A Soluble Form of IL-27Rα Is a Natural IL-27 Antagonist

Céline Dietrich, Sophie Candon, Frank M. Ruemmele and Odile Devergne

J Immunol published online 25 April 2014
http://www.jimmunol.org/content/early/2014/04/30/jimmunol.1303435

Supplementary Material
http://www.jimmunol.org/content/suppl/2014/04/25/jimmunol.1303435.SDCSupplemental

Subscription
Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
A Soluble Form of IL-27Rα Is a Natural IL-27 Antagonist

Céline Dietrich,*† Sophie Candon,†‡ Frank M. Ruemmele,§ and Odile Devergne*†

IL-27 is a cytokine of the IL-12 family that plays a key role in the regulation of inflammatory and T cell responses. Its receptor is composed of IL-27Rα and gp130 and activates the STAT pathway. We show in this study, using an ELISA that we developed, that a naturally occurring soluble form of IL-27Rα (sIL-27Rα) is produced by human activated CD4+ and CD8+ T cells, B cells, myeloid cells, and various cell lines. sIL-27Rα is present at a mean concentration of 10,344 ± 1,274 pg/ml in the sera from healthy individuals. Biochemical studies showed that sIL-27Rα is released as two N-glycosylated variants of ~90 and ~70 kDa. In IL-27Rα–transfected COS7 cells, primary cells, and cell lines, production of sIL-27Rα is inhibited by the metalloprotease inhibitors GM6001 and TAPI-0. Importantly, natural sIL-27Rα binds rIL-27, inhibits IL-27 binding to its cell surface receptor, and is a potent inhibitor of IL-27 signaling, as shown by its ability to specifically block IL-27–mediated STAT activation, at low molar excess over IL-27. Also, we found that serum levels of sIL-27Rα were elevated in patients with Crohn’s disease, a Th1-mediated disease. These findings suggest that sIL-27Rα may play important immunoregulatory functions under normal and pathological conditions.

The Journal of Immunology, 2014, 192: 000–000.

INTERLEUKIN-27 is a heterodimeric cytokine of the IL-12 family composed of two subunits, EBV-induced gene 3 (EBI3) and p28 (1, 2). In humans, it is expressed at high levels by monocytes/macrophages and dendritic cells upon activation and by placental trophoblasts (2–4). IL-27 displays broad immunological functions and plays a key role in the regulation of inflammatory and T cell responses. Although it was initially described as a factor promoting the initiation of Th1 responses, it was later found to play a major T cell–suppressive function by limiting Th1 responses, inhibiting Th2 and Th17 cell differentiation, and regulating the development of T regulatory and other T regulatory cell populations. In addition to its role as an immunoregulator, IL-27 also regulates angiogenesis, hematopoiesis, and osteoclastogenesis (reviewed in Refs. 5, 6).

IL-27 signals through a heterodimeric receptor composed of two chains, IL-27Rα (formerly called TCCR or WSX-1) and gp130, and activates the STAT pathway, predominantly STAT1 and STAT3 (7). Cytokine signaling and activity can be modulated by cytokine receptor natural agonists or antagonists. In the case of IL-27, two studies have shown that, in mice, the p28 subunit of IL-27 can be secreted alone, independently of EBI3, and constitutes an IL-27 antagonist (8, 9). However, human p28 is not secreted in the absence of EBI3 in transfected cells (2), and it is presently unknown whether in humans p28 is released naturally free of EBI3 and could act as an IL-27 antagonist. In addition, controversially, a recent report suggested that mouse p28 does not antagonize IL-27 activity, but plays an agonistic role through the IL-6R (10).

Cytokine receptors can exist in both membrane and soluble forms (11). These latter can bind to cytokines and modulate their activity in different ways. They can either play an antagonistic role by preventing cytokine association with the membrane form of the receptor, or alternatively play a positive role by extending the half-life of the cytokine and potentiating its activity as described for IL-15Rα or IL-7Rα (12, 13). Gp130 naturally exists as a soluble form that inhibits IL-6/IL-6R complex signaling (14) but does not inhibit IL-27 signaling (15). Mouse neuronal cells express an alternatively spliced IL-27Rα isoform of 33 kDa, lacking exons 7–14, that encodes part of the extracellular domain (16). This truncated IL-27Rα isoform was reported, not to act as a dominant negative, but to associate with CNTF-R and gp130 similarly to full-length membrane IL-27Rα, to form a tripartite functional receptor for humanin, a neurotrophic peptide (16, 17).

In this study, we investigated whether human IL-27Rα can be detected as a soluble form that could modulate IL-27 activity. We found that soluble forms of IL-27Rα (sIL-27Rα) are spontaneously released from cells as N-glycosylated proteins of 70/90 kDa, through proteolytic cleavage by metalloproteases. sIL-27Rα can bind rIL-27 in vitro, is complexed with IL-27 in vivo, and inhibits IL-27 signaling. It was present at detectable levels in the sera from healthy individuals and was upregulated in the sera of patients with Crohn’s disease (CD).

Materials and Methods

Human cells and sera

COS7, Hodgkin (KMH2), and Burkitt (BL2) B lymphoma cell lines were grown in DMEM (CO87) or RPMI 1640 medium (KMH2 and BL2) supplemented with 10–15% FBS, 1% glutamine, and 1% antibiotics (Life Technologies) (complete medium). COS7 cells were transfected by electroporation (Bio-Rad) with pcDNA3 vector, empty or encoding full-length C-terminal V5-6His–tagged IL-27Rα (gift of H. Gascan, Angers, France), and GFP expression vector (Clontech) and incubated for various times in incomplete DMEM or OptiMEM medium.

Human CD4+ T cells (purity >97%) and CD8+ T cells (purity >95%) were purified by negative magnetic cell isolation (Miltenyi Biotec) from PBMC of adult healthy donors (Etablissement Français du Sang, Paris, France), as previously described (18). Purified T cells were cultured (1 × 10⁶/ml) for 3–7 d in complete RPMI 1640 medium in the presence of IL-2 (20 U/ml; Roche), and either PHA (4 μg/ml; Sigma-Aldrich) or beads

*Centre National de la Recherche Scientifique Unité Mixte de Recherche 8147, Université Paris Descartes, Sorbonne Paris Ciè, 75 015 Paris, France; † Institut Necker Enfants Malades, INSERM U1151, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8253, 75 015 Paris, France; ‡ INSERM U1013, Université Paris Descartes, Sorbonne Paris Cité, 75 015 Paris, France; and Service de Gastroentérologie, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, 75 015 Paris, France

Received for publication December 23, 2013. Accepted for publication March 31, 2014.

Address correspondence and reprint requests to Dr. Odile Devergne, Institut Necker Enfants Malades, INSERM U1151, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8253, Hôpital Necker, Bâtiment Jean Hamburger, 161 rue de Sèvres, 75 015 Paris, France. E-mail address: odile.devergne@insERM.fr

The online version of this article includes supplemental material.

Abbreviations used in this article: ADAM, a disintegrin and metalloproteinase; CD, Crohn’s disease; EBI3, EBV-induced gene 3; MIF, matrix metalloproteinase; sIL-27Rα, soluble form of IL-27Rα.

Copyright © 2014 by The American Association of Immunologists, Inc. 0022-1767/14/$16.00

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1303435

The Journal of Immunology

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1303435

Published April 30, 2014, doi:10.4049/jimmunol.1303435
(ratio 1 bead per 2 cells) coated with CD2/CD3/CD28 Abs (T cell activation/expansion kit; Miltenyi Biotec). Human tonsillar B cells (purity >99%) were purified by magnetic depletion using CD2 microbeads (Miltenyi Biotec) and cultured (2 × 10^5/ml) for 2–4 d in complete RPMI 1640 medium in the presence of CD40 Ab (0.5 μg/ml; R&D Systems), as described (19). Monocytes (purity >97%) were purified from PMBC by positive selection using CD14 microbeads (Miltenyi Biotec) and cultured (3 × 10^6/ml) for 3 d in the presence of LPS (100 ng/ml; Invivogen). Monocyte-derived mature dendritic cells were generated from human monocytes cultured for 6 d in the presence of GM-CSF, followed by a 2-d maturation with TNF-α (20). Two cell-permeable inhibitors of metalloproteases, GM6001 or TAPI-0 (Merck Chemicals), were used at concentrations that were not toxic to cells. Because inhibitors were reconstituted in DMSO, DMSO was added at a similar dilution in the control cultures.

Normal human sera were obtained from healthy, nonpregnant volunteers (n = 28). Sera (n = 43) from six women with normal pregnancies, collected at various times during pregnancy (six to eight sera per individual) for serological diagnosis (Béclère Hospital), were used in this study. Sera from pregnant patients (n = 52) with active CD were collected for diagnosis (Necker Hospital) before initiation of treatment with infliximab. Studies were conducted in accordance with the Declaration of Helsinki and were approved by the hospital ethics committee.

ELISA

To detect sIL-27Rα, a sandwich ELISA was developed by using mouse anti-human IL-27Rα mAb (191106; R&D Systems) as coating Ab and goat biotinylated polyclonal anti-human IL-27Rα Ab (R&D Systems) as detection Ab. Both Abs were raised against the extracellular domain of IL-27Rα. Binding of the detection Ab was detected using streptavidin HRP conjugate (GE Healthcare) and tetramethylbenzidine (R&D Systems) as a substrate. Human rIL-27Rα-Fc fusion protein (R&D Systems) was used as a standard. Because the m.w. of IL-27Rα-Fc is higher than that of sIL-27Rα, values for sIL-27Rα, expressed in pg/ml, were corrected based on the molarity of each protein. The limit of sensitivity was 30 pg/ml sIL-27Rα. This ELISA detects sIL-27Rα, bound or not to IL-27. In some cases, culture supernatants were concentrated using Amicon Ultra centrifugal filter units (Millipore) before ELISA. To investigate whether sIL-27Rα could form complexes with IL-27 in the sera, we developed an ELISA by using mouse anti-human IL-27Rα mAb or a control isotype mAb as coating Abs, and goat biotinylated polyclonal anti-human IL-27 Ab (R&D Systems) as detection Ab. Binding of the detection Ab was detected as indicated above. Serum levels of IL-27 were detected using a commercial kit (R&D Systems) with some modifications of the procedure.

Immunoprecipitation, Western blotting, and N-glycanase treatment

sIL-27Rα was immunoprecipitated from either the lysate of transfected COS7 cells (lysis buffer: 1% Nonidet P-40, 50 mM Tris [pH 7.4], 150 mM NaCl, 3% glycerol, 1.5 mM EDTA), 10- to 30-fold concentrated KMH2 culture supernatant, or normal human sera. All samples were supplemented with protease inhibitors (1 mM PMSE, 1 μg/ml pepstatin, and 1 μg/ml leupeptin) and precleared with protein G-Sepharose beads (GE Healthcare) before incubation with Abs. sIL-27Rα was immunoprecipitated using either mouse mAb or goat polyclonal anti–IL-27Rα Ab (R&D Systems), in parallel to control Abs (mouse MOPC141 mAb or purified goat IgG; Sigma Aldrich), followed by incubation with protein G-Sepharose beads, or mouse anti-human IL-27Rα mAb covalently linked to agarose beads using AminoLink Plus immobilization kit (Thermo Scientific). After washes in lysis buffer, immunoprecipitates were eluted, separated by SDS-PAGE, and transferred to nitrocellulose membranes. Primary Abs for immunoblotting included goat biotinylated polyclonal anti-human IL-27Rα Ab, mouse V5 mAb (Invitrogen), and 2G4H6 anti-EBI3 mAb (3). Binding of primary Abs was detected using HRP-conjugated secondary reagents and chemiluminescence reagents (Pierce). When indicated, immunoprecipitates were submitted to N-glycanase treatment with PNGase F set (Sigma-Aldrich) before analysis by SDS-PAGE and immunoblotting.

Purification of natural sIL-27Rα

Natural sIL-27Rα was purified from the culture supernatant (450 ml) of KMH2 cells (10^5 per ml) incubated for 48 h in X-Vivo 15 media (Lonza). The culture supernatant was concentrated by 45-fold using Amicon Ultra centrifugal filter units and supplemented with protease inhibitors before overnight incubation with anti–IL-27Rα beads. Beads were washed extensively, and bound proteins were recovered by acidic elution. After neutralization and addition of BSA as a carrier, the eluate was dialyzed against PBS and concentrated (Microcon centrifugal filter device; Millipore). Concentration of purified sIL-27Rα was determined by ELISA.

STAT activation assay

After overnight starvation in serum-free media, BL2 cells were incubated in 48-well plate (10^5 cells per 100 μl) in RPMI 1640 medium supplemented with 0.5% BSA (RPMI/BSA media). Prior to addition to cells, rIL-27 (6His-tagged covalently linked EB13-p28 fusion protein; R&D Systems) was incubated for 15 min at 37°C in 100 μl RPMI/BSA media containing various concentrations of rIL-27Rα-Fc chimera, recombinant gp130-Fc chimera (R&D Systems), or purified natural sIL-27Rα. The mixture was then added to BL2 cells for 15 min at 37°C and 5% CO2. The reaction was stopped, and cells were lysed in ice-cold 1% Nonidet P-40 lysis buffer supplemented with protease and phosphatase inhibitors. Phosphorylated and total STAT1 were measured by ELISA in the culture supernatant, or normal human sera. All samples were supplemented with protease inhibitors (1 mM PMSE, 1 μg/ml pepstatin, and 1 μg/ml leupeptin) and precleared with protein G-Sepharose beads (GE Healthcare) before incubation with Abs. sIL-27Rα was immunoprecipitated using either mouse mAb or goat polyclonal anti–IL-27Rα Ab (R&D Systems), in parallel to control Abs (mouse MOPC141 mAb or purified goat IgG; Sigma Aldrich), followed by incubation with protein G-Sepharose beads, or mouse anti-human IL-27Rα mAb covalently linked to agarose beads using AminoLink Plus immobilization kit (Thermo Scientific). After washes in lysis buffer, immunoprecipitates were eluted, separated by SDS-PAGE, and transferred to nitrocellulose membranes. Primary Abs for immunoblotting included goat biotinylated polyclonal anti-human IL-27Rα Ab, mouse V5 mAb (Invitrogen), and 2G4H6 anti-EBI3 mAb (3). Binding of primary Abs was detected using HRP-conjugated secondary reagents and chemiluminescence reagents (Pierce). When indicated, immunoprecipitates were submitted to N-glycanase treatment with PNGase F set (Sigma-Aldrich) before analysis by SDS-PAGE and immunoblotting.

FACS analysis

Cells were first stained in PBS containing 20% normal human serum. Cell surface IL-27Rα was detected using PE-conjugated anti–IL-27Rα mAb...
(R&D Systems), in parallel to an IgG2b-PE control mAb. Cells were analyzed on FACS Calibur, and data were analyzed using FlowJo software. For binding experiments, BL2 cells were saturated in PBS containing 5% veinglobulins and incubated for 40 min on ice with 6His-tagged rIL-27 that had been preincubated or not with natural purified sIL-27Rα for 15 min at 37˚C. Binding of IL-27 was detected with an anti-hexahistidine mAb (ThermoScientific), followed by PE-conjugated Fab'3 anti-mouse IgG (eBioscience).

Statistical analysis

Statistical significance was determined using Student’s paired t test (*p < 0.05, **p < 0.01, ***p < 0.001) or unpaired t test (p values indicated on the graphs). Pearson’s test was used for correlation. Pearson correlation coefficients (r² values) and p values are indicated on the graphs.

Results

A soluble form of IL-27Rα is detected in the cell culture supernatant from various primary human cell types

To investigate whether IL-27Rα exists as a soluble form, we first developed a sandwich ELISA, as described in Materials and Methods, and screened supernatants from various human primary cell types. Because activated human CD4⁺ T cells express high levels of IL-27Rα mRNA and protein (2, 18), we first tested these cells for sIL-27Rα production. Purified CD4⁺ T cells were stimulated for 3–7 d with PHA or beads coated with CD2/CD3/CD28 Abs in the presence of IL-2. In both conditions of stimulation, detectable levels of sIL-27Rα were measured in the culture supernatant after 3 d of stimulation, and these levels increased over the activation period (up to 339 pg/ml on average at day 7) (Fig. 1A, left). Comparable levels of sIL-27Rα were detected in the culture supernatant from CD8⁺ T cells activated with CD2/CD3/CD28 beads (mean 401 ± 13 pg/ml at day 7; Fig. 1A, right). Human tonsillar B cells stimulated with CD40 Ab for 2–4 d or CD14⁺ monocytes stimulated with LPS for 3 d also released sIL-27Rα, albeit at lower levels (Fig. 1B, 1C). Mature monocyte-derived dendritic cells that constitutively express high amounts of IL-27Rα mRNA (7) produced variable amounts of sIL-27Rα, constitutively (Fig. 1D).

Screening of supernatants from human cell lines revealed that various cell lines, including B and T cell lines and melanoma cell lines, released sIL-27Rα. Of these, the KMH2 lymphoma cell line contained among the highest levels of sIL-27Rα (>250 pg/ml).

Detection of sIL-27Rα in sera from healthy human subjects

Next, we tested sera from healthy individuals (n = 28) for the presence of sIL-27Rα. As shown in Fig. 2A, sIL-27Rα was detected in all samples, at concentrations ranging from 3,108 to 31,757 pg/ml (mean 10,344 ± 1,274 pg/ml). Serum levels of sIL-27Rα were compared with those of IL-27, as measured by IL-27 ELISA. No significant correlation was observed between serum levels of IL-27 and sIL-27Rα (Fig. 2B).

In previous studies (3, 4), we had shown that levels of EBI3, released by placental trophoblast cells, are strongly upregulated in the sera from pregnant women and gradually increase with gestational age. Determination of sIL-27Rα levels in sera from six pregnant women collected at various times during their pregnancy (43 sera, from 9 to 40 wk of pregnancy) showed that serum levels of sIL-27Rα did not increase during pregnancy (Fig. 2C), in contrast to the situation previously observed for EBI3.

Soluble forms of cytokine receptors can be complexed with the cytokine in the serum (21). To investigate whether sIL-27Rα forms complexes with IL-27 in the serum, we developed an ELISA by using an anti–IL-27Rα mAb as a capture Ab and a biotinylated anti–IL-27 Ab as a detection Ab. As positive and negative controls, an anti–IL-27 Ab or a control isotype mAb was used, respectively, as capture Ab. Sera from eight healthy individuals (four nonpregnant and four pregnant individuals) were tested in this ELISA. As shown in Fig. 2D, increased IL-27 binding over the control was observed when anti–IL-27Rα mAb was used as a capture Ab, indicating that a fraction of sIL-27Rα is associated with IL-27 in the serum.

Biochemical analysis of sIL-27Rα

We further characterized the soluble form of IL-27Rα by using immunoprecipitation and Western blot. Mature human full-length IL-27Rα contains a 482-aa extracellular domain comprising seven potential N-glycosylation sites, a 26-aa transmembrane domain, and a 96-aa intracellular domain, resulting in a transmembrane protein with a predicted molecular mass of 66 kDa (22).

Western blot analysis of the cell lysate of COS7 cells transfected with a plasmid encoding a C-terminal V5-6His–tagged full-length IL-27Rα, showed that cell-associated IL-27Rα is detected as a doublet of ~115 and ~95 kDa (Fig. 3A). These isoforms corresponded to two different N-glycosylated variants, as immunoprecipitation of IL-27RαV5His and removal of N-linked sugars by treatment of the immunoprecipitate with N-glycanase resulted in a single band of ~80 kDa (Fig. 3B). This apparent molecular mass is higher than the predicted one (68 kDa) and suggests that the specific amino acid composition of human IL-27Rα results in aberrant migration on SDS-PAGE.
Immunoprecipitation of sIL-27Rα with goat polyclonal or mouse anti–IL-27Rα mAbs from the concentrated supernatant of KMH2 cells (Fig. 3C, left) or from normal human serum (Fig. 3C, right) resulted in each case in detection of two diffuse bands of ∼90 and ∼70 kDa, as shown by anti–IL-27Rα immunoblot. Treatment of anti–IL-27Rα immunoprecipitate with N-glycanase reduced the apparent molecular mass of sIL-27Rα to a single band of ∼60 kDa (Fig. 3D), slightly above the predicted size of the extracellular domain of IL-27Rα (52.2 kDa).

Role of metalloproteases in sIL-27Rα production

Soluble forms of cytokine receptors can be generated by alternative splicing or by proteolytic cleavage and shedding of the cell surface cytokine receptor. Because former Northern blot analyses of human IL-27Rα (22, 23) did not evidence alternative transcripts that could code for the entire extracellular domain of IL-27Rα and no alternative splicing was predicted in ASPic database, we investigated a potential role of metalloproteases in the generation of sIL-27Rα.

Transient transfection of COS7 cells with full-length IL-27RαV5His resulted in cell surface expression of the protein, as expected (Fig. 4A), but also in the production of sIL-27Rα that accumulated over time in the culture medium, as detected by Western blot (Fig. 4B) or ELISA (Fig. 4C). Production of this soluble form was strongly reduced in the presence of two chemical inhibitors of metalloproteases, GM6001 or TAPI-0 (respectively 80 and 90% inhibition on average, at 48 h) (Fig. 4C). This decrease was specific to the soluble form given that no significant decrease of full-length IL-27RαV5His expression was detected by immunoblot analysis of the cell lysate (Fig. 4D).

Similarly, incubation of KMH2 cells (Fig. 4E) or CD2/CD3/CD28-activated CD4+ T cells (Fig. 4F) with GM6001 or TAPI-0 significantly decreased sIL-27Rα production, in a dose-dependent manner (∼90% inhibition in KMH2 cells and >60% inhibition in CD4+ T cells, at the highest concentrations tested), without affecting cell proliferation. In transfected COS7 cells or in KMH2 cells, inhibition of IL-27Rα cleavage did not substantially increase its cell surface level (data not shown), indicating that only a small proportion of IL-27Rα was spontaneously shed from the cell surface, as commonly observed for cytokine receptors (24).

However, in activated CD4+ T cells, a small but significant increase of surface IL-27Rα was observed in cells treated with GM6001 or TAPI-0 (Fig. 4G, 4H).

sIL-27Rα binds rIL-27 and antagonizes IL-27 signaling

Former coimmunoprecipitation studies performed with a recombinant soluble extracellular form of IL-27Rα have shown that it could bind EB13p28 heterodimer, but not individual subunits (2). In addition, a recombinant soluble dimeric IL-27Rα-Fc fusion protein was reported to act as an inhibitor of IL-27 activity, whereas recombinant soluble gp130-Fc fusion protein had no effect (15, 25). Therefore, we verified that natural and presumably monomeric sIL-27Rα behaves similarly to the recombinant proteins and could bind IL-27 and inhibit its biological activity.

Immunoprecipitation of natural sIL-27Rα from concentrated supernatant of KMH2 cells in the presence of rIL-27 (100 ng per immunoprecipitate) resulted in co precipitation of rIL-27, but not of free EB13 naturally present at high levels in KMH2 supernatant (500 ng per immunoprecipitate) (Fig. 5A), consistent with the findings described above.

To investigate a potential inhibiting role of natural sIL-27Rα, we took advantage of the BL2 cell line that responds to low concentrations of IL-27. Titration experiments revealed that 2 ng/ml (33 pM) rIL-27 induced significant activation of STAT1, but not other STATs, in these cells. In this assay, preincubation of rIL-27 with IL-27Rα-Fc prior to cell stimulation resulted in a marked reduction of STAT1 activation in a dose-dependent manner, whereas preincubation with gp130-Fc had no effect, even at high doses, as expected (Fig. 5B). When used at higher concentrations (5 and 10 ng/ml), rIL-27 also activated STAT3 in BL2 cells. Interestingly, not only STAT1, but also STAT3 activation was inhibited when IL-27 was preincubated with either low (10 ng/ml) or high (200 ng/ml) doses of sIL-27Rα-Fc (Supplemental Fig. 1). This latter finding indicates that IL-27 complexed with its soluble receptor does not activate the gp130/STAT3 axis by trans-signaling, as has been described for IL-6/IL-6Rα complex (14).

Importantly, preincubation of rIL-27 with almost equimolar doses of purified natural sIL-27Rα (2 ng/ml, 22–29 pM) induced a 50% inhibition of STAT1 activation, whereas a complete inhibition was observed at 10 ng/ml (3- to 4-fold molar excess).
This inhibition was specific to IL-27, because preincubation of another STAT1-inducing cytokine, IFN-γ, with recombinant or natural sIL-27Rα did not inhibit STAT activation (Fig. 5D). Inhibition of IL-27 signaling by sIL-27Rα was most likely due to a competition effect and inhibition of IL-27 binding to its cell surface receptor. Flow cytometry experiments confirmed that preincubation of rIL-27 with natural sIL-27Rα inhibited IL-27 binding to BL2 cells (Fig. 5E). Taken together, these data indicate that natural sIL-27Rα is a potent and specific antagonist of IL-27.

Serum levels of sIL-27Rα are elevated in CD patients

Next, we investigated whether altered serum levels of sIL-27Rα could be observed under pathological conditions. We focused on CD, a Th1-associated granulomatous inflammatory bowel disease characterized by the accumulation of activated myeloid and CD4+ T cells and formation of epithelioid granulomas at the sites of disease. We previously showed that IL-27 is produced in situ by epithelioid granulomatous cells of CD patients (26). In addition, genetic studies identified IL-27 p28 as a candidate gene for CD susceptibility and suggested that dysregulated IL-27 expression could contribute to the pathology (27–29).

Analysis of sera from CD patients with active disease (n = 52) showed that serum levels of sIL-27Rα were significantly higher than those of healthy controls (Fig. 6A). In certain patients, values were up to 23-fold higher than the average value observed in controls. Similarly, serum IL-27 levels were higher (by 10-fold...
on average) in CD patients than in controls (Fig. 6B). Overall, a positive correlation was observed between serum levels of sIL-27Rα and IL-27 in CD patients (Fig. 6C). However, not all patients had a concomitant increase of IL-27 and sIL-27Rα levels, and the molar ratio between serum levels of IL-27 and sIL-27Rα was highly variable among patients, ranging from 0.01 to 20.6 (Fig. 6D).

Discussion

IL-27 is a potent immunoregulator that has drawn interest as a tool or a target for immunotherapy. Therefore, understanding the mechanisms by which IL-27 activity can be modulated is important. In this study, to our knowledge, we report the first evidence that the IL-27Rα component of the IL-27R complex exists naturally as a soluble form that antagonizes IL-27 activity.

We show that sIL-27Rα is spontaneously released from different human lymphoid and myeloid primary cell types and from cell lines and is present in the serum of healthy individuals. Immunoblot analysis of sIL-27Rα immunoprecipitates from culture supernatants or from human sera indicated that sIL-27Rα is produced as glycosylated proteins of ~90 and ~70 kDa that result from differential N-glycosylation. We demonstrated in in vitro experiments that natural sIL-27Rα can bind IL-27 and inhibits its signaling. Because preparations of purified sIL-27Rα contained both isoforms of sIL-27Rα, we do not know whether both isoforms are equally efficient at inhibiting IL-27 signaling. Of note, only a few fold molar excess of sIL-27Rα over IL-27 was sufficient to block IL-27 signaling. It should be noted that all in vitro experiments were performed using recombinant covalently linked EBI3-p28 heterodimer. Although we cannot exclude that the affinity of rIL-27 for sIL-27Rα might be different from that of natural IL-27, our results suggest that sIL-27Rα, at concentrations found in the sera of healthy individuals, could inhibit IL-27 activity.

IL-27 and its receptor are produced by different cell types. Whereas in normal conditions IL-27 is predominantly expressed by activated cells of the myeloid lineage, IL-27Rα is constitutively expressed by numerous immune on nonimmune cells. This non-overlapping spectrum of production may account for the non-correlated levels of IL-27Rα and IL-27 detected in sera from healthy individuals. In pregnant women, release of EBI3 and IL-27 by placental cells into maternal blood was not associated with increased levels of sIL-27Rα in the serum, suggesting that pla-
transfected COS7, KMH2 cells, and activated CD4 + does not express endogenous IL-27R α cDNA resulted in sIL-27R α membrane expression of IL-27R α production in the culture supernatant. Third, transfection of COS7, KMH2 cells, and activated CD4+ T cells, production of sIL-27R α was blocked by the addition of two hydroxamate-based metalloprotease inhibitors, GM6001 and TAPI-0. The fact that metalloproteases are involved in sIL-27R α production does not exclude, however, that sIL-27R α could be generated by alternative splicing in other cell types and/or under different conditions.

The specific metalloproteases involved in the cleavage of surface IL-27R α remain to be identified. Previous studies have shown that a given receptor is often cleaved by more than one metalloprotease (11). GM6001 is a broad spectrum inhibitor of matrix metalloproteases (MMP) that inhibits numerous MMPs and members of the ADAM (a disintegrin and metalloproteinase) family. Similarly, TAPI-0, a potent inhibitor of ADAM-17, inhibits other ADAM family members and several MMPs. Therefore, further investigation will be required to uncover the specific sheddase(s), ADAM-17 or others, responsible for IL-27R α cleavage.

IL-27R α shedding leads to release of an IL-27 antagonist and may also, by decreasing levels of cell surface IL-27R α, lower subsequent IL-27 response in producing cells. Production of sIL-27R α by activated cells can therefore constitute a negative feedback mechanism to dampen IL-27 effects in vivo. sIL-27R α may play a beneficial role in pathological settings characterized by excessive IL-27 production and response linked to the severity of the pathology such as psoriasis (30, 31). Conversely, in pathologies associated with defective IL-27 production/response such as asthma (32, 33), production of sIL-27R α by activated T cells may worsen the pathology.

Increased production of IL-27 has been observed in sarcoidosis, tuberculosis, CD, visceral leishmaniasis, psoriasis, rheumatoid arthritis, and cancer (26, 34–37). The exact role of IL-27 in CD remains to be elucidated. IL-27 can both promote and/or limit excessive Th1 response and inhibit Th17 cell differentiation, and, in murine studies of colitis, IL-27 has been associated with either promotion or attenuation of the disease, depending on the model (38–41). Interestingly, human genetics studies identified polymorphisms and epigenetic modifications in p28 locus, suggesting that dysregulated p28/IL-27 production may contribute to CD pathology (27–29). The elevated levels of IL-27 that we observed in the sera of CD patients most likely result from high levels of IL-27 production by epithelioid cells of granuloma. With respect to sIL-27R α, both activated T cells and epithelioid cells could contribute to its production. Further studies would be necessary to determine whether variable ratios between serum IL-27 and sIL-27R α levels may be indicative of different clinical features and outcome of disease.

Acknowledgments

We thank Hugues Gascan (Angers, France) for the gift of IL-27R α-V5-6His plasmid.

Disclosures

The authors have no financial conflicts of interest.

References

induced by latent Epstein-Barr virus infection in B lymphocytes. J. Virol. 70: 1143–1153.

