Apoptosis in Neurons

Piyali Mukherjee, Clayton W. Winkler, Katherine G. Taylor, Tyson A. Woods, Vinod Nair, Burhan A. Khan and Karin E. Peterson

J Immunol published online 30 September 2015
http://www.jimmunol.org/content/early/2015/09/30/jimmunol.1500953
SARM1, Not MyD88, Mediates TLR7/TLR9-Induced Apoptosis in Neurons

Piyali Mukherjee,*1,2 Clayton W. Winkler,*1 Katherine G. Taylor,*1 Tyson A. Woods,*1 Vinod Nair,† Burhan A. Khan,* and Karin E. Peterson*

Neuronal apoptosis is a key aspect of many different neurologic diseases, but the mechanisms remain unresolved. Recent studies have suggested a mechanism of innate immune-induced neuronal apoptosis through the stimulation of endosomal TLRs in neurons. TLRs are stimulated both by pathogen-associated molecular patterns as well as by damage-associated molecular patterns, including microRNAs released by damaged neurons. In the present study, we identified the mechanism responsible for TLR7/TLR9-mediated neuronal apoptosis. TLR-induced apoptosis required endosomal localization of TLRs but was independent of MyD88 signaling. Instead, apoptosis required the TLR adaptor molecule SARM1, which localized to the mitochondria following TLR activation and was associated with mitochondrial accumulation in neurites. Deficiency in SARM1 inhibited both mitochondrial accumulation in neurites and TLR-induced apoptosis. These studies identify a non–MyD88 pathway of TLR7/TLR9 signaling in neurons and provide a mechanism for how innate immune responses in the CNS directly induce neuronal damage. The Journal of Immunology, 2015, 195: 000–000.

Neuronal damage or loss is a key pathological feature of multiple neurodegenerative disorders of both known and unknown etiologies. Understanding the underlying mechanisms of neuronal damage or apoptosis is important in developing potential therapeutic treatments for neurologic diseases. However, the events that lead to neuronal apoptosis are often unclear, particularly in cases where neuronal death is not associated with a direct infection of the neuron by a pathogen. In these cases, neuronal cell death may occur via the activation of other mechanisms, including innate immune responses.

One possible source of innate immune activation during both pathogen and non–pathogen-related damage in the CNS is the production of damage-associated molecular patterns (DAMPs). Damaged cells in the CNS may release exosomes containing microRNA and/or fragmented cellular DNA from dying cells, which can stimulate endosomal TLRs (1–4). Unlike glia or infiltrating immune cells, in which TLR stimulation induces cytokine production and/or proliferation, TLR stimulation of neurons appears to have negative effects on neuronal morphology and physiology, often leading to neuronal degeneration (1, 5–8). In particular, stimulation of endosomally located TLRs (TLR3, TLR7, TLR8, and TLR9) expressed by neurons induces neuronal cell death (1, 5, 6, 8), but the mechanisms underlying this process remain unresolved. Although some studies have indicated a MyD88-dependent mechanism of cell death (1, 2), others have indicated an MyD88-independent mechanism (8, 9), suggesting that novel TLR signaling pathways may contribute to neuronal damage.

Each of the 12 known TLRs bind to members of the highly conserved Toll/IL-1R–containing adaptor protein family, which in turn initiate signal transduction pathways leading to activation of IFN response factors (IRFs) and NF-κB (10, 11). However, one member of the TLR adaptor family, sterile α and armadillo motif containing protein 1 (SARM1), is unique in its structure, expression profile, and signaling function. Unlike other TLR adaptor molecules, SARM1 does not activate NF-κB or IRF7. Instead, SARM1 has been found to inhibit these signaling pathways following TLR activation of immune cells (12–15). Overexpression of SARM1 or specific domains of SARM1 can lead to cell death, a mechanism recently termed sarmoptosis (12, 16). In the brain, SARM1 is expressed at high levels in neurons and has been linked to neuronal cell death following oxygen glucose deprivation, viral infection, or axonal damage (16–20).

In the present study, we examined the mechanism underlying TLR-mediated neuronal cell death. We found that combined stimulation of TLR7 and TLR9 resulted in neuronal apoptosis in primary cortical neuronal cultures and olfactory sensory neurons in vivo. TLR-induced cell death was not mediated by the normal canonical TLR signaling pathway, as MyD88 deficiency had no effect on neuronal apoptosis. Instead, apoptosis was dependent on SARM1 and correlated with SARM1 localization to the mitochondria. Activation of the SARM1 pathway may be an underlying mechanism by which DAMPs, produced during injury or insult to the CNS, contribute to disease pathogenesis by directly stimulating endosomal TLRs and causing neuronal cell death.
Materials and Methods
Generation of primary cortical neurons and stimulation with TLR ligands

Generation of primary neurons from mice was completed under animal protocol RML.2012-56, which was approved by the National Institutes of Health/National Institute of Allergy and Infectious Diseases/Rocky Mountain Laboratories Institutional Animal Care and Use Committee. Sarm1 mice were provided by Michael Diamond (Washington University). These mice as well as Mydb88−/− mice and Unc93b1 3d mice (obtained from the Mutant Mouse Regional Resource Center) were maintained on a C57BL/6 background. Previous studies with primary neuronal cultures from knockout mice for all experiments. Previous studies generated wild-type control cultures were generated at the same time and generated from mouse strains with the C57BL/6 background. Strain-specific wild-type control cultures were generated at the same time as preparations of TLR agonists.

For TLR stimulation, neuron cultures were treated with optimized concentrations of the TLR7 agonist imiquimod and the TLR9 agonist CpG–oligodeoxynucleotide (ODN) 1826, as determined by a criss-cross assay using serial dilutions of both agonists (data not shown). Concentrations used were 5 μM imiquimod and 80 nM CpG-ODN for neurons generated from IRW mice and 5 μM imiquimod and 264 nM CpG-ODN for neurons generated from mouse strains with the C57BL/6 background. Strain-specific wild-type control cultures were generated at the same time as neuron cultures from knockout mice for all experiments. Previous studies with primary neuronal cultures from Unc93b1 3d, TLR7, and Mydb88−/− mice demonstrated that these cells are susceptible to La Crosse virus–induced apoptosis and thus are not refractory to cell death (data not shown).

MTT assay to determine cell viability

MTT assay to determine cell viability is a common method used to assess cell viability and proliferation. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay is based on the reduction of the yellow MTT salt to a dark purple formazan product. The amount of formazan produced is directly proportional to the number of viable cells in the sample. In this study, neurons were cultured in 96-well plates and treated with media or agonists using three to six replicates per group per experiment. At specific time points, cells were incubated with MTT at a concentration of 0.5 mg/mL for 3 h. The MTT solution was aspirated and DMSO was added to each well. The formazan concentration in each well was measured by absorbance at 540 nm using a cell plate reader (Synergy 4, BioTek). Data were compared with mock-infected cultures to determine percentage cell death. Cultures from deficient mice were directly compared with wild-type controls. Neurons were cultured in 96-well plates and treated with media or agonists. Significant changes in cell viability were determined by one-way ANOVA analysis.

Glutamate-induced excitotoxicity in primary neurons

Glutamate-induced excitotoxicity in primary neurons

Primary neurons derived from C57BL/6 or Sarm1−/− mice were treated with 2-fold dilutions of kainic acid (Sigma-Aldrich) or N-methyl-D-aspartate (NMDA; Sigma-Aldrich) to induce cell death. Reagent concentrations and experimental protocol were modeled from Prehn et al. (23). Briefly, kainic acid or NMDA was dissolved in HBSS containing 5.5 mM glucose and added directly to neurons cultured in a 96-well plate for a 1-h incubation. Cells were then washed twice with HBSS/glucose before neuronal maintenance media was reapplied and the cells returned to the incubator. After 18 h, cell viability was measured by an MTT assay.

Caspase-3 detection

Caspase-3 detection is an important method for determining caspase-3 activity in cells. Caspase-3 is a key enzyme in the execution of apoptosis. The caspase-3 activity was determined using a caspase-3 colorimetric assay kit (GenScript). Cells were incubated in lysis buffer, centrifuged at 10,000 rpm, and the supernatant was collected. Protein content was determined by BCA assay and 300 μg protein with the caspase-3 substrate. The samples were incubated for 3 h and the extinction values were obtained using a Synergy 4 (BioTek) spectrophotometer at 405 nm. Significance was determined by one-way ANOVA.

Real-time PCR

RNA was isolated from primary cortical neurons using Quick-RNA kit (Zymo Research). cDNA was prepared from RNA samples as previously described (24). Primers were designed using Primer3 Web site with a melting temperature of 60°C (25). SYBR Green dye with ROX (Bio-Rad) was used for measurement of real-time PCR amplification. Data for each sample was calculated as the percentage difference in Ct value (ΔCt = Ct sample – Ct housekeeping gene – Ct gene of interest). The data were plotted as mean average percentage of Gapdh and β-actin (Acbh) values for each gene of interest for each sample. Significance was determined by two-way ANOVA. Superarray analysis was completed as previously described (24) using the mouse mitochondrial PCR array (PAMM0087Z). RNA isolated from mock- or TLR-stimulated neurons were split evenly between two separate PCR plates for analysis.

Immunoblot

Mitochondrial fractions from mock- and agonist-treated primary neurons were isolated using the mitochondria/cytosol fractionation kit (Millipore). Immunoblotting was done using anti-rabbit SARM1 (Genetex, GTX77621) as previously described (19). Abs to voltage-dependent anion channel 1 (VDAC1) (Abcam, ab14734) or cytochrome c oxidase subunit IV (Abcam, ab14744) were used as a mitochondrial loading controls. Protein was detected using a Typhoon scanner and analyzed with Image Studio Lite software (LI-COR Biosciences).

Immunocytochemistry analysis of neurons

Primary cortical neurons were grown on poly-D-lysine–coated chamber slides. For colocalization studies, cells were fixed and permeabilized at 72 hours postinfection. Cells were stained with anti-SARM1 (a gift from Aihao Ding, Cornell University) and heat shock protein (HSP90) (Abcam, ab13492) or calbindin D (Millipore, AB1778) and TUNEL (Promega, G7481). Slides were mounted with ProLong Gold antifade reagent with DAPI (Life Technologies). Additional wells were incubated with individual primary Abs or no primary Abs prior to incubation with secondary Abs to confirm the lack of nonspecific staining or cross-reactivity. Digital images were captured using NIS-Elements software (Nikon) and compiled using Canvas 14 software (ACD Systems).

Analysis of cells for mitochondria using MitoTracker

Neurons in eight-chambered slides were incubated with 100 nM MitoTracker Red CMXRos (Life Technologies) and 3.3 μM Hoechst 33342 dye (Life Technologies) at 37°C for 20–30 min. Cells were rinsed once in PBS and fixed at 37°C for 15 min in 3.7% PFA in neurobasal media. Slides were mounted with ProLong Gold antifade reagent (Life Technologies). The slides were analyzed using a Zeiss 510 Meta confocal microscope. For quantification of MitoTracker staining, images were analyzed using Zen Blue 2011 software. The display of high magnification images were scaled (which did not alter the original pixel density).

FIGURE 1. Combined TLR7 and TLR9 stimulation results in significant neuronal apoptosis. (A–D) Primary cortical neurons were stimulated with either the TLR7 ligand (imiquimod), TLR9 ligand (CpG-ODN), or both agonists for 72 h and then analyzed for cell death by (A) MTT assay or (B) caspase-3 activity. Data are mean ± SD of six to four samples per group and are representative of two to three replicate experiments. Significance was determined by one-way ANOVA with a Bonferroni multiple comparison posttest. **p < 0.01, ***p < 0.001. (C and D) Representative images from (C) mock- and (D) TLR7/TLR9-stimulated neurons stained with calbindin D (red fluorescence) to detect neuronal bodies and TUNEL (green fluorescence) to detect apoptotic cells. (E) TLR7/TLR9-stimulated neurons underwent apoptosis showing nuclear condensation and blebs by TEM.
change the fluorescence values) so that neurite projections could be observed in all images, including mock-stimulated controls. The profile line tool was then used to draw lines down the center of each neurite, with fluorescence intensity measured each 100 nm to control for different lengths of neurites. Individual lines were drawn for branched neurites. Once all lines were drawn, data tables were generated to show the fluorescence units per 100 nm. Data from multiple images were analyzed for each group and then graphed using GraphPad Prism to determine differences between groups.

Transmission electron microscopy analysis of TLR-stimulated cells

Primary cortical neurons were cultured on Aclar coverslips precoated with poly-D-lysine (0.1 mg/ml) (Sigma-Aldrich). Cells were treated and following 72 h poststimulation (hps), cells were fixed with 2.5% glutaraldehyde. Samples were prepared for transmission electron microscopy (TEM) following standard protocols and analyzed using an H7500 microscope (Hitachi High-Technologies, Tokyo, Japan). Images were acquired in single-blind experiments.

FIGURE 2. TLR7/TLR9-induced apoptosis requires endosomal localization but is not mediated by MyD88 signaling. (A) Primary cortical neurons were generated from wild-type (IRW) or Tlr7−/− mice and stimulated with a combination of TLR7 and TLR9 ligands as described in Fig. 1. Cell death was measured at 72 hps by MTT assay. (B) Neurons from wild-type (C57BL/6), Myd88−/−, or Unc93b1 3d mice were stimulated with a combination of TLR7 and TLR9 ligands and measured for cell death at 72 hps by MTT assay. Data are mean ± SD of four to six samples per group and are representative of two to three replicate experiments. Statistical analysis was completed by two-way ANOVA with a Dunnett multiple comparison test. **p < 0.01, ***p < 0.001.

TLR agonist induced cell death of olfactory sensory neurons in vivo

Olfactory marker protein (OMP)-ChR2-yellow fluorescent protein (YFP) (OMP-YFP) knock-in mice, which express enhanced YFP fusion gene from the OMP locus were purchased from The Jackson Laboratory (stock no. 014173). YFP is expressed in all olfactory sensory neurons (OSNs) and their nerve terminals in these mice, allowing these neurons to be easily identified (26). Six-week-old OMP-YFP mice were administered either vehicle control (PBS) or a solution containing a mixture of the TLR agonists imiquimod R837 (25 μg/mouse) and CpG-ODN 1826 (0.5 μg/mouse) intranasally in a volume of 10 μl. Three days after treatment, mice were deeply anesthetized and perfused transcardially with heparin saline (100 U/ml) followed by 10% neutral buffered formalin. Whole skulls were collected and decalcified in 20% EDTA/sucrose for 3 wk before serially sectioning at 5 μm. Sections were blocked (5% BSA, 0.05% Triton X-100 in PBS) at room temperature for 30 min. Primary Abs against GFP (Ab recognizes YFP protein, 1:500, Abcam), caspase-3 (1:250, Promega), SARM1 (1:100, ProSci), or TOM70 (1:150, Sigma-Aldrich) were incubated overnight at 4˚C. Images were acquired in single-blind experiments.

FIGURE 3. SARM1 localizes to neurites following TLR7/TLR9 stimulation. Primary cortical neurons were stimulated with TLR7 and TLR9 ligands or mock controls. (A–E) Cells stained with HSP90 (green fluorescence) to identify neuronal cell delimitations and SARM1 (red fluorescence). SARM1 was observed primarily in the cell bodies (yellow dual fluorescence), but not the neurites of (A) mock-infected cells. However, (B–E) TLR-stimulated neurons generally showed retracted neurites with focal areas of increased SARM1 (white arrows). Images taken with a Plan-Apochromat ×63 oil objective. (C–E) Close-up showing punctate staining of SARM1 in neurites with (C) dual staining, (D) HSP90, and (E) SARM1. Images are representative of two to three repeated experiments. (F) Mitochondria were isolated from neurons at 72 hps and examined for the amount of SARM1 protein by Western blot. VDAC1 was used as a loading control. (G) and (H) Quantification of SARM1 protein in (G) mitochondrial fraction normalized to VDAC1 expression as well as (H) whole-cell lysates normalized to β-actin expression. Data are shown as fold change relative to mock controls. Error bars represent the range of two samples per group.
Fluor 488, donkey anti-rabbit Alexa Fluor 594, Invitrogen) were incubated for 1 h at room temperature. Slides were coverslipped with Prolong Gold antifade mounting media containing DAPI and imaged using a Zeiss 710 LSM (Carl Zeiss) with a Plan Apochromat ×63 oil immersion objective (numerical aperture, 1.40) with a pinhole of 90 μm and a 0.5-μm z-step. Representative images were exported to Imaris v7.7.4 for compilation of 4.5-μm maximum intensity projections. All figures were built using Canvas 14 (ACD Systems).

Results

TLR7/TLR9 stimulation induces apoptosis of neurons

Recent studies have found that TLR stimulation of neuronal cultures results in neuronal apoptosis (1, 2, 5–8). We stimulated cultures of primary cortical neurons with the TLR7 agonist imiquimod, the TLR9 agonist unmethylated CpG-ODNs, or a combination of both ligands using concentrations of each ligand that were shown previously to be optimal for the activation of both astrocytes and microglia (5). A low level of cell death was observed in neuronal cultures stimulated with either TLR7 or TLR9 ligands, although this level of cell death was variable in replicate cultures and was not generally significant compared with mock-stimulated controls (Fig. 1A and data not shown). In contrast, stimulation of primary cortical neurons through both TLR7 and TLR9 (TLR7/TLR9) resulted in significantly more cell death compared with mock-stimulated controls or TLR7 or TLR9 stimulation alone (Fig. 1A).

To define the type of neuronal cell death induced by TLR stimulation, we examined cultures for caspase-3 activity, an indicator of apoptotic cell death. Caspase-3 activity was significantly increased in neurons following TLR7/TLR9 stimulation, suggesting neuronal apoptosis (Fig. 1B). Immunohistochemical analysis showed an increase in the number of TUNEL+ nuclei in TLR7/TLR9-stimulated cultures (Fig. 1D) compared with mock-treated cultures (Fig. 1C), also indicating apoptosis. Further confirmation of apoptosis was observed using TEM analysis of TLR-stimulated neurons (Fig. 1E), which showed the classical nuclear condensation associated with apoptosis (27). Thus, stimulation of neurons through TLR7 and TLR9 resulted in neuronal apoptosis.

TLR-mediated neuronal apoptosis is independent of MyD88 signaling pathway

Because TLR7 agonists have sometimes been found to induce off-target effects independent of the receptor (5), we first confirmed that TLR7/TLR9-induced apoptosis required the presence of TLR7. In TLR7−/− neurons, there was a significant decrease in neuronal apoptosis compared with wild-type controls (Fig. 2A), indicating that TLR7 was important for TLR7/TLR9-induced apoptosis. Although TLR7/TLR9 stimulation of TLR7−/− neurons still resulted in some apoptosis (Fig. 2A), levels were comparable to those observed with TLR9 agonist stimulation alone (Fig. 1A). Thus, the increased apoptosis observed by the combination of TLR7 and TLR9 ligands together was dependent, in part, on the presence of TLR7.

Both TLR7 and TLR9 can signal through the TLR adaptor molecule MyD88, which leads to the activation of NF-κB and IRF7 (11). Cells deficient in MyD88 have inhibited responses to both TLR7 and TLR9 activation (5, 28, 29). We examined whether MyD88 signaling was necessary for TLR7/TLR9-mediated cell death. Surprisingly, neurons from MyD88-deficient mice showed levels of cell death similar to those of wild-type controls (Fig. 2B), indicating that the canonical signaling pathway was not necessary for TLR7/TLR9-mediated neuronal apoptosis. Consistent with a lack of MyD88-mediated responses, no detectable upregulation of IL-1α, IL-1β, IL-6, or TNF was observed in neurons following TLR stimulation using multiplex bead analysis (data not shown). Thus, the canonical pathway of TLR signaling through MyD88 to induce cytokine apoptosis was not responsible for TLR-mediated apoptosis.

Because MyD88 was not required for TLR7/TLR9-mediated apoptosis, we next examined whether these receptors were required to be localized to the endosome, which is required for TLR7- and TLR9-mediated cytokine responses (30). We used Um93b1 3d mice, which have a single point mutation in Unc93b1 that prevents trafficking of TLR7 and TLR9 to the endosome (30). Primary cortical neurons from Um93b1 3d mice were resistant to TLR-mediated apoptosis (Fig. 2B). Thus, TLR-mediated apoptosis was MyD88-independent but required functional endosomal localization of TLR7 and TLR9.

SARM1 localizes to the mitochondria following TLR stimulation of neurons

Because MyD88 signaling was not required for TLR-induced apoptosis, we looked at other members of the MyD88 family...
for a potential role in this process. The TLR adaptor molecule SARM1 is a member of this family and is expressed at high levels in neurons (17). SARM1 has also recently been found to mediate Wallerian degeneration as well as contribute to neuronal cell death following bunyavirus infection or oxygen glucose deprivation (17, 19, 20). Neurons were stained with SARM1 (red fluorescence) and HSP90 (green fluorescence), which stains both neuronal cell body and neurites. SARM1 (dual yellow fluorescence) localized primarily to the cell body of unstimulated neurons (Fig. 3A), in agreement with recent reports (19, 20). However, TLR stimulation of neurons resulted in increased SARM1 staining in the neurites, as shown by dual staining (white arrows) in these structures (Fig. 3B, 3C). The increased staining of SARM1 in the neurites was punctate (Fig. 3E), suggesting SARM1 aggregation or localization to an organelle. SARM1 has an N-terminal mitochondrial localization signal and is associated with mitochondria under conditions of neuronal or axonal damage (16, 17, 19, 20). Therefore, we purified mitochondria from neurons and examined them for SARM1. TLR stimulation resulted in increased SARM1 protein in mitochondria fractions (Fig. 3F, 3G), compared with a modest increase in SARM1 protein levels in the whole-cell lysate (Fig. 3H). Thus, TLR stimulation of neurons resulted in increased SARM1 localization to the mitochondria in neurites as determined by both immunocytochemistry and cell fractionation studies.

SARM1 is necessary for TLR7/TLR9-mediated neuronal apoptosis

To determine whether SARM1 was necessary for TLR-mediated apoptosis, primary cortical neurons from SARM1-deficient mice were stimulated with TLR agonists. SARM1-deficient neurons did not undergo apoptosis following TLR stimulation and were comparable to mock-treated controls (Fig. 4A). Thus, SARM1 signaling is necessary for neuronal apoptosis following TLR activation. To confirm that SARM1-deficient neurons were not just refractory to cell death, we treated primary neuronal cultures with kainic acid or NMDA to induce cell death (23). Similar cell death curves were observed in wild-type and SARM1-deficient neurons (Fig. 4B, 4C). Thus, SARM1 deficiency inhibited TLR7/TLR9-mediated neuronal apoptosis, but not neuronal cell death induced by other mechanisms.

TLR-induced SARM1-dependent apoptosis is associated with mitochondrial damage

Because SARM1 localizes to the mitochondria following TLR7/TLR9 stimulation, we stained mitochondria from mock- and TLR7/TLR9-stimulated cells with MitoTracker Red (Fig. 5A–C). Increased accumulation of mitochondria in neurites was observed in neurons following TLR7/TLR9 stimulation (Fig. 5B) compared with mock-stimulated neurons (Fig. 5A). Quantification of MitoTracker Red in neurites showed a significant increase in fluorescence intensity with TLR stimulation (Fig. 5C). TEM analysis of TLR7/TLR9-stimulated neurons showed accumulation of swollen mitochondria with distorted cristae (Fig. 5E–H) compared with mock-stimulated controls (Fig. 5D, 5F), indicating that TLR7/TLR9 stimulation induced mitochondrial damage. Analysis of mRNA expression of mitochondria-associated genes demonstrated that TLR7/TLR9 stimulation significantly altered the mRNA expression of several genes associated with apoptosis (Pmaip1, Bcl2l11, Bak1, and Cdkn2a, shown in red) and induced a significant downregulation of mRNAs for genes involved in small molecule transport (Sle25a-associated genes, shown in green), outer membrane translocation (Tomm40, shown in purple), and mitochondrial fission and fusion (Cox10 and Mfn2, shown in blue) (Fig. 6). Thus, TLR7/TLR9 stimulation of neurons results in mitochondrial damage.

FIGURE 5. TLR7/TLR9 stimulation induces mitochondrial damage in neurons. (A–C) Neurons were stained for mitochondria using MitoTracker Red CMXRos dye (red fluorescence). Images were taken with a Plan-Apochromat ×63 objective. (B) Increased mitochondria in the neurites were observed (white arrows) following TLR7/TLR9 stimulation. (C) MitoTracker intensity in neurites was measured as fluorescence per 100 nm for multiple neurites in mock- or TLR7/TLR9-stimulated cultures using Zen 2011 software. Data are mean ± SD of 200–244 data points per group. Statistical analysis was completed using a Mann–Whitney U test. ***p < 0.0001. (D–H) Primary cortical neurons grown on Aclar coverslips were mock stimulated or stimulated with TLR7/TLR9 ligands for 72 h. Cells were fixed and prepared for TEM. (D) TEM of mock-infected culture showing healthy mitochondria in a neurite. (E) TEM image of TLR7/TLR9-stimulated culture showing swollen neurite containing >20 mitochondria in the field of view. (F and G) Enlarged image of mitochondria from box in (D) and (E) showing (F) healthy mitochondria and (G) mitochondria with distorted cristae. Images are representative of cells for both groups. Scale bars are shown for each sample. (H) Number of mitochondria in neurites per image. Images of the same magnification from mock-stimulated cultures and TLR7/TLR9-stimulated cultures were analyzed for the number of mitochondria in the neurites. Data are mean ± SD from 10 mock images and 8 TLR7/TLR9 images. Statistical analysis was completed using a Mann–Whitney U test. **p < 0.01.
increased accumulation of damaged mitochondria in neurites as well as altered mRNA expression of mitochondria-associated genes.

SARM1 is necessary for mitochondrial accumulation in neurites

Because SARM1 is required for TLR7/TLR9-induced neuronal apoptosis (Fig. 4A), we examined whether SARM1 deficiency affected the accumulation of mitochondria to neurites. Neurons from SARM1-deficient mice (Fig. 7D) had less extensive localization/accumulation of mitochondria in the neurites compared with wild-type controls (Fig. 7B). Thus, TLR-induced localization/accumulation of mitochondria in neurites was SARM1-dependent. This was consistent with SARM1 localization to the mitochondria (Fig. 3D), SARM1 localization to neurites following TLR stimulation (Fig. 3B, 3C), and TLR-mediated mitochondrial damage in neurons (Fig. 5). Taken together, these data indicate that TLR activation results in SARM1 localization to the mitochondria and that this localization alters mitochondrial trafficking, contributing to SARM1-dependent neuronal apoptosis.

TLR7/TLR9 induces neuronal apoptosis in vivo

The above studies indicate that TLR7/TLR9 can induce apoptosis of neurons through a SARM1-mediated mechanism that induces accumulation of mitochondria in neurites. To examine whether treatment with TLR7/TLR9 stimulation could induce neuronal damage in vivo, we administered agonists intranasally to directly stimulate OSNs. Six-week-old mice expressing enhanced YFP under the OMP locus were used so that OSNs could easily be identified using anti-GFP Abs (Fig. 8A). Intranasal administration of TLR7/TLR9 agonists induced neuronal cell death as measured by the loss of OMP-YFP+ OSNs throughout the olfactory epithelium as well as the reduced intensity of YFP signal in OSN nerve projections (Fig. 8B, 8D, green fluorescence). Active caspase-3 staining was increased in the nasal epithelium of TLR7/TLR9-treated mice (Fig. 8B, red fluorescence) and generally colocalized with YFP+ OSNs, indicating they were apoptotic. Thus, TLR7/TLR9 stimulation of neurons induces apoptosis in vivo as well as in vitro.

SARM1 expression was observed at low levels in the nasal epithelium, primarily in OSN cell bodies and the mucosal layer of mock-stimulated controls (Fig. 7C, red fluorescence, 7E, white).

FIGURE 6. TLR7/TLR9-stimulated neurons have altered mRNA expression of mitochondrial-related genes. PCR array analysis of 84 genes involved in biogenesis and function of the mitochondria. RNA was isolated from four mock- and four TLR7/TLR9-stimulated neuron samples at 72 hps from two separate experiments and analyzed by real-time PCR array. Data are plotted as fold change between mock- and TLR-stimulated samples (x-axis) versus p value (y-axis). Shaded areas indicate at least a 2-fold difference with a p value <0.05.

FIGURE 7. SARM1 deficiency results in decreased mitochondrial accumulation in neurites. Primary cortical neurons from (A and B) wild-type or (C and D) Sarm1−/− mice were stimulated with (B and D) TLR7/TLR9 ligands or (A and C) mock-stimulated. At 60 hps, neurons were incubated with MitoTracker Red CMXRos dye (red fluorescence) to detect mitochondria and Hoechst 33342 dye (blue fluorescence) as a counterstain. (B) White arrows show increased mitochondria (red fluorescence) in the neurites of neurons in TLR7/TLR9-stimulated cultures compared with (A) mock-treated cultures. (D) This increase of mitochondria in neurites was not observed in TLR7/TLR9-stimulated Sarm1−/− neurons. Images are representative of cultures for each group. (E) Quantification of MitoTracker intensity in neurites. Red fluorescence intensity per every 100 nm was measured in neurites from mock- and TLR7/TLR9-stimulated wild-type and SARM1−/− neurons. Data are mean ± SD for 76–187 individual data points per group and include measurements from multiple neurites per image and multiple images per group. Statistical analysis was completed using one-way ANOVA with a a Tukey multiple comparison test between all groups. ***p < 0.0001.
projections. TLR-stimulated mice. Blue arrows indicate SARM1 staining of OSN layer and axonal bundles (yellow outline) of Only fluorescence of SARM1 is shown, which demonstrates increase in mitochondrial trafficking and mitochondrial damage. TLR-induced neuronal apoptosis correlated with SARM1 localization to the mitochondria and increased mitochondrial accumulation in neurites both in vitro and in vivo. In the absence of SARM1, TLR-induced mitochondrial accumulation in the neurites was inhibited (Fig. 7D). TLR stimulation may alter the normal function of SARM1 in mitochondrial trafficking, resulting in accumulation of normal or damaged mitochondria in neurites. TEM analysis of mitochondria in neurites clearly showed swollen mitochondria with damaged cristae, demonstrating that they were damaged. The increased presence of damaged mitochondria in neurites may lead to increased reactive oxygen species generation, as observed in other instances of SARM1-mediated cell death (19), resulting in neuronal apoptosis.

The requirement for UNC93b1 indicates that endosomal localization of TLR7 and TLR9 is essential for mediating neuronal apoptosis. However, the classical MyD88 signaling pathway for both receptors was not essential. This is similar to a previous study, which showed that stimulation of TLR8 induced neuronal apoptosis through a MyD88-independent mechanism (8, 9). The lack of MyD88 involvement in TLR-mediated apoptosis might suggest a direct interaction between endosomal TLRs and SARM1. However, we were unable to coprecipitate SARM1 with either TLR7 or TLR9 in immunoprecipitation assays (not shown). This suggests that SARM1 is either not directly interacting with these receptors or that this interaction is weak and unstable. It is also possible that other neuronal proteins provide a link between TLR7/TLR9 and SARM1. We were not able to associate MDC8 with SARM1-mediated apoptosis were unknown (1, 5, 6, 8). In the present study, we showed SARM1, a TLR adaptor molecule, to be necessary for TLR7/TLR9-mediated neuronal apoptosis. Thus, neurons appear to have an alternative activation pathway following endosomal TLR stimulation. This pathway may be specific to neurons, because stimulation of other CNS cells, including astrocytes and microglia, with the same endosomal TLR ligands results in cytokine production and/or proliferation, rather than cell death (1, 5). SARM1 is expressed at high levels in neurons (17), which may make them more susceptible to TLR-mediated apoptosis.

The mechanism of TLR-induced apoptosis appears to involve mitochondrial trafficking and mitochondrial damage. TLR-induced neuronal apoptosis correlates with SARM1 localization to the mitochondria and increased mitochondrial accumulation in neurites both in vitro and in vivo. In the absence of SARM1, TLR-induced mitochondrial accumulation in the neurites was inhibited (Fig. 7D). TLR stimulation may alter the normal function of SARM1 in mitochondrial trafficking, resulting in accumulation of normal or damaged mitochondria in neurites. TEM analysis of mitochondria in neurites clearly showed swollen mitochondria with damaged cristae, demonstrating that they were damaged. The increased presence of damaged mitochondria in neurites may lead to increased reactive oxygen species generation, as observed in other instances of SARM1-mediated cell death (19), resulting in neuronal apoptosis.

The requirement for UNC93b1 indicates that endosomal localization of TLR7 and TLR9 is essential for mediating neuronal apoptosis. However, the classical MyD88 signaling pathway for both receptors was not essential. This is similar to a previous study, which showed that stimulation of TLR8 induced neuronal apoptosis through a MyD88-independent mechanism (8, 9). The lack of MyD88 involvement in TLR-mediated apoptosis might suggest a direct interaction between endosomal TLRs and SARM1. However, we were unable to coprecipitate SARM1 with either TLR7 or TLR9 in immunoprecipitation assays (not shown). This suggests that SARM1 is either not directly interacting with these receptors or that this interaction is weak and unstable. It is also possible that other neuronal proteins provide a link between TLR7/TLR9 and SARM1. We were not able to associate MDC8 with SARM1-mediated apoptosis were unknown (1, 5, 6, 8). In the present study, we showed SARM1, a TLR adaptor molecule, to be necessary for TLR7/TLR9-mediated neuronal apoptosis. Thus, neurons appear to have an alternative activation pathway following endosomal TLR stimulation. This pathway may be specific to neurons, because stimulation of other CNS cells, including astrocytes and microglia, with the same endosomal TLR ligands results in cytokine production and/or proliferation, rather than cell death (1, 5). SARM1 is expressed at high levels in neurons (17), which may make them more susceptible to TLR-mediated apoptosis.

The mechanism of TLR-induced apoptosis appears to involve mitochondrial trafficking and mitochondrial damage. TLR-induced neuronal apoptosis correlates with SARM1 localization to the mitochondria and increased mitochondrial accumulation in neurites both in vitro and in vivo. In the absence of SARM1, TLR-induced mitochondrial accumulation in the neurites was inhibited (Fig. 7D). TLR stimulation may alter the normal function of SARM1 in mitochondrial trafficking, resulting in accumulation of normal or damaged mitochondria in neurites. TEM analysis of mitochondria in neurites clearly showed swollen mitochondria with damaged cristae, demonstrating that they were damaged. The increased presence of damaged mitochondria in neurites may lead to increased reactive oxygen species generation, as observed in other instances of SARM1-mediated cell death (19), resulting in neuronal apoptosis.

The requirement for UNC93b1 indicates that endosomal localization of TLR7 and TLR9 is essential for mediating neuronal apoptosis. However, the classical MyD88 signaling pathway for both receptors was not essential. This is similar to a previous study, which showed that stimulation of TLR8 induced neuronal apoptosis through a MyD88-independent mechanism (8, 9). The lack of MyD88 involvement in TLR-mediated apoptosis might suggest a direct interaction between endosomal TLRs and SARM1. However, we were unable to coprecipitate SARM1 with either TLR7 or TLR9 in immunoprecipitation assays (not shown). This suggests that SARM1 is either not directly interacting with these receptors or that this interaction is weak and unstable. It is also possible that other neuronal proteins provide a link between TLR7/TLR9 and SARM1. We were not able to associate MDC8 with SARM1-mediated apoptosis were unknown (1, 5, 6, 8). In the present study, we showed SARM1, a TLR adaptor molecule, to be necessary for TLR7/TLR9-mediated neuronal apoptosis. Thus, neurons appear to have an alternative activation pathway following endosomal TLR stimulation. This pathway may be specific to neurons, because stimulation of other CNS cells, including astrocytes and microglia, with the same endosomal TLR ligands results in cytokine production and/or proliferation, rather than cell death (1, 5). SARM1 is expressed at high levels in neurons (17), which may make them more susceptible to TLR-mediated apoptosis.

The mechanism of TLR-induced apoptosis appears to involve mitochondrial trafficking and mitochondrial damage. TLR-induced neuronal apoptosis correlates with SARM1 localization to the mitochondria and increased mitochondrial accumulation in neurites both in vitro and in vivo. In the absence of SARM1, TLR-induced mitochondrial accumulation in the neurites was inhibited (Fig. 7D). TLR stimulation may alter the normal function of SARM1 in mitochondrial trafficking, resulting in accumulation of normal or damaged mitochondria in neurites. TEM analysis of mitochondria in neurites clearly showed swollen mitochondria with damaged cristae, demonstrating that they were damaged. The increased presence of damaged mitochondria in neurites may lead to increased reactive oxygen species generation, as observed in other instances of SARM1-mediated cell death (19), resulting in neuronal apoptosis.

The requirement for UNC93b1 indicates that endosomal localization of TLR7 and TLR9 is essential for mediating neuronal apoptosis. However, the classical MyD88 signaling pathway for both receptors was not essential. This is similar to a previous study, which showed that stimulation of TLR8 induced neuronal apoptosis through a MyD88-independent mechanism (8, 9). The lack of MyD88 involvement in TLR-mediated apoptosis might suggest a direct interaction between endosomal TLRs and SARM1. However, we were unable to coprecipitate SARM1 with either TLR7 or TLR9 in immunoprecipitation assays (not shown). This suggests that SARM1 is either not directly interacting with these receptors or that this interaction is weak and unstable. It is also possible that other neuronal proteins provide a link between TLR7/TLR9 and SARM1. We were not able to associate MDC8 with SARM1-mediated apoptosis were unknown (1, 5, 6, 8). In the present study, we showed SARM1, a TLR adaptor molecule, to be necessary for TLR7/TLR9-mediated neuronal apoptosis. Thus, neurons appear to have an alternative activation pathway following endosomal TLR stimulation. This pathway may be specific to neurons, because stimulation of other CNS cells, including astrocytes and microglia, with the same endosomal TLR ligands results in cytokine production and/or proliferation, rather than cell death (1, 5). SARM1 is expressed at high levels in neurons (17), which may make them more susceptible to TLR-mediated apoptosis.

The mechanism of TLR-induced apoptosis appears to involve mitochondrial trafficking and mitochondrial damage. TLR-induced neuronal apoptosis correlates with SARM1 localization to the mitochondria and increased mitochondrial accumulation in neurites both in vitro and in vivo. In the absence of SARM1, TLR-induced mitochondrial accumulation in the neurites was inhibited (Fig. 7D). TLR stimulation may alter the normal function of SARM1 in mitochondrial trafficking, resulting in accumulation of normal or damaged mitochondria in neurites. TEM analysis of mitochondria in neurites clearly showed swollen mitochondria with damaged cristae, demonstrating that they were damaged. The increased presence of damaged mitochondria in neurites may lead to increased reactive oxygen species generation, as observed in other instances of SARM1-mediated cell death (19), resulting in neuronal apoptosis.
Figure 9. TLR7/TLR9 stimulation alters mitochondrial localization in nasal epithelium. Tissue sections from mice identified in Fig. 8 were also analyzed for mitochondria localization using an anti-Tom70 Ab (red fluorescence). Sections from (A–C) mock- or (D–G) TLR agonist–inoculated mice show differences in Tom70 staining [red fluorescence, primarily in the axonal bundles; (B) and (E), white arrows]. (C, F, and G) Magnified images of these bundles show more punctate staining (white arrows) in (F) TLR-treated mice compared with (C) mock-treated mice. (E and G) Blue arrows indicate Tom70 staining of OSN projections in TLR-treated mice. Images were taken using a ×63 objective.

in cell death, whereas the combination of lower concentrations of TLR7 and TLR9 ligands may induce a MyD88-independent response resulting in neuronal apoptosis through the activation of SARM1.

Analysis of mRNA expression of mitochondria-associated genes identified multiple genes whose expression was significantly altered following TLR7/TLR9 stimulation. Of these genes, four were associated with regulating apoptosis, including Pmaip1, Bak1, Bcl2l1, and Cdkn2a. Pmaip1 encodes NOXA, a proapoptotic protein that was upregulated, whereas mRNA for BCL2L1 (Bcl-xL), an antiapoptosis protein, was downregulated. NOXA upregulation and Bcl-xL downregulation is associated with oxidative stress-induced apoptosis (32) and observed with SARM1-induced apoptosis of neurons following La Crosse virus infection (19). Also, downregulation of Bcl-xL was associated with SARM1-induced apoptosis in T cells (33), further supporting a link between BCL-2 family members and SARM1-induced apoptosis.

Neuronal death caused by endosomal TLR stimulation in this study was clearly identified as apoptosis as defined by cell morphology, TUNEL staining, and caspase-3 activity. This cell death was mediated by SARM1, indicating that SARM1 can be involved in the apoptotic pathway. Interestingly, SARM1 was also found to be necessary for Wallerian degeneration in axons, a nonapoptotic process that is not dependent on mitochondrial localization of SARM1 (12, 20). Determining whether SARM1 mediates cell death through the same mechanisms for both apoptotic and nonapoptotic cell death will be important in understanding the function of SARM1 in both healthy and damaged neurons.

In the above studies using primary cortical neurons, the combination of TLR7 and TLR9 ligands induced significantly higher levels of neuronal death than either ligand alone. The presence of both TLR7 and TLR9 ligands may occur naturally, not only in the context of a viral or bacterial infection, but also in the case of natural ligands/DAMPs. Recent studies have identified several DAMPs that activate endosomal TLRs, including the astrocytic protein stathmin, which stimulates TLR3, microRNAs that stimulate TLR7, and DNA from apoptotic cells that activate TLR9 (2–4, 34, 35). The microRNA let-7b was shown to be expressed at high levels in patients with Alzheimer’s disease, was released in exosomes from dying neurons, and induced neuronal cell death in healthy neurons (2). Another microRNA, miR-21, was found to be elevated in SIV encephalitic brains and was neurotoxic (36). As dying neurons would release both microRNAs and cellular DNA, these DAMPs may directly cause death of surrounding neurons by stimulating both TLR7 and TLR9 and induce SARM1 trafficking to the mitochondria. Microglia in the CNS can also be activated by these same DAMPs and can phagocytose cellular debris. The overall severity of damage to the CNS during neurologic disease may be controlled by the balance between the damage to neurons and the ability of microglia to clean up apoptotic and cellular debris that could stimulate cell death in other neurons.

Acknowledgments
We thank Sue Priola, Bruce Chesebro, Leonard Evans, Tyler Moore, and Paul Policastro for critical reading of the manuscript. We also thank Mark Albers (Harvard Medical School) with assistance in designing the in vivo model for TLR agonist stimulation.