Monocyte-Induced Development of Th17 Cells and the Release of S100 Proteins Are Involved in the Pathogenesis of Graft-versus-Host Disease

Katharina Reinhardt, Dirk Foell, Thomas Vogl, Markus Mezger, Helmut Wittkowski, Falko Fend, Birgit Federmann, Christian Gille, Tobias Feuchtinger, Peter Lang, Rupert Handgretinger, Wolfgang Andreas Bethge and Ursula Holzer

J Immunol published online 3 September 2014
http://www.jimmunol.org/content/early/2014/09/03/jimmunol.1400983
Monocyte-Induced Development of Th17 Cells and the Release of S100 Proteins Are Involved in the Pathogenesis of Graft-versus-Host Disease

Katharina Reinhardt,* Dirk Foell,† Thomas Vogl,‡ Markus Mezger,* Helmut Wittkowski,† Falko Fend,§ Birgit Federmann,§ Christian Gille,* Tobias Feuchtinger,* Peter Lang,* Rupert Handgretinger,* Wolfgang Andreas Bethge,§ and Ursula Holzer*

Graft-versus-host disease (GvHD) is a major cause of morbidity and mortality after allogeneic hematopoietic cell transplantation. However, the pathophysiology of GvHD remains poorly understood. In this study, we analyzed the induction of Th17 cells by monocytes of patients with GvHD in vitro, demonstrating that monocytes isolated from patients with acute skin and intestinal GvHD stage I–IV and chronic GvHD significantly increased levels of Th17 cells compared with patients without GvHD. S100 proteins are known to act as innate amplifiers of inflammation. We therefore investigated the presence of S100 proteins in the stool, serum, and bowel tissue of patients with GvHD and the influence of S100 proteins on the induction of Th17 cells. Elevated levels of S100 proteins could be detected in patients with acute GvHD, demonstrating the release of these phagocyte-specific proteins during GvHD. Furthermore, stimulation of monocytes with S100 proteins was found to promote Th17 development, emphasizing the role of S100 proteins in Th17-triggered inflammation. Altogether, our results indicate that induction of Th17 cells by activated monocytes and the stimulatory effects of proinflammatory S100 proteins might play a relevant role in the pathogenesis of acute GvHD. Regarding our data, S100 proteins might be novel markers for the diagnosis and follow-up of GvHD.

*University Children’s Hospital, 72076 Tuebingen, Germany; †Department of Pediatric Rheumatology and Immunology, University of Muenster, 48149 Muenster, Germany; ‡Institute of Immunology, University of Muenster, 48149 Muenster, Germany; §Institute of Pathology, University of Tuebingen, 72076 Tuebingen, Germany; and Medical Center, University of Tuebingen, 72076 Tuebingen, Germany

Received for publication April 16, 2014. Accepted for publication July 30, 2014.

This work was supported by Jürgen-Manchot-Stiftung grants and Deutsche Forschungsgemeinschaft Grant FO354d/3-1.

Address correspondence and reprint requests to Dr. Ursula Holzer, University Children’s Hospital, Department of General Paediatrics, Oncology/Hematology, Hoppe-Seyler-Strasse 1, 72076 Tuebingen, Germany. E-mail address: ursula.holzer@med.uni-tuebingen.de

The online version of this article contains supplemental material.

Abbreviations used in this article: Ct, cycle threshold; GvHD, graft-versus-host disease; HCT, hematopoietic cell transplantation; IBD, inflammatory bowel disease; RA, rheumatoid arthritis.

Copyright © 2014 by The American Association of Immunologists, Inc. 0022-1767/14/516/00

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1400983
known as myeloid-related protein 8, calgranulin A) and S100A9 (myeloid-related protein 14, calgranulin B) exist mainly as S100A8/S100A9 heterodimers. It has been demonstrated that S100A8 and S100A12 are endogenous ligands of TLR4 that induce the translocation of MyD88 from the cytosol to the receptor complex at the plasma membrane and hyperphosphorylation of IL-1R-associated kinase-1, which results in the activation of the transcription factor NF-κB and the expression of proinflammatory cytokines, such as TNF-α, IL-1β, IL-12, IL-8, and IL-6 (31, 32). S100 proteins represent promising novel therapeutic targets, as it is known that the expression of S100A8 and S100A9 is upregulated in several inflammatory disorders, such as sepsis, RA, IBD, vasculitis, and cancer (28, 30, 32). Additionally, fecal S100A12 levels from patients with IBD are elevated and correlate with the histology score (29, 33–35). In the current study, the role of Th17 cells and S100 proteins in the context of acute and chronic GvHD and their use as novel markers for diagnosis, follow-up, and therapy were investigated.

Materials and Methods

Donors

Blood from 32 healthy donors was obtained from the blood bank Tuebingen in the form of buffy coats. Fifty-two patients were recruited at the University Children’s Hospital Tuebingen and the Medical Center Tuebingen, of which 35 children (67%) and 12 adults (23%) were treated with a HCT. Stem cells of HLA-matched related donors were used in 6 cases (13%), as follows: HLA-matched unrelated donors in 19 cases (40%), HLA-haploidentical donors in 20 cases (43%), and HLA-mismatched unrelated donors in 2 cases (4%). Intensity of conditioning regimens was classified, as described by Bacigalupo (36). In this study, samples of 17 children and 6 adults undergoing HCT were examined consecutively (before conditioning, days 7, 14, 21, 30, 60, and 100 post-HCT and on onset of GvHD), of which 8 children (47%) and 5 adults (83%) developed an acute GvHD. Among 2 children (12%) and 2 adults (33%), this acute GvHD was followed by a chronic GvHD. Furthermore, 2 children after HCT without GvHD, 16 children with GvHD, and 6 adults with GvHD were additionally included at the onset of GvHD. In total, 24 patients with acute GvHD, 5 patients with chronic GvHD, and 6 patients with acute GvHD, followed by chronic GvHD, were included in this study. As controls, 5 patients with diarrhea caused by infectious gastroenteritis were additionally included. Characteristics of these patients are shown in Supplemental Tables 1 and 2.

Expression and purification of S100 proteins

Human S100A8, S100A9, and S100A12 were recombinantly expressed in Escherichia coli and purified, as described earlier (31, 32, 37, 38). Briefly, E. coli BL21(DE3) bacteria were transformed with pETT11b expression vector containing S100A8 or S100A9 cDNA. After growing bacteria at 37°C in 2× yeast extract and tryptone for 24 h, bacteria were harvested and lysed, and the inclusion bodies were prepared. The inclusion body pellets were dissolved in 8 M urea buffer, and samples were adjusted to pH 2.0 to 2.5 first by adding hydrochloric acid. Samples were dialyzed to get adapted to pH 7.4 for proper refolding in the presence of 2 mM DTT. After centrifugation to pellet aggregated material, samples were further dialyzed and applied to anion-exchange column and gel filtration chromatography. Recombinant human S100A12 was expressed in E. coli from the pETT11b vector encoding tag-free S100A12. After inducing the protein expression with isopropyl-β-D-thiogalactopyranoside, the pellet was lysed by sonication and the insoluble material was removed by centrifugation. The supernatant was adjusted up to 10 mM CaCl2 and applied onto a phenyl-Sepharose column. After elution, thiogalactopyranoside, the pellet was lysed by sonication and the insoluble bacteria were transformed with pET11/20 expression vector.

Cell culture

CD4+ T cells from healthy donors were cocultured with 100 ng/ml anti-CD3 mAb Orthoclone OKT3 (Janssen-Cilag) and monocytes from healthy donors, patients with acute or chronic GvHD, or patients before conditioning at days 30, 60, and 100 post-HCT (+ 10 d) without GvHD at a monocyte:T cell ratio of 1:4 for 5 d. Optionally, monocytes from healthy donors were additionally stimulated with 5 μg/ml S100A8, S100A9, S100A8/S100A9, or S100A12 for 4 h before coculturing with CD4+ T cells. Binding of S100 proteins to monocytes was inhibited by preincubation of monocytes with TLR4 antagonist (0.1 μg/ml; InvivoGen) for 30 min, followed by 4-h stimulation with S100 proteins. To investigate whether Th17 induction occurred, cell-contact–dependent or cytokine-mediated monocytes were cultured in RPMI 1640 media (Biochrom) containing 10% pooled human serum (University Children’s Hospital), penicillin/streptomycin (100 U/ml and 100 μg/ml), 2 mM L-glutamine, and 10 mM HEPES buffer (all from Biochrom). The supernatant was added to the culture medium of freshly isolated CD4+ T cells at a ratio of 1:1. CD4+ T cells were cultured for 5 d in the presence of Orthoclone OKT3 (100 ng/ml) and anti-CD28 mAb (1 μg/ml; BD Biosciences).

Intracellular cytokine staining

After 5 d of coculture of monocytes and CD4+ T cells, as described above, cells were stimulated for 5 h with PMA (50 ng/ml; Sigma-Aldrich) and ionomycin (750 ng/ml; Sigma-Aldrich) in the presence of monensin (2 μM; eBioscience) during the last 3 h. For flow cytometric analysis, cells were harvested, stained for the cell surface marker CD4 (anti-CD4-PE; BioLegend), fixed, permeabilized, and labeled with anti-IL-17 Alexa Fluor 647 (eBioscience) Ab alone or additionally with anti-IFN-γ FITC (eBioscience), according to the manufacturer’s protocol.

S100 ELISA

For determination of S100 concentrations, stool samples of 9 patients after HCT without GvHD and serum samples of 14 patients after HCT without GvHD were collected consecutively on days 7, 14, 21, 30, 60, and 100 (± 5 d) post-HCT (stool sample size = 24; serum sample size = 62). Furthermore, stool samples of 7 patients and serum samples of 11 patients (stool sample size = 10; serum sample size = 34) were collected at the onset of GvHD and in the further progression of GvHD every 2–4 d. S100A8, S100A9 concentrations in the stool were determined using calprotectin assay (Buchmann). For S100A12 detection, ~100 mg stool samples were suspended in extraction buffer at 1:50 dilution for homogenization, as described and validated previously (34, 39, 40). Concentrations of S100A8/S100A9 and S100A12 in the serum were determined by double-sandwich ELISA, as described previously (34, 41).

Immunohistochemistry

S100A8, S100A9, and S100A12 were detected on paraffin-embedded bowel specimens of healthy controls (n = 2) and acute intestinal GvHD stages I, II, and III (n = 3 in each group) by staining with specific Abs, as described previously (34, 37, 42). Secondary Abs and substrates for color reaction were used, as described before (42). Cell nuclei were stained using hematoxylin. Images were captured using a Zeiss Axioskop camera supplied with software Axiovision 3.0 for Windows (Zeiss). Percentage of S100A8, S100A9, and S100A12-stained areas in the individual sections was determined using ImageJ.

Cytokine assay

Cytokine levels of IL-1β, IL-6, IL-10, and TNF-α in the supernatant of monocytes were measured by Bio-Plex Human Cytokine Group I 5-plex Assay (Bio-Rad). For further investigation of the pathogenesis of GvHD, monocytes isolated from healthy donors were optionally stimulated with S100A8, S100A9, S100A8/S100A9, or S100A12 (5 μg/ml) for 4 h before incubating for 24 h to assess cytokine release. Analysis of data was performed using Bio-Plex Manager software.

Real-time PCR

RNA was extracted from isolated monocytes from healthy donors (n = 5), patients with diarrhea caused by infectious gastroenteritis (n = 5), patients after HCT without GvHD (n = 6), and patients after HCT with acute or
The Journal of Immunology 3

chronic GvHD (n = 7) using the RNeasy mini kit (Qiagen). First-strand cDNA was synthesized from 500 ng total RNA using QuantitReverse Transcrip tion Kit (Qiagen), according to manufacturer’s instructions. Amplification of S100 genes was performed using KAPA SYBR Fast QPCR MasterMix for Bio-Rad iCycler (Peqlab) and specific primers for human S100A8, S100A9, and S100A12, as proposed by Yamaoka et al. (43). A total of 5 μl SYBR mix was added to 2 μl RNase-free water (Qiagen), 1 μl cDNA, and 1 μl 100-specific primer (each 5 pmol; Eurofins MWG Operon), respectively. After an initial denaturation step for 1 min at 95°C, 40 PCR cycles with 3 s at 95°C and 25 s at 59°C were run on the CFX96 Real-Time PCR Detection System (Bio-Rad). For analysis, cycle threshold (Ct) values normalized to the housekeeping gene GAPDH were calculated as \(2^{-\Delta\Delta Ct} \), as described previously (44).

Results

Monocytes from patients with GvHD induce increased levels of Th17 cells

Like RA, GvHD is an inflammatory process that is driven by the release of TNF-α, IL-1β, and IL-6 and the activation of APCs leading to the damage of tissue (45–48). It is known that in vivo activated monocytes from the site of inflammation in humans specifically promote Th17 responses during RA (49). Thus, the influence of monocytes on the induction of Th17, Th1, and Th17/Th1 cells in patients with GvHD was investigated. Therefore, monocytes were isolated from the peripheral blood of 9 patients with acute GvHD (2 patients with extensive chronic GvHD; 2 patients with limited chronic GvHD), 20 patients before conditioning, 21 patients at days 30, 60, and 100-post HCT (n = 10) without GvHD, and 32 healthy donors. These monocytes were cocultured with CD4+ T cells from healthy donors, and the percentage of induced IL-17+, IL-17+IFN-γ, and IFN-γ cells was determined. The data demonstrate that monocytes from patients with acute GvHD and patients with chronic GvHD induced significantly higher levels of IL-17+ cells and IL-17+IFN-γ+ cells compared with monocytes isolated from patients without GvHD and healthy donors (Fig. 1A, 1B). Monocytes from patients with GvHD also induced elevated levels of Th1 cells. However, the increase was lower compared with Th17 and Th17/Th1 cells (Fig. 1C).

S100 levels in the stool and serum are elevated in patients with GvHD

Several studies have demonstrated that S100A12 and S100A8/ S100A9 are overexpressed during chronic active IBD and act as markers of inflammation in serum and stool (29, 33, 34, 50). Like IBD, GvHD is also promoted by a number of complex immune responses consisting of several inflammatory mediators leading to tissue necrosis (46, 51). Furthermore, previous results from Chiusolo et al. and Rodriguez-Otero et al. (52, 53) indicated that fecal S100A8/S100A9 levels were elevated in patients with intestinal GvHD. Therefore, S100 levels were determined in the stool and serum of patients, as described above. For analysis, stool and serum samples were collected consecutively from patients on days 7, 14, 21, 30, 60, and 100 (±5 d) post-HCT. Stool and serum samples were collected immediately at the onset of GvHD and also in the further progression of GvHD every 2–14 d, depending on the duration of GvHD. The data points from the same patients are highlighted in one color in Fig. 2. S100 levels in stool samples of 7 patients with intestinal GvHD (2 patients with acute intestinal GvHD stage II, 1 patient with acute intestinal GvHD stage IV, and 4 patients with extensive chronic GvHD) and 9 patients without GvHD were compared. The results represent that S100A8/S100A9 and S100A12 levels were significantly increased in samples of the stool of patients with acute intestinal GvHD (n = 6) and also in the stool of patients with extensive chronic GvHD (n = 4) compared with samples of patients without GvHD (n = 24) (Fig. 2A, 2B). Furthermore, S100A8/S100A9 and S100A12 concentrations in the serum of 11 patients with acute or chronic GvHD (5 patients with acute GvHD grades I–IV, 2 patients with acute GvHD grade II/III and limited chronic GvHD, 2 patients with acute GvHD grade II/III and extensive chronic GvHD, 2 patients with extensive chronic disease) and 14 patients without GvHD were determined at the stated time points after HCT. S100A8/S100A9 serum concentrations of samples of patients with acute GvHD (n = 34) were significantly elevated compared with serum concentrations of samples of patients without GvHD (n = 62) (Fig. 2C). In patients with chronic GvHD, serum levels of S100A8/S100A9 were not increased in eight samples compared with patients without GvHD post-HCT. However, the sample size of patients with chronic GvHD was lower compared with the one of the patients with acute GvHD. Similar results were obtained for S100A12 levels in the serum. Samples of patients with acute GvHD (n = 33) showed significantly increased S100A12 levels in the serum compared with patients without GvHD post-HCT (n = 53). Serum concentrations of S100A12 did not differ in samples of patients with chronic GvHD (n = 8) and patients without GvHD (Fig. 2D). S100 levels in the stool seemed to increase with severity of intestinal acute GvHD, although no statistical significance could be obtained, whereas S100 concentrations in the serum did not correlate with the grade of GvHD (Supplemental Fig. 1A–D).

Release of S100A8, S100A9, and S100A12 into bowel tissue is increased in patients with acute intestinal GvHD

As patients with acute GvHD showed significantly increased S100 levels in the serum and stool compared with patients without GvHD after HCT, it was further investigated whether proinflammatory S100 proteins are also present in inflamed bowel tissue from patients with acute intestinal GvHD. Therefore, S100A8, S100A9, and S100A12 were stained in intestinal biopsies of healthy controls with no pathological findings (n = 2) and patients with acute intestinal GvHD stage I (n = 3) and stage II–III (n = 6). Representative image sets of stained sections of bowel tissue from individual healthy donors and patients with different stages of acute intestinal GvHD are shown in Fig. 3A. In bowel tissue from patients with acute intestinal GvHD stages I, II, and III, S100A8, S100A9, or S100A12 was present in an extracellular distribution surrounding S100A8-, S100A9-, or S100A12-positive cells. Percentages of S100A8-, S100A9-, or S100A12-stained areas in individual sections were determined using ImageJ. Overall, percentages of S100A8-, S100A9-, and S100A12-stained areas were higher in sections of bowel tissue from patients with acute intestinal GvHD stages II and III compared with the patients with acute intestinal GvHD stage I. Percentages of S100A8- and S100A12-stained areas in bowel specimens of patients with intestinal GvHD stage II–III were significantly increased in comparison with the healthy controls, whereas no statistical significance could be determined in S100A9-stained areas. In intestinal tissue of healthy controls, hardly any S100 staining was detected (Fig. 3B–D).

Monocytes from patients with GvHD express elevated levels of S100A8, S100A9, and S100A12

As S100 proteins could be detected in increased levels in the serum, stool, and bowel tissue of patients with GvHD, it was investigated whether expression levels of S100A8, S100A9, and S100A12 are different in monocytes from healthy donors, patients with diarrhea of other causes, patients without GvHD, and patients with acute or chronic GvHD. RT-PCR analysis showed that normalized Ct values for S100A8, S100A9, and S100A12 proteins from patients with GvHD (4 patients with acute GvHD grade I, 1 patient with acute GvHD grade II, 1 patient with acute GvHD grade III, and 1 patient
with extensive chronic GvHD ($n = 7$) were increased compared with healthy donors ($n = 5$), patients with diarrhea caused by infectious gastroenteritis ($n = 5$), and patients after HCT without GvHD ($n = 6$), demonstrating that mRNA expression levels of S100 proteins are elevated in monocytes of patients with acute or chronic GvHD. Although highest expression levels of S100A8, S100A9, and S100A12 could be detected in monocytes of patients with GvHD, S100 expression levels were also elevated in monocytes of patients after HCT and patients with diarrhea compared with healthy donors. Averaged Ct values for S100A8, S100A9, and S100A12 were 2.9-, 2.8-, and 2-fold higher in patients with GvHD compared with patients after HCT without GvHD. Equally, averaged Ct values for S100A8, S100A9, and S100A12 were elevated 2.6-, 2-, and 1.9-fold in patients with GvHD compared with patients with diarrhea (Fig. 4).

Stimulation of monocytes with S100 proteins results in a significant increase in the percentage of induced Th17 cells

It could be shown that monocytes from patients with GvHD induce increased levels of IL-17$^+$ cells and express elevated levels of S100 proteins in the serum, stool, and bowel tissue of patients with GvHD. Thus, it was investigated whether S100 proteins...
influence monocyte-induced development of Th17 cells. Therefore, monocytes from healthy donors were prestimulated with S100 proteins for 4 h before coculturing with CD4\(^+\) T cells. Stimulation of monocytes with S100A8, S100A9, the heterodimer S100A8/S100A9, or S100A12 induced significantly higher percentages of Th17 cells compared with unstimulated monocytes (Fig. 5A). Stimulation of monocytes with S100 proteins resulted in induced Th17 levels similar to the ones induced by monocytes from patients with GvHD (S100A8, 7.5 ± 1.5; S100A9, 7.2 ± 1.8; S100A8/S100A9, 6.5 ± 1.7; S100A12, 4.7 ± 1.2; GvHD, 6.2 ± 2.2) (Figs. 1A, 5A). The percentage of Th17/Th1 cells could significantly be increased by stimulation of monocytes with S100 proteins and S100A9. However, the stimulatory effects of S100 proteins on the induction of Th17/Th1 cells were less pronounced compared with Th17 cells (Fig. 5B). Stimulation of monocytes with S100 proteins had no effects on Th1 cells (Fig. 5C). Representative flow plots are shown in Fig. 5D.

S100 proteins induce elevated levels of Th17 cells by binding to TLR4 on monocytes

S100 proteins are specific ligands of TLR4 and induce the translocation of MyD88 from the cytosol to the receptor complex at the plasma membrane and hyperphosphorylation of IL-1R–associated kinase-1, which induces NF-κB–dependent gene expression (31, 32). The data shown above demonstrate that stimulation of monocytes with S100 proteins induces increased levels of Th17 cells. To further investigate whether this stimulatory effect occurs in a TLR4-dependent manner, the receptor was blocked using a TLR4 antagonist. The blockade of S100 binding to TLR4 on monocytes led to significantly reduced levels of IL-17+ cells. Any unspecific effects of TLR4 antagonist could be excluded as monocytes solely treated with the antagonist induced approximately the same levels of Th17 cells compared with untreated monocytes (Fig. 6).

Induction of Th17 cells occurs cell–cell contact dependent and cytokine mediated

To assess whether the induction of Th17 cells is mediated via cytokines or cell-contact dependent, monocytes from healthy donors, optionally prestimulated with S100A8, S100A9, the heterodimer, or S100A12, were seeded and incubated for 24 h. The supernatant was then added to the culture medium of freshly isolated CD4\(^+\) T cells at a ratio of 1:1. CD4\(^+\) T cells were cultured,
as described above. Addition of supernatant of monocytes pre-
stimulated with S100 proteins to CD4+ T cells induced increased
percentages of IL-17+ cells compared with supernatant of unstim-
ulated monocytes. However, S100A8, S100A9, and S100A12 showed
stronger stimulatory effects on monocytes compared with the
heterodimer S100A8/S100A9 (Fig. 7A). Overall, percentages
of induced IL-17+ cells in CD4+ cells were notably lower when
only soluble factors were present compared with Th17 induction
mediated via both cell-contact and soluble factors (Figs. 1A, 5A,
7A). Next, it was investigated which proinflammatory cytokines
are released by monocytes and therefore promote the induction of
Th17 cells. Proinflammatory cytokine levels in the supernatant of
monocytes were measured by Human Cytokine Group I 5-plex
Assay. Therefore, monocytes isolated from healthy donors were
optionally stimulated with S100A8, S100A9, S100A8/S100A9, or S100A12 for 4 h before incubating for 24 h to determine cytokine release. Results are shown as n-fold increase relative to cytokine levels in the supernatant of unstimulated monocytes. In case of cytokine levels in the supernatant of unstimulated monocytes below detection levels, results were expressed as n-fold of the quantification limit of the lowest standard. It could be demonstrated that monocytes stimulated with S100A8, S100A9, S100A8/S100A9, or S100A12 released 2–7200-fold increased levels of IL-1β, IL-6, IL-8, IL-10, and TNF-α compared with unstimulated monocytes. Consistent with the data shown in Fig. 7A, stimulation of monocytes with S100A8, S100A9, or S100A12 had stronger stimulatory effects on monocytes compared with the heterodimer S100A8/S100A9, resulting in increased levels of released proinflammatory cytokines (Fig. 7B).

Discussion

Our data demonstrate that monocyte-induced development of Th17 cells and the release of proinflammatory S100 proteins might play an important role during GvHD. It is known that GvHD is mediated by several cellular and inflammatory factors and the release of proinflammatory cytokines such as TNF-α, IL-1, and IL-6 (27). Although the role of Th17 cells in GvHD is still discussed controversially, several studies have demonstrated an involvement of Th17 cells in the pathogenesis of GvHD (6, 7, 25, 26). Consistent with previous results, the data of the current study show that monocytes isolated from patients with acute or chronic GvHD and no diarrhea (n = 6), and patients with acute or extensive chronic GvHD (n = 7). Ct values for (A) S100A8, (B) S100A9, and (C) S100A12 were normalized to the housekeeping gene GAPDH. Statistical significance was determined using one-way ANOVA, followed by Bonferroni’s post hoc test: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Several studies have demonstrated that expression of phagocyte-derived S100 proteins is strongly upregulated in several inflammatory diseases (28–30, 32, 33). A previous study revealed that levels of fecal S100A8/S100A9 were elevated in patients with intestinal GvHD stage II–III compared with patients with acute GvHD without gastrointestinal symptoms. However, the sensitivity for the diagnosis of intestinal GvHD stage I was quite low, and intestinal GvHD could not be discriminated from other causes of diarrhea such as infectious gastroenteritis (53). On the contrary, Chiusolo et al. (52) could show that fecal S100A8/S100A9 is increased in patients with intestinal GvHD not only compared with patients with acute GvHD without gastrointestinal involvement, but also compared with patients with infective enteritis and patients with diarrhea after HCT. These results agree with our data demonstrating that S100A8/S100A9 levels are significantly increased in the stool of patients with acute intestinal GvHD and also in patients with extensive chronic GvHD compared with patients after HCT without GvHD. Furthermore, our results point out that serum concentrations of S100A8/S100A9 and S100A12 are significantly elevated in patients with acute GvHD compared with patients without GvHD, whereas S100 levels are not increased in the serum of patients with chronic GvHD. However, it must be taken into account that sample size of patients with chronic GvHD was lower compared with patients with acute GvHD. Altogether, these data indicate the release of S100 proteins by activated phagocytes during GvHD. Fecal S100A8/S100A9 and S100A12 might display attractive biomarkers as they provide a noninvasive examination and could be used for follow-up progression of GvHD.

Further results demonstrate that S100A8, S100A9, and S100A12 can be detected in extracellular distribution surrounding S100A8/S100A9 and S100A12 in gastrointestinal tissues of patients with acute or extensive chronic GvHD, indicating that S100 proteins might play a central role in the development of GvHD.
positive cells in bowel tissue of patients with acute intestinal GvHD stages I, II, and III, promoting the hypothesis that these proinflammatory molecules are secreted by phagocytes during GvHD. Staining of S100 proteins was more pronounced in bowel tissue of patients with acute intestinal GvHD stages II and III compared with bowel tissue of patients with acute intestinal GvHD stage I. This release of phagocyte-specific S100 proteins has already been demonstrated during IBD (29, 33). Our findings support the notion that S100 proteins could be novel pathological markers for the diagnosis of acute intestinal GvHD. However, a large multicenter study should

FIGURE 5. Influence of stimulation of monocytes with S100 proteins on the induction of Th17 cells. CD4+ T cells from healthy donors were cocultured with anti-CD3 mAb (100 ng/ml) and monocytes from healthy donors at a monocyte:T cell ratio of 1:4 for 5 d. Monocytes remained unstimulated or were additionally stimulated with S100A8, S100A9, S100A8/S100A9, or S100A12 (5 µg/ml) for 4 h before coculturing with CD4+ T cells. After 5 d of coculture, the percentage of induced (A) IL-17+ cells, (B) IL-17+IFN-γ+ cells, and (C) IFN-γ+ cells was determined by flow cytometry. Representative flow plots are shown in (D). Statistical significance was determined using one-way ANOVA, followed by Bonferroni’s post hoc test: *p < 0.05, ****p < 0.0001.
be carried out to further verify the obtained results and to investigate whether severity of intestinal GvHD can be correlated with the area of stained S100A8, S100A9, and S100A12. Furthermore, the present data reveal that monocytes isolated from patients with acute or chronic GvHD express elevated mRNA levels of S100A8, S100A9, and S100A12 compared with monocytes isolated from healthy donors, patients with diarrhea caused by infectious gastroenteritis, and patients after HCT without GvHD. However, S100 expression levels in monocytes of patients with diarrhea and patients after HCT are higher compared with healthy donors. This is not surprising as S100 proteins are damage-associated molecular pattern molecules released by activated or damaged phagocytes under conditions of cell stress, for example, during infections. A recent study demonstrating that peripheral blood mRNA levels of S100 family are closely associated with inflammation confirms our finding (43).

Furthermore, our data are consistent with the findings of other studies demonstrating that S100A12 shows an enriched expression in PBMC and monocytes on mRNA level, whereas S100A12 expression on protein level is restricted to granulocytes (37, 54, 55). In contrast to S100A12, S100A8 and S100A9 are expressed and secreted by both granulocytes and monocytes (37, 42).

According to the presented results, the release of S100 proteins by activated phagocytes and the induction of Th17 cells solely mediated by monocytes seem to play an important role in the pathomechanism of GvHD. Therefore, we investigated whether S100A8, S100A9, S100A8/S100A9, and S100A12 influence monocyte-induced development of Th17 cells. It is known that S100 proteins are endogenous TLR4 ligands that activate monocytes (31, 32). We could demonstrate that binding of S100A8, S100A9, S100A8/S100A9, or S100A12 to TLR4 on monocytes induces significantly increased levels of Th17 cells compared with unstimulated monocytes. However, S100A8 and S100A9 showed stronger stimulatory effects concerning the induction of Th17 cells compared with the heterodimer S100A8/S100A9 and S100A12. S100A8 and S100A9 mainly exist under physiological conditions in the form of heterodimers, and the amount of S100A8 and S100A9 homodimers is unknown, but can be classified as rela-
tively low. On the contrary, S100A12 is only present as homo-
dimer and seems to induce a weaker immune activation due to any
pathophysiological reasons. Additionally, it has to be kept in mind
that the activity of the S100 protein preparations varies from batch
to batch. Nevertheless, our findings point out that proinflammatory
S100 proteins can promote the induction of Th17 cells by binding
to TLR4 on monocytes and conform with the data of a previous
study revealing that levels of induced Th17 cells could further be
enhanced by stimulation of monocytes with the TLR4 ligand LPS
in vitro (12).

We also examined whether the induction of Th17 cells is me-
diated by proinflammatory cytokines released by monocytes or by
cell contact between monocytes and CD4+ T cells. Our data
represent that efficient induction of Th17 cells by in vitro stimu-
lated monocytes occurs cell-contact dependent and cytokine me-

Acknowledgments
We thank Melanie Saers and Susanne Schleifenbaum (University of
Muenster) for performing S100 measurements, Claudia Sole (University
of Muenster) for the immunohistochemical staining, Mirjam Breig
(Medical Center, Tuebingen, Germany) for patient documentation, and
Mirjam Breig and Birgit Walter (University Children’s Hospital) for pro-
viding assistance with the patient characteristics.

Disclosures
The authors have no financial conflicts of interest.

References
topoietic and mesenchymal stem cell transplantation for severe and refractory
4. Broady, R., J. Yu, V. Chow, A. Tantivorawit, C. Kang, B. Berg, M. Martinka,
M. Lebrecht, J. Dutz, and M. K. Levings. 2010. Cutaneous GVHD is associated
with the expansion of tissue-localized Th1 and not Th17 cells. Blood 116: 5748–
5751.
5. Carayol, G., J. H. Bourhis, M. Guillard, J. Bosq, C. Pailler, L. Castagna,
response to in vivo stimulated monocytes and other studies demonstrated
that the induction of IL-17+ cells in the presence of in vitro ac-
tivated monocytes requires cell contact and is not solely attributed
to monocyte-derived proinflammatory cytokines (12, 49). In con-
trast, in vivo activated monocytes appeared to rely on cell contact with
CD4+ T cells to promote Th17 responses, suggesting a more
important role for cell-to-cell signals such as costimulation or ad-
hesion (49).

As our results demonstrate that the release of S100 proteins and their
stimulatory effect on monocyte-mediated induction of Th17 cells
might play an important role in the development and pro-
gression of GvHD, it was investigated whether monocytes stimu-
lated with S100 proteins release increased levels of proinflammatory
cytokines. The data of the current study demonstrate that in vitro
stimulation of monocytes with S100A8, S100A9, S100A8/A9, or
S100A12 results in increased release of IL-1β, IL-6, IL-8, IL-10,
or TNF-α consistent with the results of a previous study demonstrat-
ing that stimulation of monocytes with S100A8 results in
significantly increased secretion of IL-1β and TNF-α (32).

Furthermore, it could be shown that monocytes stimulated with
S100A12 release elevated levels of IL-1β, TNF-α, and IL-6 (31).
Therefore, our findings indicate that binding of S100 proteins to
TLR4 on monocytes activates the TLR4 signaling pathway, res-
ulting in the activation of the transcription factor NF-κB and the
expression and secretion of proinflammatory cytokines that pro-
mote the induction of Th17 cells (32). Thus, immune intervention
targeting proinflammatory S100 proteins might be an attractive
strategy to inhibit uncontrolled inflammatory processes during
GvHD.

In conclusion, we demonstrate that phagocyte-specific S100 pro-
teins are released during GvHD and can be detected in the stool,
sperm, and bowel tissue of patients with GvHD. S100 proteins act
as endogenous ligands of TLR4 and induce the activation of
monocytes, the expression and release of proinflammatory cyto-
kines, and the development of Th17 cells. Our findings highlight
that the induction of Th17 cells by activated monocytes and the
stimulatory effects of the proinflammatory S100 proteins on
monocytes might play a relevant role in the pathogenesis of GvHD.

Based on these data, S100 proteins might be novel sensitive fecal
and pathologic in situ biomarkers of intestinal GvHD.
Supplemental data

Table I. Patient characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Patients without GvHD after HCT (control group) n=12 (number in %)</th>
<th>Patients with GvHD after HCT n=35 (number in %)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>male</td>
<td>10 (83)</td>
<td>15 (43)</td>
<td>0.1350</td>
</tr>
<tr>
<td>female</td>
<td>2 (17)</td>
<td>20 (57)</td>
<td></td>
</tr>
<tr>
<td>Age group in years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><5</td>
<td>2 (17)</td>
<td>3 (9)</td>
<td></td>
</tr>
<tr>
<td>5-18</td>
<td>9 (75)</td>
<td>21 (60)</td>
<td></td>
</tr>
<tr>
<td>>18</td>
<td>1 (8)</td>
<td>11 (31)</td>
<td>0.2556</td>
</tr>
<tr>
<td>Disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leukemia/MDS</td>
<td>8 (66)</td>
<td>23 (66)</td>
<td>0.3002</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>0</td>
<td>4 (11)</td>
<td></td>
</tr>
<tr>
<td>Solid tumors</td>
<td>2 (17)</td>
<td>3 (9)</td>
<td></td>
</tr>
<tr>
<td>Non-malignant</td>
<td>2 (17)</td>
<td>5 (14)</td>
<td></td>
</tr>
<tr>
<td>Transplantation type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>haploidentical</td>
<td>5 (42)</td>
<td>15 (43)</td>
<td></td>
</tr>
<tr>
<td>matched unrelated donor</td>
<td>5 (41)</td>
<td>14 (40)</td>
<td></td>
</tr>
<tr>
<td>matched related donor</td>
<td>2 (17)</td>
<td>4 (11)</td>
<td></td>
</tr>
<tr>
<td>mismatched unrelated donor</td>
<td>0</td>
<td>2 (6)</td>
<td>0.3141</td>
</tr>
<tr>
<td>Conditioning regimen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reduced intensity regimen</td>
<td>2 (17)</td>
<td>9 (26)</td>
<td>0.3455</td>
</tr>
<tr>
<td>myeloablative regimen</td>
<td>10 (83)</td>
<td>26 (74)</td>
<td></td>
</tr>
<tr>
<td>GvHD prophylaxis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATG</td>
<td>9 (75)</td>
<td>25 (71)</td>
<td></td>
</tr>
<tr>
<td>MMF</td>
<td>5 (42)</td>
<td>19 (54)</td>
<td></td>
</tr>
<tr>
<td>MTX</td>
<td>6 (50)</td>
<td>11 (31)</td>
<td></td>
</tr>
<tr>
<td>Ciclosporin</td>
<td>5 (41)</td>
<td>9 (26)</td>
<td></td>
</tr>
<tr>
<td>Tacrolimus</td>
<td>2 (17)</td>
<td>8 (23)</td>
<td></td>
</tr>
<tr>
<td>Sirolimus</td>
<td>0</td>
<td>1 (8)</td>
<td></td>
</tr>
<tr>
<td>MPA</td>
<td>0</td>
<td>1 (8)</td>
<td>0.0853</td>
</tr>
</tbody>
</table>

MDS indicates myelodisplastic syndrome; ATG, anti-thymocyte globulin; MMF, mycophenolate mofetil; MTX, methotrexate; and MPA, mycophenolic acid
Table II. GvHD overview

<table>
<thead>
<tr>
<th>GvHD characteristic</th>
<th>Patients with GvHD after HCT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=35* (number in %)</td>
</tr>
</tbody>
</table>

Acute GvHD

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Stage I</th>
<th>Stage II</th>
<th>Stage III</th>
<th>Stage IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11 (31)</td>
<td>9 (26)</td>
<td>4 (11)</td>
<td>1 (8)</td>
</tr>
<tr>
<td>Gut</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 (14)</td>
<td>4 (11)</td>
<td>3 (9)</td>
<td>1 (8)</td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1 (8)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Acute GvHD

<table>
<thead>
<tr>
<th>Grade</th>
<th>Stage I</th>
<th>Stage II</th>
<th>Stage III</th>
<th>Stage IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 (40)</td>
<td>7 (20)</td>
<td>8 (23)</td>
<td>1 (8)</td>
</tr>
<tr>
<td>Grade II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chronic GvHD

<table>
<thead>
<tr>
<th>Type</th>
<th>Stage I</th>
<th>Stage II</th>
<th>Stage III</th>
<th>Stage IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 (9)</td>
<td>8 (23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extensive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GvHD therapy

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Stage I</th>
<th>Stage II</th>
<th>Stage III</th>
<th>Stage IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steroids (Prednisolon, Urbason)</td>
<td>28 (80)</td>
<td>26 (74)</td>
<td>21 (60)</td>
<td>15 (43)</td>
</tr>
<tr>
<td>MMF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcineurin inhibitors (Ciclosporin, Tacrolimus)</td>
<td>21 (60)</td>
<td>15 (43)</td>
<td>10 (28)</td>
<td>7 (20)</td>
</tr>
<tr>
<td>Protopic, Soderm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-blocker (Etanercept, Infliximab, Phototherapy (ECP, PUVA))</td>
<td>10 (28)</td>
<td>7 (20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sirolimus</td>
<td>5 (14)</td>
<td>5 (14)</td>
<td>3 (9)</td>
<td>1 (8)</td>
</tr>
<tr>
<td>mAb (Basiliximab, Alemtuzumab, Tocilizumab, Muromonab)</td>
<td>5 (14)</td>
<td>3 (9)</td>
<td>1 (8)</td>
<td>1 (8)</td>
</tr>
<tr>
<td>MSC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azathioprin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MMF indicates mycophenolate mofetil; ECP, extracorporeal photopheresis; PUVA, psoralen and ultraviolet A irradiation; MSC, mesenchymal stem cells; and ATG, anti-thymocyte globulin

* 35 patients with GvHD include 24 patients with acute GvHD, 5 patients with chronic GvHD and 6 patients with an acute GvHD followed by a chronic GvHD
Figure S1: S100 concentrations in the stool and serum correlated with the clinical severity of GvHD.

(A) Fecal S100A8/S100A9 and (B) S100A12 were determined in the stool of patients with intestinal GvHD and patients without GvHD by Calprotectin-Assay or double sandwich ELISA and were correlated with the severity intestinal GvHD. Furthermore, (C) S100A8/S100A9 and (D) S100A12 concentrations were determined in the serum of patients with and without GvHD by double-sandwich ELISA and were correlated with GvHD grade.