CXCL14 Displays Antimicrobial Activity against Respiratory Tract Bacteria and Contributes to Clearance of *Streptococcus pneumoniae* Pulmonary Infection

Chen Dai, Paola Basilico, Tiziana Patrizia Cremona, Paul Collins, Bernhard Moser, Charaf Benarafa and Marlene Wolf

J Immunol published online 11 May 2015

http://www.jimmunol.org/content/early/2015/05/09/jimmunol.1402634

Supplementary Material

http://www.jimmunol.org/content/suppl/2015/05/09/jimmunol.1402634.DCSupplemental

Why The JI?

- **Rapid Reviews! 30 days** from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Speedy Publication!** 4 weeks from acceptance to publication

*average

Subscription

Information about subscribing to *The Journal of Immunology* is online at:

http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:

http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:

http://jimmunol.org/alerts
CXCL14 Displays Antimicrobial Activity against Respiratory Tract Bacteria and Contributes to Clearance of Streptococcus pneumoniae Pulmonary Infection

Chen Dai,* Paola Basilico,* Tiziana Patrizia Cremona,* Paul Collins,† Bernhard Moser,† Charaf Benarafa,*1 and Marlene Wolf*1

CXCL14 is a chemokine with an atypical, yet highly conserved, primary structure characterized by a short N terminus and high sequence identity between human and mouse. Although it induces chemotaxis of mononuclear cells at high concentrations, its physiological role in leukocyte trafficking remains elusive. In contrast, several studies have demonstrated that CXCL14 is a broad-spectrum anti-microbial peptide that is expressed abundantly and constitutively in epithelial tissues. In this study, we further explored the antimicrobial properties of CXCL14 against respiratory pathogens in vitro and in vivo. We found that CXCL14 potently killed Pseudomonas aeruginosa, Streptococcus mitis, and Streptococcus pneumoniae in a dose-dependent manner in part through membrane depolarization and rupture. By performing structure-activity studies, we found that the activity against Gram-negative bacteria was largely associated with the N-terminal peptide CXCL141–13. Interestingly, the central part of the molecule representing the β-sheet also maintained ~62% killing activity and was sufficient to induce chemotaxis of THP-1 cells. The C-terminal α-helix of CXCL14 had neither antimicrobial nor chemotactic effect. To investigate a physiological function for CXCL14 in innate immunity in vivo, we infected CXCL14-deficient mice with lung pathogens and we found that CXCL14 contributed to enhanced clearance of Streptococcus pneumoniae, but not Pseudomonas aeruginosa. Our comprehensive studies reflect the complex bactericidal mechanisms of CXCL14, and we propose that different structural features are relevant for the killing of Gram-negative and Gram-positive bacteria. Taken together, our studies show that evolutionarily-conserved features of CXCL14 are important for constitutive antimicrobial defenses against pneumonia.

The Journal of Immunology, 2015, 194: 000–000.

T he prototype function of chemokines is the control of leukocyte migration in inflammation and homeostasis (1). Later it was recognized that chemokines have additional functions including roles in embryogenesis, cancer, and wound healing, and more recent studies also established that many chemokines exhibit broad-spectrum antimicrobial activity (2–4). Antimicrobial activity appears particularly relevant for mucosa-associated chemokines that are expressed in barrier tissues and, in fact, the four primarily mucosa-associated chemokines, CCL25, CCL28, CXCL14, and CXCL17, have been shown to function as antimicrobial peptides (AMPs) (5–10). Particularly noteworthy is the antimicrobial activity of CXCL14 because the chemotactic function of this orphan chemokine is unusual. Indeed, CXCL14 has an atypically short N terminus with only two amino acids before the first cysteine, and these amino acids are critical for receptor signaling of chemokines. Yet, we and others have reported that CXCL14 selectively attracts blood monocytes albeit at high concentrations (11–14), suggesting a different structure-activity relationship for CXCL14 compared with other chemokines. CXCL14, initially called BRAK for its isolation from breast and kidney cells, was first described in 1999 as a chemokine preferentially expressed in normal peripheral tissue cells (15). Reduced expression in progressing cancer suggested the involvement of CXCL14 in antitumor activity (16, 17). The role of CXCL14 in tumorigenesis, however, is controversial as more recent studies pointed to its upregulation in cancer-associated fibroblasts of prostate cancer and in pancreatic cancer (18, 19). Other studies confirmed that CXCL14 is preferentially expressed in healthy barrier and mucosa-associated tissues such as skin, lung, kidney, and intestine (20). Taken together, these findings suggest that the observed antitumor activity was due in part to the ability of CXCL14 to recruit monocyte-derived dendritic cells to tumor sites. CXCL14-knockout (KO) mice do not show altered leukocyte trafficking or severe immune deficiency, indicating that, under disease-free conditions, the target cells for CXCL14 have not been identified (21–23).

The high sequence identity between human and mouse CXCL14, which only differ by 2 aa, indicates an evolutionary-conserved structure-function relationship. In an earlier report, we demonstrated that CXCL14 was a broad-spectrum AMP killing both Gram-positive and Gram-negative skin-associated bacteria (6). The mechanism of how chemokines carry out the antimicrobial action is still not clear. However, chemokines have common structural features with classical AMPs including disulfide bridges, cationic amino acids, and amphi-

*Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland; and 1Department of Medical, Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom

†C.B. and M.W. contributed equally to this work.

ORCID: 0000-0002-7283-4683 (M.W.).

Received for publication October 21, 2014. Accepted for publication April 10, 2015.

This work was supported by the Gottfried und Julia Bangerter-Rhyner-Stiftung, Basel, Switzerland, the China Scholarship Council (to C.D.), the Swiss National Science Foundation (Grant 310030_140790 to C.B.), and the Flight Attendant Medical Research Institute (to C.B.).

Address correspondence and reprint requests to Dr. Marlene Wolf, Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland. E-mail address: marlene.wolf@tki.unibe.ch

The online version of this article contains supplemental material.

Abbreviations used in this article: AMP, antimicrobial peptide; BAL, bronchoalveolar lavage; DiBAC4(3), bis-(1,3-dibutylbarbituric acid) trimethine oxonol; hBD, human β-defensin; KO, knockout; NPL, nasopharyngeal lavage; TSB, trypticase soy broth; WT, wild-type.

Copyright © 2015 by The American Association of Immunologists, Inc. 0022-1767/15/$25.00
pathic stretches. An initial screening for antimicrobial activity of chemokines revealed that large patches of positive electrostatic charges on the surface is an important characteristic to distinguish antimicrobial from nonantimicrobial chemokines (9), whereas cat- ionic amino acids, which are often clustered in the C-terminal α-helix, are thought to interact with the negatively charged bacte- rial membranes (7, 8, 24). However, as described for CXCL6 (25) and for thrombospondin-1, a variant of CXCL7 lacking C-terminal alanine and aspartate (26), there are exceptions where key struc- tural features for antimicrobial activity of chemokines lie in the N-terminal part. It seems that disulfide bonds are not essential for antimicrobial activity of chemokines (7, 27, 28). Thus, it appears that each chemokine executes its antimicrobial activity through variable and individual structural features. Knowledge of the mo- lecular mechanisms of endogenous antimicrobial molecules is important for understanding host self-defense processes and a prerequisite for developing new classes of antibiotics for the treatment of infections.

In this study, we have identified distinct structural elements that are responsible for the antimicrobial and chemotactic activities of CXCL14. We found evidence that CXCL14 induced membrane depolarization and leakage of intracellular contents, and that it bound to bacterial DNA. Furthermore, its in vitro and in vivo activity against lung opportunistic and pathogenic bacteria re- vealed a role for CXCL14 in innate protection against pulmonary infections.

Materials and Methods

Peptides and microorganisms

Synthetically produced CXCL14 and CXCL8 (29) were used in all experiments unless specifically referred to as rCXCL8, which was from R&D Systems. Truncated forms of CXCL14 were custom synthesized by Thermo Fisher Scientific (Ulm, Germany) or Shanghai Biochemical (Shanghai, China) and designated as follows: CXCL14_1–49 (SKCKCSRKR); CXCL14_1–90 (SKCKCSRSRKG); CXCL14_1–100 (SKCKCSRKGKR); CXCL14_1–111 (SKCKCSRKGKPR); CXCL14_1–131 (YSVKKLKEMKPYHCHEEKMUTKSVSRYGQVEHCLPK); CXCL14_1–150 (LQSTKRFIKWYNANNEKRR); and CXCL14_1–157 (LQS- TKRFKIWYNNANNEKRRVYE). The accurate concentrations of all the peptides were determined by amino acid analysis (Analytical Research and Services, University of Bern, Bern, Switzerland). Human β-defensin (hBD)-2 was from Bachem (Bubendorf, Switzerland), and hBD-3 was from Peptide Institute (Minoh-shi Osaka, Japan). Pseudomonas aerugi- nosa HER-1018 (PA01) (ATCC BAA-47) was from LGC Standards. Escherichia coli K12, Streptococcus mitis, and Streptococcus pneumoniae serotype 19F (30) were provided by the Institute for Infectious Diseases, University of Bern.

Animals

The generation of CXCL14-deficient (CXCL14−/−) mice was described previously and mice were further backcrossed to at least five generations in C57BL/6 background (21). The current colony was generated by rederivation of frozen embryos, and all experimental mice were obtained in C57BL/6 background (21). The current colony was generated by rederivation of frozen embryos, and all experimental mice were obtained in C57BL/6 background (21). The current colony was generated by rederivation of frozen embryos, and all experimental mice were obtained in C57BL/6 background (21). The current colony was generated by rederivation of frozen embryos, and all experimental mice were obtained in C57BL/6 background.
temperature for 2 h in the dark. Finally, 4 µl formic acid was added and the reduced peptide purified by reversed phase HPLC using a C18 column. The molecular mass was verified by mass spectrometry.

Transwell chemotaxis assay
Human mononuclear THP-1 cells were cultured for 2 d in the presence of 1 µM PGE2 (Sigma-Aldrich) in RPMI 1640 supplemented with 2 mM t-glutamine, 1 mM sodium pyruvate, 1% nonessential amino acids, 50 µg/ml penicillin/streptomycin, 10% FCS (all Life Technologies), and 50 µM 2-ME (Sigma-Aldrich). Cells were washed and resuspended at 10⁶ cells/ml in RPMI 1640 containing 1% human serum albumin, and 20 mM HEPES (chemotaxis buffer). The wells of a 96-well culture plate (Corning Life Sciences) were filled with 235 µl chemotaxis buffer containing the indicated concentration of CXCL14 or synthetic peptide. Chemotaxis buffer alone was used as a control for random cell migration (blank). Transwell filters (5-µm pore size; Corning Life Sciences) were placed in the wells, and 80 µl test cells was added to the upper chamber. The plate was incubated for 3 h at 37˚C, and cells that migrated to the lower chamber were collected and counted using AccuCheck Counting Beads (Life Technologies) by flow cytometry.

CXCL14 cleavage by proteinase 3
Proteinase 3 (Sigma-Aldrich) and CXCL14 were incubated at a molar ratio of 1:12.5 in PBS for the indicated times at 37˚C, and the proteolytic reaction was stopped by boiling the samples for 5 min at 95˚C. Proteolytic degradation of CXCL14 was analyzed on 15% Tris SDS-PAGE and staining with Coomassie blue. Samples for subsequent mass-spectrometry analysis were incubated for 15 min. The reaction was stopped by heating at 95˚C, the fragments separated by reverse phase HPLC on a C18 column, and the resulting peaks were collected, lyophilized, and analyzed by mass spectrometry.

Lung infection model
For in vivo studies, P. aeruginosa was freshly grown on TSB agar plates overnight, suspended in PBS, and thoroughly vortexed. Inoculum concentration was estimated by spectrometry at 600 nm based on established standard curve dilutions. S. pneumoniae inoculum was performed by direct dilution of frozen glycerol stock of 2 × 10⁶ CFUs in brain-heart infusion medium. In all cases, the exact inoculum was determined each time by plating and CFU counting. Bacterial inoculation and tissue harvest was performed essentially as described previously (34). CXCL14 +/− and WT mice were anesthetized with ketamine (100 mg/kg) and xylazine (10 mg/kg), then inoculated intranasally by pipetting 10 µl per naris.

Mouse tissue and fluid sampling
Mice were sacrificed by isoflurane overdose at indicated time points postinfection for tissue sampling or collection of nasopharyngeal lavage (NPL) and/or BAL fluids. The spleen and the lungs were aseptically removed. The lung lobes were immediately transferred to RNase-free tubes, snap-frozen, and kept at −80˚C until RNA extraction was performed. The lung right lobes and the spleen were homogenized in 1 ml ice-cold PBS for CFU analysis or in lysis buffer (0.5% Triton X-100, 150 mM NaCl, 15 mM Tris, 1 mM CaCl₂, and 1 mM MgCl₂, pH 7.4) for ELISA measurements using a tissue homogenizer (IKA-WERKE T8.01). Lung and spleen homogenates were then serially diluted and plated in triplicates on TSB agar plates for S. pneumoniae or on blood agar plates for S. aureus. The plates were incubated at 37˚C overnight before CFU counting. BALs were collected by instillation with 1 ml PBS through a cannula placed into the trachea. The lavage was centrifuged at 500 g for 10 min at 4˚C. The supernatant was collected and stored in aliquots at −20˚C for further analysis. CXCL14 in the cell supernatant was quantified by ELISA. NPL was collected by flushing 0.5 ml PBS into the trachea in a rostral direction, and NPL was collected through the nares. Serial dilutions of NPL were plated to determine CFUs.

Quantitative RT-PCR
Total RNA of alveolar macrophages was isolated using RNABee (AMS Biotechnology). Lung tissue was grinded in liquid nitrogen with a mortar and pestle, and RNA was extracted using the High pure RNA tissue kit (Roche). Removal of genomic DNA by DNase digestion was performed during RNA extraction. The quantity and integrity of isolated RNA was determined by NanoDrop 1000 (Thermo) and agarose gel electrophoresis, respectively. A total of 500 ng RNA was reverse-transcribed using the SuperScript III first-strand synthesis system (Invitrogen) using random hexamer primers. Real-time PCR was performed in triplicate using MESA green qPCR MasterMix (Eurogentec) and a Viia 7 Real-Time PCR System (Applied Biosystems, Foster City, CA). All samples were normalized to S16 ribosomal protein mRNA. mRNA levels were expressed as fold changes normalized to uninfected WT mice. Primers were produced by Eurogentec with the following sequences; CXCL14: forward 5’-GAC-AGA-CCG-CAG-GAG-AC-3’, reverse 5’-CAA-GCA-GGC-CTC-TCT-C-3’; S16: forward 5’-GAT-ATT-GGC-GTC-CGT-GTG-A-3’, reverse 5’-TTG-AGA-TGG-AC-TG-CC-GA-TG-3’. Statistical analysis
All statistical analyses were performed using GraphPad PRISM 5.0 software (San Diego, CA). Results are expressed as the mean ± SEM. Pairwise comparisons were analyzed by unpaired t test or Mann–Whitney U test according to data distribution. Differences between multiple treatments were compared by one-way ANOVA followed by Bonferroni comparison test.

Results
CXCL14 displays bactericidal effects against respiratory tract bacteria
Previously, we reported that CXCL14 kills Gram-positive and Gram-negative skin and gut resident bacteria, including E. coli, coagulase-negative Staphylococcus spp., and Staphylococcus aureus (6). This raised the question whether CXCL14 may generally play a role in host defense in barrier epithelial tissues including the respiratory tract. We analyzed the capability of CXCL14 to kill commensal, pathogenic, and opportunistic bacterial species that colonize the nasopharynx, airways, and lungs. Using the colony-forming assay, we found that CXCL14 displayed potent and dose-dependent antimicrobial activity. A concentration of 1 µM CXCL14 induced >99% killing of S. mitis, S. pneumoniae 19F, and P. aeruginosa PAO1 as well as of E. coli (Fig. 1). CXCL14 was also able to inhibit the growth of different S. pneumoniae serotypes, S. oralis, S. pseudopneumoniae, Moraxella catarrhalis, and Haemophilus influenzae, albeit with lower potency than S. mitis, S. pneumoniae, and P. aeruginosa (data not shown). Generally, based on CFU values, the antimicrobial activity was less efficient against Gram-positive pathogenic bacteria as compared with Gram-negative species. In our studies, we used synthetically produced CXCL14, but similar results were obtained with rCXCL14 (data not shown).

In comparison with the well-characterized defense hBD-3, CXCL14 was less effective against the Gram-positive commensal bacteria S. mitis (Fig. 1A) and the Gram-negative opportunistic pathogen P. aeruginosa (Fig. 1C). Conversely, CXCL14 was more potent on a molar basis against the Gram-positive pathogenic S. pneumoniae (Fig. 1B). CXCL8 was included as a negative control and was indeed inactive against S. mitis, S. pneumoniae, and E. coli. However, CXCL8 was consistently able to inhibit the growth of P. aeruginosa at concentrations of ≥0.5 µM. It has been reported that proteolytic processing of chemokines by bacterial proteinases did not interfere with their antibacterial activity (35), and that peptides derived from CXCL8 acquired bacteria killing properties (24). Consequently, we tested whether the unexpected antimicrobial activity of CXCL8 could be due to the presence of truncated CXCL8 peptides that have acquired antimicrobial activity. However, when CXCL8 was analyzed by SDS-PAGE after incubation with P. aeruginosa, we were unable to detect CXCL8 breakdown products, indicating that the observed killing of P. aeruginosa was due to intact CXCL8 (data not shown).

CXCL14 induces membrane depolarization and permeability changes, and binds to bacterial DNA
The detailed mechanism of bacterial killing by AMPs and, in particular, by chemokine AMPs is not fully elucidated, but it is generally believed that membrane disruption can occur through the interaction of positively charged residues in AMPs with the neg-
ifferences, such as C-terminal α-helix, disulphide bridges, and a high proportion of cationic amino acids, we asked whether the antimicrobial activity of CXCL14 is confined to one or more of these specific structural elements of the molecule (Fig. 4). First, we addressed whether intact disulphide bonds were critical for the observed AMP activity. CXCL14 was therefore treated with DTT and iodoacetamide to reduce and alkylate the SH-groups. Disulphide bonds seemed not to be essential as reduced CXCL14 displayed only slightly diminished antimicrobial potency compared with native CXCL14 (Fig. 5A), a finding also reported for CCL28, another chemokine with known AMP activity and hBD-3 (7, 27).

The C-terminal α-helix of CXCL14 also includes a high proportion of cationic amino acids indicating that this region of the chemokine could be responsible, at least in part, for the antimicrobial activity by binding to negatively charged phospholipids in bacterial membranes. In addition, we tested two CXCL14 peptides representing different parts of CXCL14, namely, the N-terminal loop peptide CXCL14_{1-13} and peptide CXCL14_{14-54} representing the β-sheets in CXCL14 (Fig. 5A). The CXCL14 peptides CXCL14_{55-77} and CXCL14_{55-73} correspond to the C-terminal α-helix, and none of them exhibited antimicrobial activity at 1 μM, which is different from most of the previously described antimicrobial chemokines (7, 40). CXCL14_{55-77} and CXCL14_{55-73} exerted activity at only very high concentrations (≥50 μM), suggesting that the region responsible for the efficient killing of E. coli is not located in the C-terminal α-helix. CXCL14_{55-73} was included because it lacks the two negatively charged glutamic acid residues, which could be responsible for the reduced interaction with bacteria. The peptide representing the core part of CXCL14,
CXCL141–54, in contrast, displayed some intermediate antimicrobial activity and was able to inhibit 60% of *E. coli* growth at a concentration of 1 μM. Surprisingly, the short N-terminal fragment CXCL141–13 displayed identical dose-dependent killing of *E. coli* as intact CXCL14 (Fig. 5A). Therefore, in contrast with other chemokines with AMP activity, we conclude that the N-terminal part of CXCL14 plays a dominant role in the observed antimicrobial responses.

Next, we wanted to further refine the structure associated with the antimicrobial activity by shortening of the N-terminal CXCL14 peptides, and therefore synthesized CXCL141–11, CXCL141–10, CXCL141–9, and CXCL141–8 peptides. As shown in Fig. 5B, the antimicrobial activity against *E. coli* diminished when the length of the molecule was gradually shortened. However, removing glycine from CXCL141–9 exposed lysine as the C-terminal amino acid in CXCL141–8, and this form regained antimicrobial activity against *E. coli* with similar potency as CXCL141–11, but it was significantly lower than CXCL141–13. The active peptides CXCL141–8, CXCL141–10, and CXCL141–11 have two cysteines as common features, as well as a cationic amino acid (lysine and arginine, respectively) at the C-terminal end. To determine whether cysteines are critical for activity in small peptides, we synthesized mutated variants with alanine in place of cysteine at positions 3 and 5. Cysteines were not absolutely required because mutated CXCL141–13(AA), where the two cysteines were replaced by alanine, retained part of the activity at 1 and 0.5 μM. However, the activity of the alanine mutated CXCL141–13(AA) was totally abolished, suggesting that cysteines are partly important for the bactericidal activity especially with smaller peptides (Fig. 5C).

When tested against respiratory tract bacteria, CXCL141–8 and CXCL141–13 revealed bactericidal activity toward *P. aeruginosa*, but were very weak against Gram-positive *S. mitis* and *S. pneumoniae* (Fig. 5D). All peptides were tested for cytotoxicity by determining lactate dehydrogenase release in the human lung epithelial cell line A549, but none was cytotoxic at concentrations up to 2 μM (data not shown).

CXCL14-mediated chemotaxis is structurally independent of the AMP activity

CXCL14 is a highly efficient chemoattractant for human blood monocytes at micromolar concentrations (11, 12). To examine whether the peptides with AMP activity also retained chemoattractant activity, we performed in vitro chemotaxis experiments using PGE2-treated THP-1 cells as responder cells. As shown in Fig. 6A, 1–3 μM intact CXCL14 induced robust migration responses. By contrast, none of the N-terminal peptides, including the ones with highest AMP activity (CXCL141–13, CXCL141–11),...
were active in the range of 0.1 to 10 μM (Fig. 6B). Similarly, CXCL1455–77, comprising the C-terminal α-helix of CXCL14, was inactive. Only CXCL1414–54, corresponding to the β-sheet region in intact CXCL14, showed moderate but clearly detectable activity at the highest concentration (10 μM) tested. We conclude that the regions defining the AMP and chemotaxis activity do not overlap, which is in line with the proposed multiple-sites model defining chemokine–chemokine receptor interactions (41).

Proteolytic processing with proteinase 3 generates the bactericidal peptide CXCL141–17

Because we found that different peptides derived from the N-terminal portion of CXCL14 have antimicrobial activity, we
wondered whether such functionally active peptides may also occur under physiological conditions by proteolytic processing. CXCL14 is constitutively produced in lung epithelial cells, and we tested whether it could be a substrate for proteases released by activated neutrophils that migrate into the lung upon infection (42). In vitro cleavage experiments showed that proteinase 3, one of the main proteases secreted by activated neutrophils, specifically and efficiently processed CXCL14, and several proteolytic fragments were already detectable after 1 min of protease exposure (Fig. 7A). Mass-spectrometry analysis and Edman degradation of the fragments identified a mass corresponding to CXCL141–17. Of note, the antibacterial activity of synthesized CXCL141–17 was highly effective and comparable with full-length CXCL14 against E. coli and P. aeruginosa, but was ineffective against the Gram-positive S. mitis and S. pneumoniae, which is in accordance to the restricted activity of CXCL141–13 and related peptides. Our results indicate that not only full-length CXCL14, but also an N-terminal fragment of CXCL14 generated during proteolytic processing was a potent AMP against Gram-negative bacteria (Fig. 7B).

P. aeruginosa infection increases CXCL14 expression in murine lung

Strong expression of CXCL14 was previously reported in the large bronchial epithelial cells and in mouse alveolar macrophages (20). We investigated the level of CXCL14 in murine lung tissue and how it changed in response to bacterial infection. C57BL/6 WT mice were intranasally inoculated with 2×10^6 CFUs/ml P. aeruginosa or with PBS vehicle, and the mice were sacrificed 30 min and 24 h postinfection. CXCL14 protein levels were determined by ELISA in BAL and lung tissue and compared with uninfected animals. First, we noticed that CXCL14 was prominently expressed in untreated mice and mice treated with PBS, both in BAL and lung tissue homogenate, which fully agrees with previous reports (13, 20), supporting a role for CXCL14 in lung tissue immune surveillance. Second, P. aeruginosa infection moderately increased lung CXCL14 expression 24 h postinfection (Fig. 8A). We therefore also analyzed CXCL14 mRNA levels in lung homogenate and found increased levels 24 h postinfection (Fig. 8B) indicating that CXCL14 production may further increase in response to local infection.

CXCL14-deficient mice have impaired bacterial clearance in the lung

To identify an essential function for endogenous CXCL14 in host defense against lung bacterial infections, we infected CXCL14 $^{-/-}$ and WT mice with P. aeruginosa and S. pneumoniae. Bacterial load in lung homogenates and in NPL were determined 4 and 16 h postinfection with P. aeruginosa, but we found no difference in the CFU number between CXCL14 $^{-/-}$ and WT mice (Fig. 9A, Supplemental Fig. 2A). In contrast, when mice were infected with S. pneumoniae, a significantly higher bacterial load was detected in the lungs of CXCL14 $^{-/-}$ mice compared with WT littermates at 16 h but not 4 h postinfection and when bacterial load was

FIGURE 6. CXCL14-derived AMPs do not induce chemotaxis. PGE$_2$-treated THP-1 cells were used in a transwell chemotaxis assay. THP-1 migration in response to (A) full-length CXCL14 (internal control) and (B) CXCL14-derived peptides at indicated concentrations. Cell migration is displayed as the mean percentage of total input cells (\pm SEM) and is an average of two independent experiments.

FIGURE 7. Proteolysis of CXCL14 with proteinase 3 generates the AMP CXCL14$_{1-17}$. A total of 2.5 µM CXCL14 was incubated with 200 nM proteinase 3 in PBS for the indicated time at 37°C and then separated on 15% Tris SDS-PAGE, and the bands were stained with Coomassie blue (A). The antimicrobial activity of synthetic CXCL14$_{1-17}$ was tested against S. mitis, S. pneumoniae, P. aeruginosa, and E. coli. Data are from three independent experiments and are expressed as the mean \pm SEM (B).
higher as 1×10^5 CFUs (Fig. 9B). Bacterial CFUs in NPL, however, were indistinguishable between WT and CXCL14$^{-/-}$ mice (Supplemental Fig. 2B). There was no evidence of systemic infection, as no viable bacteria were detected in spleen homogenates, neither as a result of *P. aeruginosa* nor *S. pneumoniae* infection (data not shown). Our in vivo data reveal that CXCL14 contributes to the clearance of a relevant pulmonary pathogen, which is representative of Gram-positive bacterial infections, where classical AMPs like the defensins are known to be less effective.

Discussion

Several chemokines exert additional functions besides their main property as chemotactic cytokines. CXCL14 is one of the more recent chemokines whose chemotactic properties have not been fully investigated, and the slow progress is due, in part, to the fact that its receptor is still elusive. However, recent studies by us (6) and other laboratories (5, 9, 10) have clearly demonstrated that CXCL14 is a potent AMP with broad-spectrum activity. In this study, we found that CXCL14 is a highly active AMP against respiratory tract bacteria and that it contributes to bacterial clearance in the lung. Such a function is plausible considering its homeostatic expression and high abundance in epithelial tissues (20). Our previous findings of the antimicrobial properties of CXCL14 against cutaneous bacteria (6) prompted us to propose a model where CXCL14 is crucial in the early stages of an infection and able to destroy bacteria before the recruitment of inflammatory cells. Of course, it is not expected that this model is limited to the skin and should also apply to other barrier tissues with prominent CXCL14 expression. Our finding that CXCL14 contributes to lung immunity is consistent with the high constitutive expression of CXCL14 in a tissue that is constantly exposed to infectious particles from the environment.

In vitro, CXCL14 killed Gram-positive and Gram-negative species representing commensal, opportunistic, or pathogenic respiratory tract bacteria in a dose-dependent manner with a slightly stronger microbicidal effect against Gram-negative bacteria. In contrast, in vivo, it appeared that the antimicrobial activity of CXCL14 is more relevant for Gram-positive bacteria because CXCL14-deficient mice had impaired *S. pneumoniae* clearance compared with WT animals, whereas no differences in the bacterial load of lungs could be detected after *P. aeruginosa* infection. This may reflect the fact that other AMPs expressed in lungs can target Gram-negative bacteria. The higher potency of CXCL14 against Gram-negative bacteria in vitro suggests that the mechanism and the affinity of the interaction of CXCL14 with Gram-positive and Gram-negative bacteria may be different. This view is supported by our data showing that CXCL14 induced a concentration-dependent membrane depolarization of *E. coli*, as measured by uptake of fluorescent dyes, which was not clearly evident with CXCL14-treated Gram-positive *S. mitis* and *S. pneumoniae*.

![Image](https://example.com/image.png)
Because several reports indicated that LPS, lipid A, or lipoteichoic acid could be a target for AMPs (33, 43–45), we also tested whether CXCL14 could bind to LPS, but we could not detect any interaction.

It is not yet clear which specific structural attributes play a key role in ensuring that a chemokine acts as an AMP. It has been found, though, that the different AMPs possess common characteristics including net positive charges, amphipathic patches, β-sheets, or α-helices that define their tertiary structures (9). CXCL14 comprises several of these elements and by disassembling the molecule into different parts, we were able to map the active site to the N-terminal portion. Importantly, no activity was found for the 23-aa peptide CXCL14155–77, comprising the C-terminal α-helix. This finding was unexpected because positively charged α-helices were considered to be an epitome for a chemokine with AMP function (7, 8, 24, 40). Nevertheless, CXCL6 and thrombocidin-1, a truncated form of CXCL7, are other examples of antimicrobial chemokines where the microbicidal effect is mediated by 50- and 15-aa-long N-terminal peptides, respectively (25, 26, 46). Moreover, similar to other chemokines and defensins, CXCL14 displayed antimicrobial activity after linearization (7, 27, 47). hBD-1, for example, exerted significant antimicrobial activity against Gram-positive anaerobic bacteria only after reduction of the disulfide bonds, and truncated C-terminal peptides of hBD-1 with a length of just 7 aa retained their AMP activity (26). It is possible that the AMP effect of CXCL14 is mediated independently by both its tertiary structure and short linear amino acid sequences.

A specific linear sequence could be responsible for the activity of the short N-terminal peptide and explain why the antimicrobial potency was fully conserved in the 13-aa N-terminal part and only slightly reduced in the smaller peptides with a length of up to 8 aa. The killing activity of the truncated peptides was limited to Gram-negative bacteria. Intact CXCL14, however, is also quite potent in killing Gram-positive species, and this effect was evident in vivo indicating that the tertiary structure of CXCL14 could be responsible for interaction with the cell wall of Gram-positive bacteria. The notion that different mechanisms could be responsible for the killing of Gram-positive and Gram-negative bacteria is consistent with a recent study where N-terminal peptides of thrombocidin-I were compared with the full-size molecule and truncated C-terminal peptides of hBD-1 with a length of just 7 aa retained their AMP activity (26). It is possible that the AMP effect of CXCL14 is mediated independently by both its tertiary structure and short linear amino acid sequences.

In summary, we have demonstrated that CXCL14 is a broad-spectrum AMP against pulmonary bacteria in vitro. The mechanism of its activity is complex but includes membrane depolarization and permeabilization, and suggests that different mechanisms are relevant for the killing of Gram-negative and Gram-positive bacteria. Our structure-function analysis revealed the unexpected finding that the bactericidal activity specific for Gram-negative species is contained primarily in the short N-terminal portion of CXCL14 and that chemotactic activity is associated, at least in part, with the central β-sheet of the molecule. Our in vitro data were validated in a lung infection model showing that CXCL14-deficient mice were more susceptible than WT mice to S. pneumoniae infections. We conclude that the constitutively expressed CXCL14 contributes to the innate arm of the immune surveillance system present in barrier tissues.

Acknowledgments
We thank the Institute for Infectious Diseases, University of Bern for offering bacteria strains and agar plates. We thank Prof. Marcus Thelen for suggestions and discussions, Prof. Jean-Louis Reymond and Runze He for synthetic CXCL14-55(AA), and Franziska Graber and Beat Hänni for assistance with electron microscopy.

Disclosures
The authors have no financial conflicts of interest.

References

