Staphylococcus aureus Infection of Mice Expands a Population of Memory γδ T Cells That Are Protective against Subsequent Infection

Alison G. Murphy, Kate M. O’Keeffe, Stephen J. Lalor, Belinda M. Maher, Kingston H. G. Mills and Rachel M. McLoughlin

J Immunol published online 12 March 2014
http://www.jimmunol.org/content/early/2014/03/12/jimmunol.1303420

Supplementary Material: http://www.jimmunol.org/content/suppl/2014/03/12/jimmunol.1303420.DCSupplemental

Subscription: Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription

Permissions: Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts: Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts

Errata: An erratum has been published regarding this article. Please see next page or: /content/194/9/4588.full.pdf
Staphylococcus aureus Infection of Mice Expands a Population of Memory γδ T Cells That Are Protective against Subsequent Infection

Alison G. Murphy,* Kate M. O’Keeffe,* Stephen J. Lalor,* Belinda M. Maher,* Kingston H. G. Mills,† and Rachel M. McLoughlin*

The development of vaccines against Staphylococcus aureus has consistently failed in clinical trials, likely due to inefficient induction of cellular immunity. T cell–derived IL-17 is one of the few known correlates of antistaphylococcal immunity, conferring protection against S. aureus infections through its ability to promote phagocytic cell effector functions. A comprehensive understanding of the discrete T cell subsets critical for site-specific IL-17–mediated bacterial clearance will therefore be necessary to inform the development of vaccines that efficiently target cellular immunity. In this study, we have identified a population of CD44+CD27− memory γδ T cells, expanded upon infection of C57BL/6 mice with S. aureus, which produce high levels of IL-17 and mediate enhanced bacterial clearance upon reinfection with the bacterium. These cells are comprised largely of the Vγ4+ subset and accumulate at the site of infection subsequent to an initial Vγ1L1+ and Vγ2+ T cell response. Moreover, these Vγ4+ T cells are retained in the peritoneum and draining mediastinal lymph nodes for a prolonged period following bacterial clearance. In contrast to its critical requirement for γδ T cell activation during the primary infection, IL-1 signaling was dispensable for activation and expansion of memory γδ T cells upon re-exposure to S. aureus. Our findings demonstrate that a γδ T cell memory response can be induced upon exposure to S. aureus, in a fashion analogous to that associated with classical αβ T cells, and suggest that induction of IL-17–expressing γδ T cells may be an important property of a protective vaccine against S. aureus. The Journal of Immunology, 2014, 192: 000–000.

*Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland; and †Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland

Received for publication December 23, 2013. Accepted for publication February 11, 2014.

This work was supported by a Wellcome Trust Research Career Development Fellowship (WT086515MA) and a Science Foundation Ireland Investigator Project Grant (12/1/P1532 to R.M.M.).

Address correspondence and reprint requests to Dr. Rachel M. McLoughlin, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland. E-mail address: rachel.mcloughlin@tcd.ie

The online version of this article contains supplemental material.

Abbreviations used in this article: cRPMI, complete RPMI; HMBPP, hydroxymethylbut-2-enyl-pyrophosphate; MLN, mediastinal lymph node; MOI, multiplicity of infection; MRSA, methicillin-resistant Staphylococcus aureus; PEC, peritoneal exudate cell; WT, wild-type.

Copyright © 2014 by The American Association of Immunologists, Inc. 0022-1767/14$16.00
for IL-17 in antistaphylococcal immunity. Therefore, identifying the cellular sources of this cytokine will be vital in the design of novel *S. aureus* vaccines that promote protective cellular immunity.

γδ T cells have recently been identified as a potent source of innate IL-17 and implicated in host protection in murine models of *S. aureus* infection. In a cutaneous infection model, γδ T cell–deficient mice had reduced neutrophil recruitment to the infection site and impaired bacterial clearance (15). γδ T cells were also shown to have a protective role in *S. aureus*–induced pneumonia through their capacity to produce IL-17 (14). We have recently shown to have a protective role in *S. aureus* infection (17). In humans, the number of circulating γδ T cells can increase dramatically upon microbial infection, in some cases reaching >50% of peripheral T cells within days of infection onset (27). Using a humanized chimeric SCID, it was demonstrated that phosphoantigen-activated human γδ T cells could mediate resistance to murine *S. aureus* infection (28). Traditionally, studies investigating the induction of cellular memory and its induction by vaccines have primarily focused on γδ T cells. A recent report, however, has demonstrated memory responses by γδ T cells in a model of Listeria enteric infection (29).

In this study, we demonstrate for the first time, to our knowledge, that γδ T cells are the predominant source of IL-17 during *S. aureus*–induced peritonitis. Interestingly, we have identified two waves of γδ T cell infiltration into the peritoneal cavity, characterized by distinct subsets. Initially, a rapid influx of Vγ1.1 and Vγ2 cells (Garman nomenclature) was replaced later by a Vγ4–dominant response. In a novel model of recurrent peritonitis, these Vγ4+ T cells were expanded for a prolonged period and responded more vigorously through IL-17 production during subsequent *S. aureus* infection, which was associated with enhanced protection. Induction of this IL-17 response by memory γδ T cells was not dependent on IL-1 signaling, in contrast to its critical requirement for IL-17 production by γδ T cells in naive mice. Furthermore, transfer of *S. aureus*–primed γδ T cells conferred protection against *S. aureus* infection in naive mice. Our findings demonstrate that a γδ T cell memory response can be induced upon exposure to *S. aureus*, in a fashion analogous to that associated with the classical γδ T cells of adaptive immunity, and suggest that induction of IL-17–expressing γδ T cells may be an important property of a protective vaccine against *S. aureus*.

Materials and Methods

Mice

Age- and sex-matched wild-type (WT) C57BL/6 and IL-1R−/− (6–8 wk old) were housed under specific pathogen-free conditions at the Trinity College Dublin Bioresources facility. All mice were maintained according to European Union regulations, and experiments were performed under license from the Irish Department of Health and Children and with approval from the Trinity College Dublin Biore sources Ethics Committee.

Bacteria

S. aureus strain PS80 is a capsular polysaccharide 8–expressing strain and has been described previously (30). Staphylococci were cultivated from frozen stocks for 24 h at 37°C on Columbia agar supplemented with 2% NaCl. Bacterial suspensions were prepared in sterile PBS and adjusted to 5 × 10⁹ CFU/ml by measuring the OD of solutions at 600 nm. CFUs were verified by plating serial dilutions of each inoculum onto tryptic soy agar.

S. aureus–induced peritonitis

Mice were exposed to *S. aureus* by i.p. injection of 100 µl bacterial suspension (5 × 10⁹ CFU). The recurrent peritonitis model involved repeated exposure to *S. aureus* via i.p. injection on days 0, 7, and 14 before mice were allowed to recover for 21 d. On day 35, the previously exposed, infection-free mice received an i.p. challenge of *S. aureus* (5 × 10⁹ CFU), in addition to a group of naive mice that had not previously been exposed to *S. aureus*. At specific time points postchallenge, mice were sacrificed and systemic infection levels and immune responses assessed. Peritoneal exudate cells (PECs) were isolated from infected mice by lavage of the peritoneal cavity with 2 ml sterile PBS. The lavage fluid was centrifuged, supernatants stored at –20°C for subsequent cytokine analysis, and PECs resuspended in complete RPMI (RPMI 1640; BioRe; 10% FCS; BioRe; 100 mM L-glutamine; Life Technologies; and 100 µg/ml penicillin/streptomycin; Life Technologies). The draining mediastinal lymph nodes (MLN) were isolated and disrupted over 40-µm filters to obtain single-cell suspensions. Erythrocytes were lysed using 0.87% ammonium chloride and cells washed and resuspended in cRPMI. Kidneys, livers, and spleens were isolated in 3 ml sterile PBS. Tissues were homogenized in 3 ml sterile PBS. Tissues were homogenized in 3 ml sterile PBS. Tissues were then incubated with Fcγ receptor block before surface staining with Abs specific for each cell subset (Beckman Coulter [DakoCytomation] MoFlo Cell Sorter). Some experiments were carried out in the presence or absence of anti–IL-1RI mAb (R&D Systems; 4 or 1 µg/ml) or anti–IL-23R mAb (R&D Systems; 1 µg/ml).

ELISA

ELISAs for IL-1α, IL-1β, IL-17, and IL-23 (R&D DuoSet; R&D Systems) were performed on cell culture or peritoneal supernatants, as per the manufacturer’s instructions. IL-18 ELISAs were performed with anti–IL-18 Abs specific for each cell subset (BioLegend; clone TGAT-3) and reverse 5′–TGCCTCTGGGGTTTTT-3′. ELISAs for IL-18 were performed with anti–IL-1RI mAb (R&D Systems; 4 or 1 µg/ml) or anti–IL-23R mAb (R&D Systems; 1 µg/ml).

Flow cytometry

PEC and MLN cells were incubated in the presence of brefeldin A (Sigma-Aldrich) for 4 h at 37°C and 5% CO₂ to block cytokine secretion. Cells were then incubated with Fcγ receptor block before surface staining with fluorochrome-conjugated Abs against CD3 (BD Biosciences; clone UCH1), CD4 (BD Biosciences; clone RPA-T1), and CD8 (BD Biosciences; clone RPA-T8). Fluorescence minus ones. Data were acquired into flow cytometry using the murine Pan T Cell Isolation Kit II (Miltenyi Biotec), followed by FACS sorting of γδ T cells using Abs specific to the γδ TCR (Beckman Coulter [DakoCytomation] MoFlo Cell Sorter). Some experiments were carried out in the presence or absence of anti–IL-1RI mAb (R&D Systems; 4 or 1 µg/ml) or anti–IL-23R mAb (R&D Systems; 1 µg/ml).

Amplification of the Vγ4 gene in purified Vγ1.1+ Vγ2+ cells

Purified subsets of γδ T cells were obtained by negative selection of CD3+ T cells isolated from the peritoneal cavity and the MLN of mice 3 h post– *S. aureus* infection. The MLN and peritoneal washes were allowed to recover for 21 d. On day 35, the previously exposed, infection-free mice received an i.p. challenge of *S. aureus* (5 × 10⁹ CFU), in addition to a group of naive mice that had not previously been exposed to *S. aureus*. In the presence or absence of anti–IL-1RI mAb (R&D Systems; 4 or 1 µg/ml) or anti–IL-23R mAb (R&D Systems; 1 µg/ml) exposure to *S. aureus*. In the presence or absence of anti–IL-1RI mAb (R&D Systems; 4 or 1 µg/ml) or anti–IL-23R mAb (R&D Systems; 1 µg/ml).
Adoptive transfer of S. aureus–primed γδ T cells

Purified γδ T cells were obtained by negative selection of CD3+ T cells from the peritoneal cavity of S. aureus–exposed mice on day 35 (i.e., 21 d after the final exposure to S. aureus) using the murine Pan T Cell Isolation Kit II (Miltenyi Biotec), followed by FACS of γδ T cells using Abs specific to the γδTCR (Beckman Coulter [DakoCytometry] MoFlo Cell Sorter). CD3-γδ+ or CD3-γδ- γδ T cells were injected i.p. to naive mice (1 × 10^6 cells/mouse). At 3 h posttransfer, mice received an i.p. injection of S. aureus (5 × 10^10 CFU). At 72 h postinfection, the peritoneum was lavaged and the kidney, spleen, and liver isolated to determine bacterial burden as previously described.

Statistical analysis

Statistical analyses were performed using GraphPad Prism (GraphPad) statistical analysis software. Differences between groups were analyzed by unpaired Student t test or a one-way ANOVA with Tukey posttest where p value <0.05 was considered significant.

Results

γδ T cells are the major source of IL-17 during S. aureus–induced peritonitis

It is widely accepted that IL-17 plays a protective role during S. aureus infections (15, 17, 23, 24, 32). An identification of the source of IL-17 at different sites of infection is crucial for the generation of vaccines that will induce protective cellular immunity. Hence, we investigated IL-17 expression in a systemic S. aureus infection model induced as a consequence of peritonitis, which involves the peritoneal cavity, WT and IL-1RI−/− mice were infected with S. aureus (5 × 10^8 CFU) via a single i.p. injection. At 3 h postinfection, PEC were isolated and IL-17 production by γδ T cells assessed. The total number of γδ T cells recruited to the peritoneal cavity was comparable in both S. aureus–infected WT and IL-1RI−/− mice (Supplemental Fig. 1C). However, IL-17 production by these γδ T cells was abrogated in the IL-1RI−/− mice (Fig. 1F, Supplemental Fig. 1D), demonstrating a critical role for IL-1 signaling in the early induction of IL-17 by γδ T cells during S. aureus–induced peritonitis. The concentrations of secreted IL-23, another cytokine reported to drive innate production of IL-17 by γδ T cells (34), were generally low following S. aureus challenge and did not significantly differ between WT and IL-1RI−/− mice (data not shown).

Differential recruitment of γδ T cell subsets over the course of peritoneal infection

Individual γδ T cell subsets are often associated with tissue-specific homing and functions (35). To characterize the γδ T cell subsets responsible for IL-17 production during S. aureus–induced peritonitis, mice were infected with S. aureus (5 × 10^8 CFU) via i.p. injection and PEC and MLN cells isolated at various time points postinfection. Flow cytometric analysis of PEC 1 h post–S. aureus infection revealed that the γδ T cell population consisted primarily of Vγ1.1+ T cells and Vγ2+ T cells (Fig. 2A, 2B). By 3 h postinfection, a population of Vγ1.1+ Vγ2+ cells had also accumulated in the peritoneal cavity. Vγ3+ cells were almost undetectable in the peritoneal cavity by flow cytometry (0.6 ± 0.2 Vγ3+ γδ T cells). Based on previous studies, therefore, we hypothesized that peritoneal Vγ1.1+ Vγ2+ cells were in fact Vγ4 cells, for which no fluorochrome-conjugated Ab is commercially available. To confirm this, we PCR-amplified cDNA from FACS-sorted Vγ1.1+ Vγ2+ PEC and MLN cells. Gel electrophoresis of the amplimers indicates that the Vγ1.1+ Vγ2+ cells were indeed Vγ4+ cells (Supplemental Fig. 1E). Furthermore, the translated sequence of the amplified DNA, excised from the gel, aligned with the Vγ4 protein sequence confirming that the Vγ1.1+ Vγ2− cells were Vγ4+ cells (Supplemental Fig. 1F). These cells are therefore referred to as Vγ4 cells in the figure and throughout the remainder of this study.

Intracellular cytokine staining of PEC at 3 h postinfection and cultured with brefeldin A, but without PMA and ionomycin stimulation, revealed that IL-17 was exclusively produced by CD3+ T cells. Moreover, γδ T cells were the primary source of IL-17, whereas few CD4+ and CD8+ T cells expressed IL-17 at this stage (Fig. 1B). IL-17–producing T cells were also detected in the draining MLN during S. aureus infection. Again, γδ T cells comprised the major source of IL-17, although significantly fewer cells were cytokine positive in the lymphoid tissues (Fig. 1C). Peritoneal and MLN γδ T cells from PBS-injected mice, cultured with brefeldin A, did not produce IL-17 (Fig. 1B–E). In addition, we did not detect any IFN-γ production by γδ T cells isolated from S. aureus–infected mice (Supplemental Fig. 1A).

The frequency of IL-17–producing γδ T cells was significantly elevated in the peritoneal cavity of S. aureus–infected mice as early as 1 h postinfection, compared with naive mice (time 0), and continued to increase up to 3 h postinfection (Fig. 1D). By 24 h postinfection, peritoneal γδ T cells had ceased to produce IL-17. In some mice, a second wave of IL-17–producing γδ T cells appeared in the peritoneal cavity by 72 h postinfection (Fig. 1D, Supplemental Fig. 1B), which had subsided by 5 d postinfection (data not shown). This second phase of IL-17+ γδ T cell accumulation was not detected in the MLN, in which the frequency of these cells was comparable to the PBS-treated controls by 12 h postinfection (Fig. 1E). This biphasic course of IL-17 production may represent the recruitment of an alternative subset of γδ T cells at this stage of the infection or the expansion of a γδ T cell subset resident within the peritoneal cavity.

We and others have previously reported that IL-17 production by γδ T cells during S. aureus infection is IL-1β dependent (17, 33). To confirm a role for IL-1 signaling in regulating IL-17 production by γδ T cells in the peritoneal cavity, WT and IL-1RI−/− mice were infected with S. aureus (5 × 10^8 CFU) via a single i.p. injection. At 3 h postinfection, PEC were isolated and IL-17 production by γδ T cells assessed. The total number of γδ T cells recruited to the peritoneal cavity was comparable in both S. aureus–infected WT and IL-1RI−/− mice (Supplemental Fig. 1B), which had subsided by 5 d postinfection (data not shown).

The Journal of Immunology is a peer-reviewed journal that publishes high-quality original research articles in the field of immunology. The image provided is a scanned page from a journal article, and the text contains scientific research and analysis related to immunology. The content includes descriptions of experimental procedures, statistical analysis, and results, which are typical of research articles in this field.
a shift in the dominant γδ subsets present. Recruitment of Vγ4+ T cells appeared to be specific to the site of infection, as only the Vγ1.1+ population was expanded in the MLN at 72 h postinfection (Fig. 2C).
Prior exposure to S. aureus preferentially expands a population of Vγ4+ T cells capable of enhanced IL-17 production during subsequent infection

Our results demonstrate that during the course of S. aureus infection, there is a shift in the composition of γδ T-cells from primarily Vγ1.1+ and Vγ2+ cells in the acute phase of infection to Vγ1.1+ and Vγ4+ cells during later stages of infection. The Vγ4+ cells may represent a primed γδ subset capable of responding to subsequent S. aureus infection. To test this hypothesis, groups of mice were repeatedly exposed to S. aureus (5 × 10^8 CFU i.p. on days 0, 7 and 14) and allowed to clear the infection (<1 log CFU/ml in peritoneal cavity, 21 d post–final exposure). At this stage, flow cytometric analysis revealed the persistence of a significantly higher number of γδ+ T-cells, as well as their frequency among total CD3+ T-cells, in the peritoneal cavity of previously exposed mice, compared with naive mice (Fig. 3A). A small but significant increase in both the frequency and absolute number of γδ+ T cells was also observed in the MLN at this stage (Fig. 3D). Crucially, in the absence of PMA and ionomycin stimulation, γδ T cells from previously exposed mice did not produce IL-17 (Fig. 3E), and secreted levels of IL-17 protein were undetectable in the peritoneal lavage fluid (data not shown).

Upon recovery (21 d post–final exposure) mice were rechallenged by i.p. injection of S. aureus (5 × 10^8 CFU), as were a group of naive mice as a control. At specific time points post-challenge, bacterial burden was assessed and PEC and MLN cells isolated to characterize the subsets of γδ T cells responsible for IL-17 production. Bacterial clearance from the peritoneal cavity and peripheral organs was significantly greater in mice previously exposed to S. aureus compared with naive mice (Fig. 4A, Supplemental Fig. 2A). Enhanced bacterial clearance was associated with increased IL-17 secretion in the peritoneal cavity of previously exposed mice 1 and 3 h postchallenge (Fig. 4B). Notably, prior exposure to S. aureus did not induce the expansion of CD4+IL-17+ (Th17) or CD8+IL-17+ cells in either the peritoneum or the MLN (Fig. 4C, Supplemental Fig. 2B). Conversely, elevated peritoneal IL-17 was associated with a significant increase in the both the frequency and total number of IL-17–producing γδ T cells in the peritoneal cavities of previously exposed mice, compared with naive mice (Fig. 5A, 5B). This effect was not strain specific.
because in mice recurrently infected and subsequently rechallenged with an alternative \textit{S. aureus} strain, SH1000 (36, 37), an increase in IL-17 production by $\gamma\delta$ T cells in the peritoneal cavity was also observed (11.1 \pm 1.1 versus 31.7 \pm 4.7% IL-17 + $\gamma\delta$ cells respectively; n = 5/group). Analysis of the individual $\gamma\delta$ T cell subsets revealed an increase in IL-17 expression by all subsets at both 1 and 3 h postinfection, particularly IL-17 production by the $\text{V}_{\gamma}4^+$ population (Fig. 5C, Supplemental Fig. 2C). A similar increase in IL-17 expression by $\gamma\delta$ T cells was observed in the MLN of previously exposed mice (Supplemental Fig. 3A, 3B), including a significant increase in the number of $\text{IL-17}^+\text{V}_{\gamma}4^+$ T cells, 3 h postinfection (Supplemental Fig. 3C). A small but significant increase in the frequency and number of IL-17–producing $\gamma\delta$ T cells was also detected in the spleens of previously exposed mice 3 h postinfection (Supplemental Fig. 3D).

Expression of the TNFR family molecule CD27 has been reported to distinguish IFN-γ–producing (CD27 +) from IL-17–producing (CD27 $^-$) $\gamma\delta$ T cells (38). CD27 expression was initially thought to differentiate Ag-experienced (CD27 $^+$) $\gamma\delta$ T cells from Ag-naive $\gamma\delta$ T cells (39, 40). However, a recent study identified a population of memory $\gamma\delta$ T cells that expressed high levels of the effector memory marker CD44 and yet were CD27 $^-$ and produced high levels of IL-17 (29). In the current study, IL-17–producing $\gamma\delta$ T cells present in the peritoneal cavity of \textit{S. aureus}–infected naive and previously exposed mice were also found to express a CD27$^-$CD44hi phenotype (Fig. 5C, 5D). Taken together, these results suggest that exposure to \textit{S. aureus} results in the generation of a population of primed $\gamma\delta$ T cells, predominantly of the $\text{V}_{\gamma}4$ subset, that are capable of enhanced IL-17 production and associated bacterial clearance upon subsequent infection with the organism.

Enhanced IL-17 expression by $\gamma\delta$ T cells upon secondary exposure to \textit{S. aureus} is not a result of increased innate cytokine signaling

During \textit{S. aureus} infection in naive mice, IL-17 production by peritoneal $\gamma\delta$ T cells was critically dependent upon IL-1 signaling (Fig. 1A, 1F). Hence, we investigated the effects of prior exposure to \textit{S. aureus} on innate cytokine production in the peritoneal cavity. Despite significantly enhanced IL-17 secretion upon reinfection of previously exposed mice, compared with infection of naive mice (Fig. 4B), no difference in IL-1α or IL-23 secretion was detected (Supplemental Fig. 4). IL-1α and IL-18, which can also stimulate IL-17 production by $\gamma\delta$ T cells (41), were undetectable in the

FIGURE 3. Elevated frequency of $\text{V}_{\gamma}4^+$ cells in mice previously exposed to \textit{S. aureus}. Groups of mice were exposed to \textit{S. aureus} (5×10^8 CFU) via i.p. injections on days 0, 7, and 14. Following recovery on day 35, isolated PEC and MLN cells were cultured with brefeldin A, but not PMA and ionomycin, stained for surface CD3, $\gamma\delta$TCR, $\text{V}_{\gamma}1.1$, $\text{V}_{\gamma}2$, and $\text{V}_{\gamma}3$ and intracellular IL-17, and analyzed by flow cytometry. $\gamma\delta$ T cell frequencies among peritoneal (A) and MLN CD3$^+$ T cells (B) and total numbers are shown. The V_{γ} subsets comprising the $\gamma\delta$ T cell population in the peritoneal cavity (C) and MLN (D) at this stage were examined. IL-17 expression by $\gamma\delta$ T cells from naive or previously exposed mice was compared (E). Results expressed as mean \pm SEM of n = 8 mice/group. Data are representative of two independent experiments. *$p < 0.05$, **$p < 0.005$, ***$p < 0.001$. Exp, exposure.
peritoneal cavitites of either naive or prior exposed mice following S. aureus infection (data not shown). Microbial colonization has been shown to increase the expression of IL-1RI on the surface of IL-17–producing γδ T cells, leading to increased IL-17 production in response to IL-18 signaling (42). However, we did not detect any difference in the mean fluorescence intensity of IL-1RI expression on peritoneal IL-17+ γδ T cells between previously exposed and naive mice at 1 and 3 h postchallenge (Fig. 6A). A similar pattern was observed in the MLN (data not shown). These findings suggest an alternative mechanism for the enhanced IL-17 expression by S. aureus–primed γδ T cells compared with the IL-1–dependent expression observed during acute infection.

To further investigate the mechanisms responsible for enhanced IL-17 production by γδ T cells following prior exposure to S. aureus, we cultured γδ T cells from naive or previously exposed mice that were infection free (21 d post–final exposure to S. aureus) with peritoneal macrophages infected with S. aureus (MOI 1:10). Following 18 h of culture, IL-17 expression by γδ T cells was assessed by flow cytometric analysis and IL-17 secretion into the supernatants measured by ELISA. When compared with γδ T cells from naive mice, γδ T cells isolated from mice previously exposed to S. aureus produced significantly more IL-17 when cocultured with S. aureus–infected macrophages (Fig. 6B, 6C). S. aureus–primed γδ T cells appeared to be exclusively IL-17 producing, as no IFN-γ production was detected in the culture supernatants (data not shown). Moreover, macrophages stimulated with S. aureus alone, in the absence of γδ T cells, did not produce any IL-17 (data not shown). To determine the role of innate cytokines in the secondary response of S. aureus–primed γδ T cells, blocking Abs to both IL-1RI and the IL-23R were added to the cocultures. Blockade of IL-1RI at the higher concentration of Ab (4 μg/ml) resulted in complete abrogation of IL-17 secretion by γδ T cells from naive mice (Fig. 6B, 6C). Conversely, blockade of IL-1RI, using either concentration of Ab, only partially reduced IL-17 production by previously exposed γδ T cells, and this reduction was not significant (Fig. 6B, 6C). IL-23R blockade had no effect on IL-17 production by either naive or prior-exposed γδ T cells (Fig. 6B). Taken together, our in vitro and in vivo data demonstrate differential requirements for innate IL-1 signaling in the IL-17–mediated response to S. aureus infection by primed γδ T cells and those from naive mice.

Adoptive transfer of S. aureus–primed γδ T cells protects against subsequent infection

Our results demonstrate an accumulation of Vγ4 T cells in the peritoneal cavity as a result of S. aureus exposure. Upon re-exposure to the bacterium, these Vγ4 cells contribute substantially to the augmented IL-17 response observed in previously exposed mice, which was associated with increased bacterial clearance (Fig. 4A, Supplemental Fig. 2). To confirm a direct role for primed γδ T cells in protection against S. aureus infection, we transferred 1 × 10^5 S. aureus–primed γδ T cells, purified from mice previously exposed to S. aureus, 21 d following the final exposure to S. aureus (i.e., day 35), to naive syngeneic hosts. Prior to transfer, purified S. aureus–exposed γδ T cells primarily consisted of the Vγ4 subset (>90% Vγ4⁺; data not shown). A total of 1 × 10^5 γδ T cell–depleted CD3⁺ T cells (i.e., CD3⁺γδ⁻ cells) isolated from the same mice previously exposed to S. aureus were transferred to a separate group of naive mice as a control. Three hours posttransfer, mice were challenged by i.p. injection of S. aureus (5 × 10^8 CFU). At 72 h postinfection, the bacterial burden at the local site of infection was assessed, as well as dissemination of the bacteria to peripheral sites.

Transfer of S. aureus–primed γδ T cells significantly reduced bacterial burden in the peritoneal cavity (the site of infection), compared with mice that received primed CD3⁺ T cells depleted of γδ T cells (Fig. 7). Dissemination of bacteria to the kidneys and liver was also reduced in recipients of S. aureus–primed γδ T cells, compared with controls. These results demonstrate an important protective role for S. aureus–primed γδ T cells, specifically Vγ4⁺ cells, which display enhanced IL-17 production upon subsequent exposure to the bacterium.
Discussion

Our study demonstrates for the first time, to our knowledge, that exposure to *S. aureus* can prime a subset of IL-17–producing γδ T cells that are capable of protecting against a subsequent staphylococcal infection. Previous studies have established that IL-17 plays an important role in immune protection against *S. aureus* infection both in humans (23, 24) and animal models (15, 32), with γδ T cells identified as the primary source of innate IL-17 in models of acute *S. aureus*–induced pneumonia, cutaneous infection, and surgical site infection (14, 15, 17). In this study, we have identified a population of *S. aureus*-primed γδ T cells that exhibit a more rapid expansion and clearance of infection than in the primary response and, in a manner similar to the memory response of conventional αβ T cells, are capable of conferring protection against *S. aureus* upon transfer to naive mice. Furthermore, we demonstrate the redundancy of IL-1 signaling in the IL-17–mediated secondary response of memory γδ T cells to *S. aureus* infection, compared with its critical requirement by γδ T cells in...
naive mice. These findings reveal that γδ T cells are an important source of IL-17 in adaptive immunity to S. aureus and indicate that targeting the induction of nontraditional lymphocytes such as specific subsets of γδ T cells that secrete IL-17, one of the few known correlates of antistaphylococcal immunity, could significantly benefit future anti–S. aureus vaccine design.

Employing a model of S. aureus–induced peritonitis, we demonstrate the rapid recruitment of IL-17–producing γδ T cells were to the peritoneal cavity, accumulating in significant numbers as early as 1 h postinfection. IL-17–producing γδ T cells were also detected in the MLN, the primary draining lymph node for the peritoneal cavity (43, 44). The rapid response to S. aureus infection is characteristic of the innate-like function of γδ T cells. However, we also observed the γδ T cell response adapt to S. aureus infection over time. At 1 h postinfection, Vγ1.1+ and Vγ2+ cells comprised the majority of γδ T cells recruited to the site of infection; however by 72 h, a large population of Vγ4+ cells had accumulated in the peritoneal cavity. Moreover, in a novel model of recurrent peritonitis, we found that this composition of γδ T cells was maintained up to 3 wk after final exposure to the bacterium. Significantly, these Vγ4+ T cells were maintained in the peritoneal cavity and the MLN in the absence of bacteria.

Differential expression of Vγ and/or Vδ chains is used to categorize γδ T cell subsets, which often display tissue-specific homing and distinct cytokine profiles (35). Vγ1.1+ cells have been reported to produce IL-17 in Aspergillus-infected mice with chronic granulomatous disease (45), but are traditionally thought to be more anti-inflammatory, with depletion studies indicating increased

FIGURE 6. IL-1R or IL-23R signaling is dispensable for the secondary IL-17 response of primed γδ T cells in vitro. Groups of mice were exposed to S. aureus (5 × 10⁸ CFU) via i.p. injections on days 0, 7, and 14. Mice were allowed to recover for 21 d before being rechallenged with S. aureus (5 × 10⁸ CFU) on day 35, as were a control group of naive mice. PEC were cultured with brefeldin A, but not PMA and ionomycin, stained for surface CD3, γδTCR, and IL-1RI expression and intracellular IL-17, and analyzed by flow cytometry (A). Results expressed as mean ± SEM for n = 9 mice/group. Data are representative of two independent experiments. γδ T cells purified (>98% pure) from previously exposed or naive mice were cocultured overnight with S. aureus–infected macrophages (MOI 1:10), in the presence or absence of mAbs to IL-1RI (4 or 1 μg/ml) or IL-23R (1 μg/ml). Uninfected macrophages were used as a control. IL-17 concentration in supernatants was quantified by ELISA (B). Results expressed as mean ± SEM for n = 4 to 5 replicates/group. Cells were incubated with brefeldin A, but not PMA and ionomycin, stained for surface CD3 and γδTCR and intracellular IL-17, and analyzed by flow cytometry (C). Data are representative of four to five independent experiments. *p < 0.05. MFI, mean fluorescence intensity.
after the final exposure to *S. aureus* (pure) from the peritoneum of *S. aureus* gd naive mice against subsequent infection.

FIGURE 7. Adoptively transferred 10^9 *S. aureus*–primed T cells protect naive mice against subsequent infection. γδ T cells were purified (>98% pure) from the peritoneum of *S. aureus*–infected mice on day 35 (i.e., 21 d after the final exposure to *S. aureus*) and 1×10^8 cells transferred i.p. to naive syngeneic hosts. A total of 1×10^7 γδ T cell–depleted CD3+ T cells (i.e., CD3+γδ− cells) isolated from the same mice previously exposed to *S. aureus* were transferred to a separate group of naive mice as a control. Three hours posttransfer, mice were infected with *S. aureus* i.p. (5 $\times 10^8$ CFU). At 72 h postinfection, bacterial burden was assessed in the peritoneal cavity, kidneys, and liver. Results are expressed as log CFU/ml of organs.*p < 0.05, **p < 0.005.

Inflammatory responses to infection with *Listeria monocytogenes* (46) and coxsackievirus B3 infection (47). Conversely, Vγ2+ cell depletion led to reduced inflammatory responses in both of these models (46, 47). Moreover, these same proinflammatory Vγ2+ cells appear to be pathogenic in autoimmune models and were identified as the predominant γδ T cell subset infiltrating the CNS of mice with experimental autoimmune encephalomyelitis and the joints of mice with collagen-induced arthritis (34, 48). Vγ4+ cells contribute to the clearance of bacterial infections such as *L. monocytogenes* (49), *Bacillus subtilis* (50), and *Escherichia coli*, in which IL-17–producing Vγ4+Vδ1+ T cells control the early recruitment of neutrophils (20, 51, 52).

Human γδ T cells, like αβ T cells, are capable of Ag recall and can recognize a bacterial Ag upon re-exposure to the organism, allowing for a more rapid and efficient immune response (53–56). In nonhuman primate models, phosphoantigen-specific Vγ2+Vδ2+ γδ T cells have been shown to exhibit Ag-specific responses during mycobacterial infection (54). Vγ2+Vδ2+ cells, the predominant subset present in human blood, recognize metabolites from isoprenoid synthesis. One such phosphoantigen, hydroxymethyl-butyryl-phosphatidylcholine (HMBPP) is a potent stimulator of Vγ2+Vδ2+ cells (27) and is produced during infections with *E. coli*, *L. monocytogenes*, and *Mycobacterium tuberculosis* (57, 58). Although HMBPP is not produced by *S. aureus*, transfer of HMBPP-activated γδ T cells was protective against *S. aureus* infection in SCID mice (28).

Murine γδ T cells resembling adaptive αβ T cells and bearing the characteristics of pathogen-specific human γδ T cells have recently been identified in a model of *L. monocytogenes* infection (29). In that study, a population of CD27−CD44+ memory γδ T cells were induced in response to a secondary infection via the oral mucosal route, but not the systemic route, suggesting that mucosal priming plays a key role in the expansion of memory γδ T cells in that model. Critically, this was associated with enhanced protection against secondary infection with listeria but not *Salmonella typhimurium*. The authors further demonstrated that the memory γδ T cell population comprised predominantly of Vγ4+Vδ1+ cells. These cells were retained long term and produced elevated levels of IL-17 and IFN-γ upon secondary oral infection, largely in an MHC class II–dependent manner. Similarly, Roark et al. (59) demonstrated high levels of CD44 expression on a population of effector memory Vγ4+Vδ1+ cells. These studies suggest that pathogen-specific murine γδ T cells are capable of generating protective memory.

In the current study, *S. aureus*–primed CD27−Vγ4+ γδ T cells were also CD44hi and displayed enhanced cytokine production upon re-exposure to *S. aureus* both in vivo and in vitro, reflecting an effector memory phenotype. In our *S. aureus*–induced peritonitis model, however, CD27−Vγ4+ T cells secreted only IL-17, and not IFN-γ as reported by Sheridan et al. (29). This polarized cytokine expression profile was evident in both the primary infection model and upon rechallenge and is consistent with the reported thymic imprinting of γδ T cells, which was found to be stable even during infection with *Plasmodium berghei* (38).
Consistent with previous studies (15, 17), we found that IL-1β was indispensable for IL-17 production by γδ T cells during \textit{S. aureus}–induced peritonitis in naive mice. Similarly, IL-1R blockade with an mAb abrogated IL-17 production by γδ T cells from naive mice, in coculture studies with \textit{S. aureus}–infected macrophages in vitro. In contrast, \textit{S. aureus}–primed γδ T cell secretion of IL-17, which was significantly elevated compared with that produced by γδ T cells from naive mice, was independent of IL-1R signaling. Moreover, IL-1R expression on peritoneal γδ T cells did not differ from that seen on γδ T cells encountering \textit{S. aureus} for the first time. As IL-23R signaling was not critical for IL-17 expression by γδ T cells in naive or prior-exposed mice, and IL-1α and IL-1β were undetectable in the peritoneal cavity of both groups of mice, we hypothesize that these primed γδ T cells are in fact memory cells capable of rapid recall of staphylococcal Ags upon re-exposure. Interestingly, preliminary experiments by our group indicate that inhibition of MHC class II signaling interferes with the ability of memory γδ T cells to respond to Ag stimulation (A.G. Murphy and R.M. Mcloughlin, unpublished observations). This is consistent with the recent data published by Sheridan et al. (29), and further investigation into these mechanisms is warranted.

A memory response specifically by primed γδ T cells, and not CD3ε or CD8 T cells (which did not produce IL-17 upon re-exposure to \textit{S. aureus}), was confirmed by the demonstration that adoptive transfer of γδ T cells, but not CD3ε–γδ T cells, from the peritoneum of mice infected with \textit{S. aureus} conferred protection to naive mice against challenge with \textit{S. aureus}. The enhanced clearance of bacteria from the peritoneum also resulted in reduced dissemination to peripheral sites, including the kidneys and liver of γδ T cell recipient mice.

γδ T cells occupy a unique niche in the immune system due to their polyphagetic effector functions, their capacity to recognize distinct phosphoantigens and their preferential localization at mucosal sites, all of which support a prominent role for γδ T cells in anti-microbial immunity. Indeed, in a rare variant of SCID that lacks conventional T cells and B cells in naive or prior-exposed mice, and is characterized by the absence of conventional αβ T cells and increased numbers of γδ T cells, patients display normal Ab production and can respond effectively to vaccinations against diphtheria (60). This highlights the capacity of γδ T cell recall responses even in the absence of conventional αβ T cell help. Moreover, vaccines targeting γδ T cells have shown efficacy in West Nile virus infection, in which administration of α-glucans known to promote γδ T cell expansion resulted in attenuated viremia and mortality following lethal infection (61). γδ T cells are also currently being targeted in novel anticancer vaccines. In these studies, autologous Vγ9Vδ2+ cells were activated and expanded by phosphoantigen stimulation in vitro and then infused back into the patients, where they have been found to kill transformed cells (62).

This study significantly advances our understanding of the cellular immune response to \textit{S. aureus}, identifying a subset of IL-17–producing γδ T cells that undergo rapid expansion following infection. Furthermore, these IL-17–secreting memory γδ T cells confer protective immunity following re-exposure to \textit{S. aureus}. Future studies are now required to identify the specific staphylococcal Ags recognized by γδ T cells. \textit{S. aureus} is of course a human pathogen, and there are differences between human and mouse γδ T cells. Therefore, studies in humans will be necessary to validate these findings from murine models. If IL-17–secreting memory γδ T cells are induced and found to have a role in anti-staphylococcal immunity in humans, these cells represent a potentially important and novel target for the rational design of future vaccines against \textit{S. aureus}.

Acknowledgments

We thank Barry Moran for assistance with cell sorting.

Disclosures

K.H.G.M. is a cofounder of and shareholder in Opsona Therapeutics Ltd. and TriMod Therapeutics Ltd., university startup companies involved in the development of immunotherapeutics.

References

42. Duan, J., H. Chung, E. Troy, and D. L. Kasper. 2010. Microbial colonization drives expansion of IL-1 receptor-expressing and IL-17-producing gamma/ delta T cells. Cell Host Microbe 7: 140–150.
Corrections

In Supplemental Fig. 1F, sequencing analysis of our PCR-amplified cDNA from FACS-sorted Vγ1.1−Vγ2− cells had shown 100% homology to the National Center for Biotechnology Information’s reference sequence of the Vγ4 gene (National Center for Biotechnology Information reference sequence NG_007033.1 [12827–12920, 13077–13388]) at nucleotides 13081–13310. We translated this nucleotide sequence to the amino acid sequence AVSRHLWGHMSSRGKEIRLFSNVKKQVFRSPMHTYGTKRSQASVSKECCVVLQKKTL in a 5′–3′ reading frame.

In our error, we compared the alignment of a reading frame that covered a stop codon. An alternate 5′–3′ reading frame correctly predicts the protein sequence, identified as A0A075B5Y8 on the UniProt Web site (http://www.uniprot.org/), where Vγ4 is referred to as Vγ6 using Heilig and Tonegawa’s nomenclature. Using CLUSTALW software, realignment of the translated amino acid sequence of our amplified cDNA obtained in this reading frame against the FASTA-formatted Vγ4 reference sequence (above) gives an alignment score of 100, and confirms that the V-γ1.1−Vγ2− cells we have identified are Vγ4+ T cells. A corrected Supplemental Fig. 1F has already been published online. The supplemental material therefore differs from what was originally published.

Translation of the nucleotide sequence in this reading frame confirms the identification of these cells as Vγ4+ γδ T cells and does not in any way impact the conclusions or interpretation of findings reported in the original publication.

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1500594