A Single Amino Acid Substitution in the Hemagglutinin of H3N2 Subtype Influenza A Viruses Is Associated with Resistance to the Long Pentraxin PTX3 and Enhanced Virulence in Mice

Emma R. Job, Barbara Bottazzi, Kirsty R. Short, Yi-Mo Deng, Alberto Mantovani, Andrew G. Brooks and Patrick C. Reading

J Immunol published online 4 December 2013
http://www.jimmunol.org/content/early/2013/12/04/jimmunol.1301814

Supplementary Material
http://www.jimmunol.org/content/suppl/2013/12/05/jimmunol.1301814.DC1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
A Single Amino Acid Substitution in the Hemagglutinin of H3N2 Subtype Influenza A Viruses Is Associated with Resistance to the Long Pentraxin PTX3 and Enhanced Virulence in Mice

Emma R. Job,* Barbara Bottazzi, † Kirsty R. Short,* Yi-Mo Deng, ‡ Alberto Mantovani, †‡ Andrew G. Brooks,* and Patrick C. Reading*†‡

The long pentraxin, pentraxin 3 (PTX3), can play beneficial or detrimental roles during infection and disease by modulating various aspects of the immune system. There is growing evidence to suggest that PTX3 can mediate antiviral activity in vitro and in vivo. Previous studies demonstrated that PTX3 and the short pentraxin serum amyloid P express sialic acids that are recognized by the hemagglutinin (HA) glycoprotein of certain influenza A viruses (IAV), resulting in virus neutralization and anti-IAV activity. In this study, we demonstrate that specificity of both HA and the viral neuraminidase for particular sialic acid linkages determines the susceptibility of H1N1, H3N2, and H7N9 strains to the antiviral activities of PTX3 and serum amyloid P. Selection of H3N2 virus mutants resistant to PTX3 allowed for identification of amino acid residues in the vicinity of the receptor-binding pocket of HA that are critical determinants of sensitivity to PTX3; this was supported by sequence analysis of a range of H3N2 strains that were sensitive or resistant to PTX3. In a mouse model of infection, the enhanced virulence of PTX3-resistant mutants was associated with increased virus replication and elevated levels of proinflammatory cytokines in the airways, leading to pulmonary inflammation and lung injury. Together, these studies identify determinants in the viral HA that can be associated with sensitivity to the antiviral activities of PTX3 and highlight its importance in the control of IAV infection. The Journal of Immunology, 2014, 192: 000–000.

Respiratory secretions contain a complex mixture of innate immune proteins, including members of the collectin and pentraxin families, which neutralize the infectivity of influenza A viruses (IAV) via mechanisms distinct from that mediated by Ab. These neutralizing inhibitors provide an important barrier against initial infection with IAV and limit virus spread during the first few days of infection. Historically, such proteins have been classified as β- or γ-type inhibitors based on their chemical properties and mechanism of action against IAV (reviewed in Refs. 1, 2). β-type inhibitors are Ca2+-dependent lectins that bind to mannose-rich glycans on the hemagglutinin (HA) and the neuraminidase (NA) glycoproteins of IAV (3) to inhibit hemagglutination, neutralize virus infectivity, aggregate virions, and protect neutrophils from the depressive effects of IAV on respiratory burst responses (reviewed in Refs. 4, 5). It is well established that some members of the collectin superfamily, including human mannose-binding lectin and surfactant protein (SP)-D, act as β-type inhibitors against IAV. In contrast, γ-type inhibitors are soluble sialylated glycoproteins that act as receptor decoys, presenting sialic acids (SIA) that are recognized by the viral HA and resist hydrolysis by NA (6, 7). Of γ-type inhibitors, the antiviral properties of α2-macroglobulin, the major IAV inhibitor in horse serum, have been particularly well characterized (6, 7). More recently, other sialylated glycoproteins, such as the collectin SP-A (8, 9), H-ficolin (10), and the pentaxins, pentraxin 3 (PTX3) (11) and serum amyloid P (SAP) (12), were shown to act as γ-type inhibitors of IAV.

Members of the pentraxin superfamily play diverse roles in physiology, inflammation, and host defense. Pentraxins are a family of evolutionarily conserved proteins characterized by a pentameric structure and by the presence of the pentraxin domain (HxCxS/TWxS, where x represents any amino acid). The short pentraxins C-reactive protein (CRP) and SAP are produced by hepatocytes in response to a range of inflammatory stimuli, in particular to the cytokine IL-6 (reviewed in Ref. 13), and they represent the main acute-phase reactants in humans and mice, respectively. PTX3 protomers are composed of a unique 174-aa N-terminal domain coupled to a C-terminal pentraxin-like domain homologous to SAP and CRP, and protomer subunits assemble into higher-order oligomers stabilized by
disulfide bonds (14). PTX3 secretion is induced in response to multiple inflammatory stimuli; however, unlike CRP and SAP, it is produced by a variety of innate immune cells (15, 16). PTX3 is also produced by airway epithelial cells of the lung (17) and can be detected in airway fluids from IAV-infected mice (11).

Studies (11, 12) from our laboratory demonstrated that PTX3 acts as a γ-type inhibitor of particular H3N2 subtype IAV in vitro and in vivo. A single site of N-glycosylation is present in the C-terminal domain (Asn → Ser) of PTX3, and this is occupied by a complex-type glycan terminating in α(2,3)-linked Sia [Siaα(2,3)] (18). Accordingly, H3N2 strains that recognized Siaα(2,3) were sensitive to the anti-IAV activities of PTX3 (11). The short pentraxin SAP also mediates anti-IAV activity. Early studies reported SAP to be a β-type inhibitor of IAV (19, 20), whereas we recently demonstrated that sialylated glycans expressed by SAP were critical for its anti-IAV activity (12). However, the γ-type inhibitor activity of SAP was Ca²⁺ dependent, which may reflect conformational differences in its secondary structure in the presence or absence of Ca²⁺ (21) that alter the arrangement and/or accessibility of its sialylated glycans to the viral HA. Moreover, SAP expressed Siaα(2,3) and, therefore, inhibited a broader range of human IAV strains than did PTX3.

We previously reported that PTX3 mediated antiviral activity against HKx31 (H3N2), but not PR8 (H1N1), in vitro and that treatment of HKx31-infected, but not PR8-infected, mice with exogenous PTX3 reduced virus growth in the lungs, as well as treatment of HKx31-infected, but not PR8-infected, mice with exogenous PTX3 reduced virus growth in the lungs, as well as disease severity (11). However, these strains represent different IAV subtypes and do not provide specific information regarding viral determinants of sensitivity to PTX3. In this study, we selected mutants of H3N2 strains for resistance to PTX3 and identified residues in the viral HA that determine PTX3 sensitivity. PTX3-resistant mutants were more virulent in mice, and this was associated with enhanced virus growth and airway inflammation. Finally, we demonstrate that the activity of either HA or NA can determine the sensitivity of a particular virus strain to inhibition by PTX3.

Materials and Methods

Pentraxin preparations

Human and mouse PTX3 expressed in CHO cells were purified from cell supernatants and biotinylated as described (22). Human SAP purified from human serum (Calbiochem) was biotinylated as described (12).

Viruses

The IAV used in this study were A/PR/8/34 (PR8, H1N1) as well as HKx31 and BJx109, which are high-yielding reassortants of PR8 with A/Chichibu/2/68 (H3N2) and A/Beijing/353/89 (H3N2), respectively, and bear the H3N2 surface glycoproteins (23). Other IAV strains used were A/Port Chalmers/1/73 (PC/73; H3N2), A/Udom/307/72 (H3N2), A/New Caledonia/20/99 (N.Cal/99; H1N1), and A/Auckland/1/09 (A/H1N1)pdm09, as well as γ-irradiated H5N1 strains derived from A/Vietnam/1194/2004 (A/Vietnam/1203/2004, A/Myanmar/1/2006, A/Chicken/Indonesia/Wates/2005, A/Chicken/Indonesia/Magalang/1631-5/2007, A/Chicken/Laos/Xthagthan/2006, A/Duck/Ngehe/An/NCVD-70/2007, and A/Duck/Vietnam/042B/2004. Viruses were obtained from the World Health Organization Collaborating Centre for Reference and Research on Influenza and from the Commonwealth Scientific and Industrial Research Organization Australian Animal Health Laboratory (Geelong, Australia). A reassortant virus expressing six genes from PR8 in conjunction with the HA and NA of A/Shanghai/2013 (Shang/13 H7N9) was kindly provided by The National Institute for Biological Standards and Control (Potters Bar, Hertfordshire, U.K.). IAV were propagated in the allantoic fluid cavity of 10–14 embryonated hens’ eggs by standard procedures (3) and stored at −70 °C. Viruses were titrated on MDCK cells, as described (24), and purified from allantoic fluid by rate zonal sedimentation in 15–80% w/v sucrose gradients (3).

Binding of biotin-labeled PTX3 and SAP to IAV-infected cells

MDCK cells detached from plastic flasks using trypsin-versein were mock infected or infected in suspension with IAV at a multiplicity of infection (MOI) of 10 PFU/cell for 1 h at 37 °C in serum-free media. Cells were washed, cultured for an additional 5 h in Teflon-coated pots, then gently resuspended and used in assays to determine binding of biotin-labeled PTX3 or SAP. Aliquots of 10⁶ PR8 virus in conjunction with 1 μg/ml biotinylated PTX3 (2 μg/ml) or SAP (10 μg/ml) in TBS containing 5 mg/ml BSA and supplemented with either 10 mM CaCl₂ or 5 mM EDTA. Cells were washed, and bound pentraxins were detected using streptavidin conjugated to alkaline phosphatase. Cells were analyzed on a FACScalibur flow cytometer (BD Biosciences) using 10 μg/ml propidium iodide (PI) to exclude dead cells from the analyses. We used a mAb specific for the IAV HA (mAb 514; a kind gift from Prof. Lorena Brown, Department of Microbiology and Immunology, University of Melbourne) to confirm that a similar proportion of IAV-infected cells (80–90%) expressed the HA glycoprotein at the cell surface in each sample analyzed (data not shown).
Sequencing of the HA, NA, and M2 genes

RNA was extracted from the cell pellets obtained following centrifugation of virus-infected allantoic fluid using an RNeasy Mini kit (QIAGEN) and converted to cDNA with a QIAGEN Omniscript RT kit using 20 μmol/μl Uni12 primer (5′-AGC AAA AGC AGG-3′). DNA encoding the HA and NA genes was amplified from cDNA, PCR products were separated by agarose gel electrophoresis, and DNA bands of specific size were cut out and extracted (Gel Extraction Kit; MO BIO). Sequencing was performed by Applied Genetics Diagnostics (Department of Pathology, University of Melbourne). H3 numbering (25) was used to align the deduced amino acid sequences.

Binding and infection of LA-4 and MDCK cells by influenza viruses

Subconfluent monolayers of mouse LA-4 airway epithelial cells or MDCK cells in eight-well chamber slides (Lab-Tek; Nunc) were incubated with increasing dilutions of IAV for 1 h at 37°C, washed three times, and incubated in serum-free media, as described (28). At 7–8 h postinfection, cells were fixed in 80% (v/v) acetic acid and stained with anti-NP mAb MP3.1092.1C7, followed by FITC-conjugated rabbit anti-mouse Ig (Dako). Cells were viewed by fluorescence microscopy, using PI (10 μg/ml) staining to determine the total cell number/field in at least four random fields (minimum total cell count = 100/sample) and anti-NP staining to determine the number of IAV-infected cells/field.

The HA/NA balance of different IAV was determined as described (29). Briefly, duplicate tubes of formaldehyde-fixed LA-4 cells (10^6 cells) were mixed with 128–256 HAU each IAV for 1 h on ice to allow HA-mediated binding of virus to sialylated receptors on the LA-4 cell surface. One sample was held at 4°C (to inhibit the enzymatic activity of the viral NA), whereas the duplicate tube was transferred to 37°C for 30 min (to allow the enzymatic activity of the viral NA). A third tube received no cells and was held on ice throughout. After incubation, cells were pelleted, and virus remaining in the cell supernatant was quantified by hemagglutination assay.

Multistep growth curves of IAV were generated using MDCK cells cultured in 24-well tissue-culture plates (Thermo Scientific Nunc). Cells were incubated with a low MOI (0.01 PFU/cell) of each IAV for I for 1 h at 37°C, washed, and cultured in serum-free media containing 2 μg/ml TPCK-treated trypsin (Worthington Biochemical) to allow for multiple cycles of virus replication. At various times postinfection, supernatants were removed, clarified, and assayed for titers of infectious virus by plaque assay on MDCK cell monolayers in the presence of trypsin.

Infection of mice and processing of murine tissues

C57BL/6 mice were bred and housed in specific pathogen–free conditions in the Animal Facility at the Department of Microbiology and Immunology, University of Melbourne. Six- to eight-week-old male mice were used in all experiments. Mice were anesthetized and infected with 10^3, 10^4, or 10^5 PFU IAV in 50 μl PBS via the intranasal route. Control mice were mock infected with 50 μl PBS alone. Mice were weighed daily and assessed for signs of clinical disease. Animals that had lost ≥20% of their original body weight and/or displayed evidence of pneumonia were culled. All research complied with the University of Melbourne’s Animal Experimentation Ethics guidelines and policies. At various times postinfection, mice were culled, and samples including blood, bronchoalveolar lavage fluid (BALF), thymus, and lungs were collected as described (28, 30). PI assay was used to determine titers of infectious virus in clarified homogenates prepared from the lungs of IAV-infected mice. Total protein levels in cell-free BALF were determined by Bradford protein dye using a standard curve of BSA. The BD Cytokine Bead Array Mouse Inflammation Kit (Becton Dickinson) was used to determine levels of IPN-γ, TNF-α, IL-6, IL-10, IL-12(p70), and MCP-1 in cell-free BALF, and PTX3 levels in BALF were determined by ELISA, as described (11).

Differential leukocyte counts and flow cytometry

Single-cell suspensions prepared from lung BALF were mixed with the HA and NA of IAV-infected mice were treated with Tris-NH₄Cl (0.14 M NH₄Cl in 17 mM Tris, adjusted to pH 7.2) to lyse erythrocytes and incubated on ice for 30 min with supernatants from hybridoma 2.4G2 to block FcRs. Cell numbers and viability were assessed via trypan blue exclusion using a hemocytometer. Cells were then stained with appropriate combinations of FITC-, PE-, and allophycocyanin-conjugated mAbs to Gr-1 (RB6-8C5), CD62L (104), CD80 (53-6.7), CD4 (GK1.5), B220 (RA3-6B2), TCRβ (H57-597), and NK1.1 (PK136) and analyzed by flow cytometry. PI (10 μg/ml) was added to each sample to exclude dead cells from the analyses, and a minimum of 50,000 PI− cells was collected.

Pulmonary histopathology

Lungs were perfused, inflated, and fixed in 4% formaldehyde, as described (30), and 4-μm sections were prepared and stained with H&E. Sections were assessed for inflammation using a subjective scale from 0 to 5 (0, no inflammation; 1, very mild; 2, mild; 3, moderate; 4, marked; and 5, severe inflammation). Sections were randomized and blinded, and those corresponding to the least and most severe inflammation were assigned scores of 0 and 5, respectively. Peribronchiolar inflammation and alveolitis were then graded in multiple random fields for each section by three independent readers, as described (28, 30).

PTX3 therapeutic treatment of mice

C57BL/6 mice were lightly anesthetized and infected via the intranasal route with 10^6 PFU WT or PTX3Δ PC73 in 50 μl PBS. Recombinant human PTX3 (2 mg/kg ip) was administered on the day of infection and at days 1 and 3 postinfection. To determine virus titers in the airways, mice were euthanized at day 5 postinfection, and lungs were removed, homogenized, and clarified by centrifugation; supernatants were frozen at −70°C. The samples were assayed for infectious virus by plaque assay on MDCK cells in the presence of trypsin.

Statistical analysis

For the comparison of two sets of values, a Student t test (two-tailed, two-sample equal variance) was used. One-way ANOVA (parametric), followed by the Tukey post test, was used when comparing three or more sets of values. Two-way ANOVA, followed by the Bonferroni correction, was used when comparing weight change over time in three groups. Survival proportions were analyzed by a two-tailed, log-rank (Mantel–Cox) test. For analysis of histopathological data, a Kruskal–Wallis test (nonparametric) was used, followed by the Dunn post test.

Results

Role of the viral HA and NA in determining sensitivity of IAV to PTX3

PTX3 and SAP express SIAα(2,3) and SIAα(2,6), respectively, and act as receptor decoys that are recognized by the viral HA, resisting hydrolysis by the viral NA to mediate anti-IAV activity (11, 12). In general terms, mouse-adapted and avian IAV exhibit HA preference for SIAα(2,3), human strains prefer SIAα(2,6), and recent pandemic IAV show dual specificity for SIAα(2,3)/α(2,6). Therefore, we compared a range of IAV strains for sensitivity to PTX3 and SAP in the presence or absence of the NA inhibitor (NAI) zanamavir.

Consistent with previous results (11), an early H3N2 strain [HKx31, expressing the HA/NA from A/Beijing/353/1989 with dual receptor preference (31)] was inhibited by PTX3 and SAP in the presence or absence of zanamavir (Table I), whereas a later strain [B/Jx109, expressing the HA/NA from A/Beijing/353/1989 with preference for SIAα(2,6)] (11)] was inhibited only by SAP, and NAI did not enhance activity (Table I). All H1N1 IAV, including A/H1N1pdm09, were resistant to PTX3 (MIC ≥ 10 μg/ml), however, NAI increased the sensitivity of PR8 and Auck/09 to PTX3, consistent with HA specificity for SIAα(2,3) (32) and SIAα(2,3)/α(2,6) (33), respectively. Inhibition of the N1 NA also increased the sensitivity of the human H1N1 strains N.Cal/09 and Auck/09 (but not mouse-adapted PR8) to SAP, consistent with the preference of human IAV for SIAα(2,6) expressed by SAP. Of note, SIAα(2,3) is the only SIA linkage expressed by natural PTX3 (from TNF-α stimulated human fibrosarcoma cells) or by recombinant PTX3 expressed by CHO cells (12, 18), and our previous studies confirmed that PTX3 from either source displayed a similar spectrum of antiviral activity against H3N2 IAV (12).

Avian H5N1 show HA receptor preference for SIAα(2,3) (34, 35) and are considered a potential pandemic threat. Therefore, we compared the sensitivity of human and avian H5N1 to inhibition by PTX3 and SAP. All avian and human H5N1 strains tested were largely resistant to PTX3 (MIC ≥ 5 μg/ml) and SAP (MIC > 10 μg/ml), and HI activity was not enhanced in the presence of zanamivir.
Table I. Inhibition of IAV by PTX3 or SAP in the presence or absence of NAI

<table>
<thead>
<tr>
<th>Strain</th>
<th>Subtype</th>
<th>PTX3 Control (µg/ml)*</th>
<th>PTX3 NAI†</th>
<th>SAP Control (µg/ml)*</th>
<th>SAP NAI†</th>
</tr>
</thead>
<tbody>
<tr>
<td>HKx31</td>
<td>H3N2</td>
<td>0.5 ± 0.2</td>
<td>0.4 ± 0.2</td>
<td>0.5 ± 0.2</td>
<td>0.4 ± 0.2</td>
</tr>
<tr>
<td>BJx109</td>
<td>H3N2</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>PR8</td>
<td>H1N1</td>
<td>10</td>
<td>0.7 ± 0.5**</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>N.Cal99</td>
<td>H1N1</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>Auck/09</td>
<td>H1N1pdm</td>
<td>>10</td>
<td>2.1 ± 0.7*</td>
<td>4.2 ± 1.5</td>
<td>1.1 ± 0.4*</td>
</tr>
<tr>
<td>Shang/13</td>
<td>H7N9</td>
<td>1.3 ± 1.1</td>
<td>0.4 ± 0.2</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>DV/04</td>
<td>H5N1</td>
<td>6.7 ± 2.9</td>
<td>5 ± 0</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>CI/05</td>
<td>H5N1</td>
<td>6.7 ± 2.9</td>
<td>5 ± 0</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>CI/07</td>
<td>H5N1</td>
<td>6.7 ± 2.9</td>
<td>6.7 ± 2.9</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>CI/06</td>
<td>H5N1</td>
<td>10 ± 0</td>
<td>8.4 ± 2.9</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>DN/07</td>
<td>H5N1</td>
<td>6.7 ± 2.9</td>
<td>4.2 ± 1.5</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>Viet/1194/04</td>
<td>H5N1</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>Viet/1203/04</td>
<td>H5N1</td>
<td>6.7 ± 2.9</td>
<td>4.2 ± 1.5</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>Myan/06</td>
<td>H5N1</td>
<td>6.7 ± 2.9</td>
<td>2.9 ± 0.4</td>
<td>>10</td>
<td>>10</td>
</tr>
</tbody>
</table>

*Data are the mean (± 1 SD) of three independent experiments.
†Addition of zanamivir (to a final concentration of 50 nM) to 4 HAU of virus prior to HI assay.
‡ p < 0.05, **p < 0.001, versus relevant control samples, Student t test. For MIC > 10 µg/ml, a value of 11 was assigned to assess significance.

(p.11) (Table I), indicating that the H5 HA cannot bind effectively to SIA expressed by either PTX3 or SAP. The new human H7N9 virus associated with human infections in China during 2013 is a reassortant virus expressing H7 and N9 and other gene segments from avian IAV (36), and it displays dual HA specificity for SIAx(2,3)/α(2,6) (37). Consistent with this, IAV expressing H7N9 from Shang/13 was sensitive to PTX3 and SAP, and activity was enhanced in the presence of NAI (Table I). Together, these data indicate that, in addition to the viral HA, the activity and/or specificity of the viral NA can be an important viral determinant of sensitivity to either PTX3 or SAP.

A PTX3-resistant mutant of HKx31 remains sensitive to the antiviral activities of SAP

Because both the viral HA and NA can contribute to PTX3 resistance, we investigated molecular changes associated with the acquisition of PTX3 resistance by H3N2 IAV. HKx31 was incubated with purified human PTX3 and inoculated in embryonated eggs (as described in Materials and Methods) to facilitate selection of a PTX3R mutant. After cloning at high dilution in eggs, WT and PTX3R HKx31 were compared for sensitivity to PTX3 and SAP using a range of assays, including binding to virus (as determined by ELISA; Fig. 1A), inhibition of IAV hemagglutination activity (Fig. 1B), inhibition of the enzymatic activity of the viral NA (Fig. 1C), and neutralization of viral infectivity (Fig. 1D). In each assay, WT HKx31 was sensitive to both PTX3 and SAP, whereas the PTX3R mutant was sensitive only to SAP.

Both PTX3 and SAP bind FcRs and can activate leukocyte-mediated phagocytosis (38, 39). Moreover, opsonization of target cells and/or microbodies by pentraxins can be enhanced in the presence of complement (reviewed in Ref. 40). Because the viral HA and NA are expressed at the surface of infected cells prior to virus budding and release, IAV-infected cells represent another important target for recognition by pattern recognition receptors of the innate immune system. PTX3 bound to MDCK cells infected with WT, but not PTX3R HKx31 in the presence or absence of Ca(2+), whereas SAP bound to cells infected with either WT or PTX3R HKx31 in a Ca(2+)-dependent manner (Fig. 1E). An anti-HA mAb confirmed that MDCK cells infected with WT or PTX3R HKx31 expressed a similar proportion of cell surface HA in all samples analyzed (data not shown).

Identification of amino acid residues in the H3 HA that determine sensitivity of early H3N2 strains to PTX3

Proteins expressed on the surface of the IAV virion represent potential targets for recognition by PTX3, and both HA and NA can contribute to PTX3 resistance. Therefore, we sequenced genes encoding the HA and NA of WT and PTX3R HKx31. The deduced amino acid sequences of NA were identical; however, a single-base substitution (G145→A) gave rise to the amino acid substitution Ser145→Asn in the HA1 domain, in the vicinity of the receptor-binding pocket, of the PTX3R mutant. An identical mutation was detected in HKx31 mutants selected in the presence of purified murine PTX3. These substitutions are distinct from those associated with resistance of H3 IAV to other γ-type inhibitors, such as SAP (Leu220→Glu (12) or equine α2macroglobulin (Leu220→Glu (41)), or to β-type inhibitors, such as conglutinin or SP-D (Thr167→Asn (3)). Note that full-genome sequencing confirmed no differences in the viral proteins encoded by the remaining gene segments of WT and PTX3R HKx31.

H3N2 IAV that circulated in humans prior to 1973 were sensitive to PTX3, but strains after this time had acquired resistance (11). Therefore, we aligned the HA sequences of 13 H3N2 strains (1968–2005) that had been tested for sensitivity to PTX3 (Fig. 2), with a particular focus on amino acid 145 and surrounding residues. Prior to 1975; most H3N2 strains expressed Ser145, whereas strains after 1973 expressed Asn/Lys145. Analysis of HA sequences from 108 strains (1973–2005) in public databases indicated that 82.4% of H3N2 strains (1968–1975) in public databases indicated that 82.4% of H3N2 strains (8/108) expressed Ser145. In contrast, 60% of H3N2 strains after this time had acquired resistance (11).

H3N2 IAV that circulated in humans prior to 1973 were sensitive to PTX3, but strains after this time had acquired resistance (11). Therefore, we aligned the HA sequences of 13 H3N2 strains (1968–2005) that had been tested for sensitivity to PTX3 (Fig. 2), with a particular focus on amino acid 145 and surrounding residues. Prior to 1975; most H3N2 strains expressed Ser145, whereas strains after 1973 expressed Asn/Lys145. Analysis of HA sequences from 108 strains (1973–2005) in public databases indicated that 82.4% of H3N2 strains (1968–1975) in public databases indicated that 82.4% of H3N2 strains (8/108) expressed Ser145. In contrast, 60% of H3N2 strains after this time had acquired resistance (11).

H3N2 IAV that circulated in humans prior to 1973 were sensitive to PTX3, but strains after this time had acquired resistance (11). Therefore, we aligned the HA sequences of 13 H3N2 strains (1968–2005) that had been tested for sensitivity to PTX3 (Fig. 2), with a particular focus on amino acid 145 and surrounding residues. Prior to 1975; most H3N2 strains expressed Ser145, whereas strains after 1973 expressed Asn/Lys145. Analysis of HA sequences from 108 strains (1973–2005) in public databases indicated that 82.4% of H3N2 strains (1968–1975) in public databases indicated that 82.4% of H3N2 strains (8/108) expressed Ser145. In contrast, 60% of H3N2 strains after this time had acquired resistance (11).

H3N2 IAV that circulated in humans prior to 1973 were sensitive to PTX3, but strains after this time had acquired resistance (11). Therefore, we aligned the HA sequences of 13 H3N2 strains (1968–2005) that had been tested for sensitivity to PTX3 (Fig. 2), with a particular focus on amino acid 145 and surrounding residues. Prior to 1975; most H3N2 strains expressed Ser145, whereas strains after 1973 expressed Asn/Lys145. Analysis of HA sequences from 108 strains (1973–2005) in public databases indicated that 82.4% of H3N2 strains (1968–1975) in public databases indicated that 82.4% of H3N2 strains (8/108) expressed Ser145. In contrast, 60% of H3N2 strains after this time had acquired resistance (11).
In vitro characterization of WT and PTX3R H3N2 IAV

Changes in the HA sequence, particularly those in or around the receptor-binding pocket, can affect the receptor properties of the viral HA and, therefore, modulate interactions between IAV and target cells. We compared the HA receptor properties of WT and PTX3R mutants and found that PTX3R mutants did not differ in their ability to agglutinate chicken erythrocytes enzymatically altered to express either \((2,6)\) or \((2,3)\)-linked Neu5Ac (Supplemental Table IC).

Next, we compared the ability of WT and PTX3R viruses to bind, infect, and replicate productively in mammalian cells in vitro. The opposing activities of the viral HA (binding to cell surface SIA) and NA (cleaving cell surface SIA) must be carefully balanced to allow for efficient IAV entry and exit from host cells; mutations that affect the specificity and/or avidity of either HA or NA can disrupt this balance (reviewed in Ref. 43). HA/NA balance was disrupted this balance (reviewed in Ref. 43).
assessed by incubating IAV with fixed mouse airway epithelial (LA-4) cells at 4°C (when HA binds but the viral NA is inhibited) or at 37°C (when HA binds to SIA and the viral NA is active) before determining levels of virus in cell-free supernatants (Supplemental Fig. 1A). Compared with controls (i.e., virus not incubated with any cells), incubation of virus with cells at 4°C reduced levels of virus in the supernatant; however, essentially all virus was recovered at 37°C, and no differences were noted between WT and PTX3R viruses. Moreover, WT and PTX3R mutants showed no difference in their ability to infect the LA-4 mouse airway epithelial cell line, as assessed by immunofluorescence at 8 h postinfection (Supplemental Fig. 1B). Finally, MDCK cells were infected at a low MOI (0.01 PFU/cell) in the presence of trypsin to allow for multiple cycles of virus replication in cell culture. At various times, cell-free supernatants were removed, and titers of infectious virus released from IAV-infected cells were determined in these experiments, no significant differences were detected between WT and PTX3R viruses at any time point tested (Supplemental Fig. 1C). Together, these data indicate that resistance to PTX3 did not alter the intrinsic ability of IAV to infect and replicate in mammalian cells.

PTX3R mutants show enhanced virulence in mice

We next compared the virulence of WT and PTX3R mutants of HKx31 and PC/73 in mice. Initial studies examined weight loss (Fig. 3A, 3C) and lethality (Fig. 3B, 3D) of mice following intranasal inoculation with increasing doses of WT or PTX3R viruses. Overall, PTX3R mutants displayed enhanced virulence in mice compared with their respective WT viruses. Mice infected with 10^3 PFU of PTX3R HKx31 lost more weight (day 7, p < 0.01; day 8, p < 0.001, two-way ANOVA) and showed reduced survival (p < 0.01, two-tailed, log-rank Mantel–Cox test) compared with animals infected with an equivalent dose of WT HKx31. PTX3R PC/73 was also more virulent than was WT PC/73, and PTX3R-infected mice showed enhanced weight loss postinfection with 10^4 PFU (day 7–8, p < 0.001; day 9–10, p < 0.05, two-way ANOVA), 10^5 PFU (day 5–7, p < 0.001; day 8, p < 0.01, two-way ANOVA), and 10^6 PFU (day 6, p < 0.05; day 7–9, p < 0.001; day 10, p < 0.01, two-way ANOVA). Moreover, mice infected with 10^5 PFU of PTX3R PC/73 showed reduced survival (p < 0.001, two-tailed, log-rank [Mantel–Cox] test) compared with mice infected with WT PC/73.

To examine viral replication, mice were infected with 10^3 PFU of WT or PTX3R HKx31 or with 10^4 PFU of WT or PTX3R PC/73, and viral titers were determined at day 3 (Fig. 4A) and day 7 (Fig. 4B) postinfection. At day 3, there were no differences between either pair of WT and PTX3R viruses with regard to virus replication in the lungs. At day 7, both PTX3R mutants grew to higher titers in the lungs compared with their respective WT control viruses (Fig 4B, p < 0.001, Student t test).

Enhanced airway inflammation in mice infected with PTX3R PC/73

We characterized the cellular infiltrate and the soluble mediators in BALF recovered from mice 7 d postinfection with 10^3 PFU of either WT or PTX3R PC/73. Numbers of total BALF cells recovered from WT or PTX3R PC/73-infected mice were similar, with no significant differences in the numbers of neutrophils or CD8^+, CD4^+, or B220^+ lymphocytes, although a modest increase in NK cells was observed (Supplemental Fig. 2A).

Because dysregulated cytokine responses are associated with IAV-induced disease, we next determined the levels of proinflammatory chemokines and cytokines in the airways of IAV-infected mice. Levels of IFN-γ, TNF-α, IL-10, and IL-12p70 were similar in cell-free BALF from mice infected with PTX3-sensitive (PTX3S) or PTX3R viruses (data not shown); however, MCP-1 and IL-6 were significantly higher in BALF from PTX3R-infected mice (Fig. 5A). It is well established that elevated MCP-1 and IL-6 levels are associated with higher viral loads, altered immune function, and enhanced lung injury.

FIGURE 3. Weight change and survival of mice infected with WT or PTX3R H3N2 viruses. C57BL/6 mice were infected via the intranasal route with 10^3, 10^4, or 10^5 PFU of WT or PTX3R HKx31 (A, B) or WT or PTX3R PC/73 (C, D). Control mice (Mock) received an equivalent volume of the virus diluent PBS. Mice were monitored daily, and any mice that lost ≥20% of their original body weights were euthanized. Data in (A) and (C) represent the mean percentage (± 1 SD) of weight change over time (n = 10). Data in (B) and (D) show the percentage of survival over time (n = 10). Weight loss over time was analyzed by two-way ANOVA with the Bonferroni correction. Survival was assessed using the log-rank test. *p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 4. Increased viral load in the lungs of mice infected with PTX3R HKx31 and PC/73 at 7 d postinfection. C57BL/6 mice were infected via the intranasal route with 10^3 PFU of WT or PTX3R HKx31 (left panels) or with 10^4 PFU of WT or PTX3R PC/73 (right panels). At day 3 (A) and day 7 (B) postinfection, mice were culled, and virus titers in lung homogenates were determined using a standard plaque assay on MDCK cells. Data for individual mice are shown; the horizontal line represents the mean virus titer (n = 10, pooled from two independent experiments). The dotted line indicates the detection limit for the plaque assay. ***(p < 0.001, Student t test.***
IL-6 are associated with lung injury and disease in IAV-infected mice (28, 30). Consistent with this, the increased wet/dry ratio of the lungs (Fig. 5B) and enhanced protein levels in cell-free BALF (Fig. 5C) from mice infected with PTX3R PC/73 were indicative of increased vascular leakage and lung injury. Lung sections from WT- and PTX3R-infected mice were also examined for histopathological changes at day 7 postinfection (Fig. 5D). H&E-stained lung sections were blinded, randomized, and scored by three independent readers for peri-bronchiolar inflammation and alveolitis. Analysis of histological sections indicated that peri-bronchiolar inflammation and alveolitis were more severe in mice infected with PTX3R PC/73 ($p < 0.05$, Kruskal–Wallis test, Fig. 5E).

In humans and mice, thymic atrophy and leukopenia are systemic markers that have been associated with severe influenza infections (28, 30, 44). Infection of mice with PTX3R PC/73 was associated with reduced cellularity of the thymus, characterized by a marked reduction in the numbers of double-positive, but not single-positive or double-negative, thymocytes (Supplemental Fig. 2B). Total blood leukocyte numbers were also reduced in mice infected with PTX3R PC/73, and this was associated with decreased numbers of neutrophils, B lymphocytes, and CD4+ and CD8+ T cells (Supplemental Fig. FC). Together, these data demonstrate that infection of mice with PTX3R PC/73 results in more severe airway and systemic disease.

Increased levels of PTX3 in BALF from PTX3R PC/73–infected mice neutralize IAV infectivity at day 7 postinfection

Next, we examined the levels of PTX3 in BALF from mice infected with WT or PTX3R PC/73 at days 3 and 7 postinfection (Fig. 6A). At either time, PTX levels from WT- or PTX3R-infected mice were significantly higher than levels in BALF from naive animals. PTX3 levels in BALF from mice infected with WT or PTX3R PC/73 were not different at day 3 postinfection, but PTX3R-infected mice had significantly higher PTX3 levels at day 7 postinfection.

Cell-free BALF collected from mice 7 d after IAV infection was incubated on ice with 10% v/v chicken erythrocytes to remove residual virus and then assessed for its ability to neutralize IAV. BALF from naive or WT PC/73–infected mice did not neutralize WT or PTX3R PC/73 to significant levels (Fig. 6B). In contrast, BALF from PTX3R PC/73–infected mice neutralized IAV at day 7 postinfection.

FIGURE 5. Enhanced pulmonary inflammation and lung injury in mice infected with PTX3R PC/73. C57BL/6 mice were infected via the intranasal route with 10^4 PFU WT or PTX3R PC/73 or with buffer alone (naïve), and airway cells and BALF were recovered and analyzed 7 d later. (A) Cell-free BALF was assayed for IL-6 (Ai) or MCP-1 (Aii) via cytokine bead array, according to the manufacturer’s instructions. Levels from individual mice are shown; horizontal lines represent the mean level for each cytokine. Data are pooled from two independent experiments (n = 9–10 mice/group). Dotted lines indicate the detection limit of each assay. (B and C) Enhanced lung edema and vascular leakage following infection with PTX3R PC/73. At day 7 postinfection, mice were culled, and the wet/dry ratio of the lungs (B) and total protein levels in cell-free BALF (C) were determined. Data are mean (± 1 SD) of pooled data from two independent experiments (n = 10/group). (D) Representative images of inflammation in lung sections following H&E staining (original magnification ×100). (E) Histopathological scores for lung sections from naive mice and from mice infected with WT or PTX3R PC/73. Lung sections were randomized and scored blind for peribronchiolar inflammation (EI) or alveolitis (Eii) on a scale of 0 to 5: 0 represents the least inflammation, and 5 represents the most severe inflammation. Data shown are scores from individual sections, and mean value (indicated by the horizontal line) was obtained from one of three readers. Data shown were pooled from two independent experiments (n = 5/experiment). $^p < 0.05$, WT was significantly different from PTX3R as determined by all three readers, Kruskal–Wallis test, Dunn post test. $^{**}p < 0.01$, $^{***}p < 0.001$, one-way ANOVA, followed by Tukey post analysis.

FIGURE 6. (A) Increased levels of PTX3 in the lungs of mice infected with PTX3R PC/73. C57BL/6 mice infected with 10^4 PFU of WT or PTX3R PC/73 were culled at day 3 or 7 postinfection, and BALF was collected and analyzed. Levels of murine PTX3 (mPTX3) in cell-free BALF were determined by ELISA. Data are mean (± 1 SD) (n = 9–10/group). $^{**}p < 0.001$, versus all other groups, one-way ANOVA, followed by Tukey post test. (B) BALF from mice infected with PTX3R virus shows greater neutralizing activity against PC/73. Cell-free BALF from mice infected with WT or PTX3R PC/73 was incubated with WT or PTX3R PC/73 for 30 min at 37˚C, and virus neutralization was determined using a fluorescent-focus reduction assay on LA-4 cells in eight-well glass chamber slides. Data are normalized to levels of infection detected when WT or PTX3R PC/73 was preincubated with buffer alone (PBS). Data are the mean of three independent experiments (± 1 SD). $^{**}p < 0.01$, one-way ANOVA, Tukey post test.
BALF from PTX3R-infected mice neutralized WT PC/73 more potently than did naïve BALF (p < 0.01, one-way ANOVA). Although there was a tendency for BALF from PTX3R-infected mice to neutralize PTX3R PC/73, this was not significant compared with naïve BALF and may reflect sensitivity to other innate proteins, such as SP-D, which are known to increase in BALF following IAV infection (Fig. 6B) (45, 46).

Because airway epithelial cells secrete PTX3 following exposure to a range of stimuli, including LPS and TNF-α (15, 17), we tested whether IAV might also induce PTX3 from human (A549) airway epithelial cells. Although TNF-α induced PTX3 secretion, PTX3R (HKx31) or PTX3S (HKx31-PTX3S) viruses did not (Supplemental Fig. 3), nor did virus inhibit TNF-α-induced PTX3 from epithelial cells. Together, these data indicate that IAV infection of epithelial cells does not induce or inhibit PTX3 production. Instead, the enhanced PTX3 levels in BALF from IAV-infected mice are likely a consequence of the surrounding cytokine milieu.

Therapeutic treatment of mice with PTX3 ameliorates disease with a PTX3S virus but not a PTX3R virus

Therapeutic treatment with recombinant human PTX3 was shown to ameliorate disease severity in a number of murine models, including murine CMV (47), mouse hepatitis virus (48), and *Pseudomonas aeruginosa* (49). We demonstrated previously that PTX3 treatment reduced virus growth in mice infected with HKx31 (H3N2, PTX3S) but not PR8 (H1N1, PTX3R) (11). Given the marked differences between these viruses, we refined our studies to determine the effect of therapeutic PTX3 treatment of IAV replication in the airways of mice infected with WT or PTX3R PC/73, which only differ by a single amino acid in HA1. In these studies, mice were challenged with 10⁵ PFU and analyzed at day 5 postinfection. Compared with mock-treated animals infected with IAV, PTX3 treatment significantly reduced viral titers in lungs from mice infected with WT (p < 0.01, one-way ANOVA) but not PTX3S PC/73 (Fig. 7A).

FIGURE 7. Treatment of mice with human PTX3 reduces replication of WT, but not PTX3S, PC/73 in the lungs. C57BL/6 mice were infected via the intranasal route with 10⁵ PFU of WT or PTX3S PC/73. Recombinant human PTX3 (1 mg/kg) was administered by the i.p. route on the day of infection and at days 1 and 3 postinfection. Control mice received the diluent alone (Mock). At day 5 postinfection, mice were culled, and virus titers were determined in homogenates prepared from the lungs using a standard plaque assay of MDCK cells. Data shown are pooled from two independent experiments (n = 6 mice/group). **p < 0.01, one-way ANOVA, Tukey post test.

FIGURE 8. An RG virus expressing an S145N substitution in the viral HA is resistant to PTX3.

To confirm that a single amino acid substitution in the viral HA (Ser145→Asn) was the critical determinant of sensitivity to PTX3, we used RG to generate 6:2 reassortant viruses expressing the HA and NA of HKx31 and all internal components derived from PR8. RG viruses expressing WT HKx31 HA (RG-HKx31) or HKx31 HA containing the S145N substitution (RG-HKx31-PTX3R) were rescued, amplified in eggs, and characterized in vitro and in vivo. Compared with RG-HKx31, RG-HKx31-PTX3R was resistant to both hemagglutination inhibition (Fig. 8A) and neutralization (Fig. 8B) by human PTX3 in vitro. Furthermore, RG-HKx31-PTX3R grew to higher titers than did RG-HKx31 in mouse lung 7 d postinfection with 10³ PFU of each virus (Fig 8C). Full genome sequencing confirmed that site 145, and not other unidentified mutations, accounts for increased virulence in the mouse model and resistance to PTX3.

Discussion

The current study focused on understanding the viral determinants that contribute to the sensitivity of different IAV to PTX3. First, we demonstrated that the viral HA or NA can be the critical determinant of PTX3 sensitivity. HA-mediated recognition of SIAα(2,3) is an essential feature, but it cannot be used as a predictor of PTX3 sensitivity. For H1N1 IAV, the susceptibility of SIA expressed by PTX3 to the viral NA was also critical in determining sensitivity. Moreover, H5N1 viruses display clear HA preference for SIAα(2,3) (34, 35) yet were resistant to PTX3, even in the presence of NAi. Some avian viruses discriminate between the core structures of oligosaccharides (50), and HA-glycan conformation analysis suggests that the size and shape of SIA-bearing glycans, rather than specific linkage, are important for H5-mediated recognition (51). Therefore, it may be that the type of SIA presented by PTX3 is not recognized by the H5 HA, suggesting further complexity in the interplay between the fine specificity of the viral HA and the particular SIAα(2,3)-rich glycans expressed by PTX3.
H3N2 viruses associated with the 1968 Hong Kong pandemic acquired their HA gene from an avian source (52) and exhibited dual specificity for SIA(2,3)/(2,6), (31), which has been reported for H1N1 (53), H2N2 (54), and A(H1N1)pdm09 (33) viruses associated with pandemics in 1918, 1957, and 2009, respectively. In fact, some early pandemic viruses were reported to retain a preference for SIA(2,3) over SIA(2,6) (54, 55). Early H3N2 IAV were sensitive to PTX3, and A(H1N1)pdm09 viruses were sensitive in the presence of NAI (Table I). Recent H7N9 viruses associated with human disease also displayed HA specificity for both SIA(2,3) and SIA(2,6) (37) and were inhibited by PTX3 (Table I). Together, these data suggest that PTX3 may represent a barrier limiting the introduction of new subtypes into humans and/or limiting initial spread and severity of pandemic IAV.

Early H3N2 viruses were sensitive to PTX3 but rapidly developed resistance as they circulated in humans. To understand the molecular basis underlying resistance to PTX3, H3N2 mutant viruses were selected under experimental conditions in the presence of purified PTX3. Amino acid substitutions at residue 145 of HAα, which forms part of a loop lying adjacent to the receptor-binding site (56), were associated with resistance to PTX3, and similar substitutions were implicated in the natural evolution of human H3N2 strains from PTX3R to PTX3S (Fig. 2). It was suggested that changes at residue 145 can alter the orientation of SIA within the receptor-binding site (57); however, we did not detect any differences in receptor specificity between WT and PTX3R viruses or in their ability to bind, infect, and replicate in MDCK or LA-4 cells in vitro. Together, these data indicate that resistance to PTX3 did not come at a major cost to virus fitness, nor was it associated with the acquisition of compensatory mutations in either HA or NA.

The receptor preference of H3N2 viruses evolved from recognition of SIA(2,3) and SIA(2,6) by early strains to recognition of only SIA(2,6) by strains after 1975 (31). Selective pressures on HA receptor specificity are likely to include the nature of SIA receptors expressed on target cells, as well as soluble extracellular proteins that can neutralize virus infectivity. This concept is not a new one, and the contributions of these two pressures to the selection of virus variants with optimal receptor-binding phenotypes was demonstrated in vitro using inhibitors from a range of animal sera (57–59). In humans, it is conceivable that widespread expression of SIA(2,6) receptors in the airways (60), in concert with selective immune pressure from the SIA(2,3)-rich neutralizing inhibitor PTX3, was a factor underlying the evolution of H3N2 receptor specificity in humans. However, because substitutions at residue 145 alone did not result in detectable differences in the HA specificity of PTX3R mutants, it is likely that additional changes in the HA of circulating H3N2 strains also contributed to their evolution toward a preference for SIA(2,6).

SP-D, a major constituent of human airway fluids (45, 61), is a potent inhibitor of highly glycosylated seasonal IAV; however, pandemic viruses are poorly glycosylated and, therefore, are largely resistant to this lectin (27, 45, 62). PTX3 acts as a SIA(2,3)-rich “receptor decoy” that is induced following IAV infection, consistent with a role in preventing infection and limiting spread of some pandemic IAV (or avian-origin IAV) in humans. Such a role could be particularly important because lectin-mediated innate defenses against these viruses are limited. In contrast, SAP expresses SIAα(2,6) (12, 63) and is likely to be effective against seasonal IAV that have evolved receptor preference for this linkage and cannot evade SIA(2,6) recognition. Other sialylated inhibitors, such as gp340 (64), H-ficolin (10), and SP-A (65), express both SIAα(2,3) and SIAα(2,6) and, therefore, may contribute to immunity against potential pandemic and/or seasonal strains. Moreover, NAI potentiate the anti-IAV activity of PTX3 and SAP (Table I), as well as other γ-inhibitors, including mucins, SP-A, and H-ficolin in vitro (10, 66). Thus, NAI treatment blocks the ability of the viral NA to inactivate sialylated inhibitors in mucus, saliva, and other airway secretions, thereby enhancing their anti-IAV activity and contributing to virus clearance and recovery.

PTX3 plays a complex multifactorial role in infection and inflammation. Elevated levels of PTX3 in serum and/or BALF were associated with poor outcomes in patients with acute lung injury or acute respiratory distress syndrome (reviewed in Ref. 67). During IAV infection, high levels of endogenous PTX3 in airway fluids from PTX3R PC/73–infected mice were associated with pulmonary inflammation and lung injury (Fig. 6A). However, early treatment with recombinant PTX3 ameliorated disease severity following infection with PTX3S virus (Fig. 7), suggesting that the timing and regulation of PTX3 production are important in determining its role during IAV infection. During murine CMV infection, therapeutic PTX3 treatment induced dendritic cell maturation and enhanced NK cell and T cell activation (47), consistent with an important protective role mediated via its immunostimulatory properties. Therapeutic PTX3 treatment reduced virus replication in the lungs of mice infected with PTX3S virus, but not PTX3R virus, suggesting that the direct antiviral effects of PTX3 were most important in limiting IAV in this model. Although our results demonstrate a clear increase in the virulence of PTX3R IAV in mice, the mechanisms underlying this phenomenon have yet to be fully elucidated. For example, subtle changes in HA preference could enhance the avidity of the PTX3R HA for sialylated receptors in the murine airways, resulting in enhanced virus infection and virulence. In future studies, the use of PTX3-null mice will allow for a clearer understanding of the role that endogenous PTX3 plays in controlling IAV infection in vivo.

Acknowledgments
We thank St Jude Children’s Hospital (Memphis, TN) for providing the pHW2000 plasmid for RG.

Disclosures
The authors have no financial conflicts of interest.

References

Fig S1. Interactions of WT and PTX3R H3N2 viruses with mammalian cells. (A) Assay for HA/NA balance. Formaldehyde-fixed LA-4 airway epithelial cells were mixed with 128 - 256 HAU of (i) WT or PTX3R HKx31, or (ii) WT or PTX3R PC/73 for 1 hr on ice. After virus adsorption, one group of triplicates was held at 4°C while the other was transferred to 37°C for 30 min. A third group with no cells received virus alone (control) and was held on ice throughout. Following centrifugation of samples, virus in each of the supernatants was quantified by hemagglutination assay. Data shown is pooled from two independent experiments of triplicate samples (± 1 SD, n=6). HA titres of each WT and PTX3R pair of viruses incubated at 37°C were not different from control (p > 0.05, One-way ANOVA). (B) Infection of mouse airway epithelial cells in vitro. Sub-confluent monolayers of a mouse airway epithelial cell line (LA-4 cells) were incubated with increasing doses of (i) WT (■) or PTX3R HKx31 (□), or (ii) WT (●) or PTX3R PC/73 (○). At 8 hr post-infection cells were fixed and stained via immunofluorescence for expression of influenza virus NP. Data represent the mean percent infection (± 1 SD) from 3 independent experiments. (C) Release of infectious virus from influenza virus-infected MDCK cells. Monolayers of MDCK cells in 24-well plates were incubated with (i) WT (■) or PTX3R HKx31 (○), or with (ii) WT (●) or PTX3R PC/73 (○) at 0.01 PFU/cell for 1 hr at 37°C, washed extensively and incubated in serum-free media supplemented with TPCK-treated trypsin to allow for multiple cycles of virus replication. At various times post-infection, supernatants were removed and titres of infectious virus were determined by plaque assay on MDCK cells. Data shown are the mean virus titres (± 1 SD) from three independent experiments.
Fig S2. Local and systemic markers of disease in mice infected with WT or PTX3^R PC/73. Groups of five C57Bl/6 mice infected with 10⁴ PFU of WT or PTX3^R PC/73 were culled and analysed at day 7 post infection. Naive animals were included for comparison. (A) Viable count and flow cytometry of BAL cells. Shown are the mean numbers (± 1 SD) of total BAL cells (viable count) as well as neutrophils (GR1^{high}), NK cells (NK1.1⁺ CD3⁻), CD8⁺ lymphocytes (I/e), CD4⁺ lymphocytes and B220⁺ cells, pooled from two independent experiments (n = 9-10 per group total). (B) Analysis of thymi cell suspensions by flow cytometry. TCR^b⁺ cells were identified and classified as double-negative (CD4⁻CD8⁻; DN), double-positive (CD4⁺CD8⁺; DP) and single positive (CD4⁺ or CD8⁺) thymocytes. Bars show the mean cell number (± 1 SD) and are representative of 2 independent experiments. (C) Cell types in blood were determined by flow cytometry. Data shows the mean number (± 1 SD) of total cells (viable count), total leukocytes (CD45⁺), neutrophils (GR1^{high}), B220⁺ cells, CD4⁺ T cells (CD4⁺ TCR^β⁺) and CD8⁺ T cells (CD8⁺ TCR^β⁺), pooled from 2 independent experiments (n = 10 per group total). * Mice infected with PTX3^R were significantly different to WT-infected mice (* p < 0.05, ** p < 0.01, *** p < 0.001, one-way ANOVA).
Fig S3. PTX3 is induced in airway epithelial cells upon exposure to TNFα but not by infection with influenza virus. Monolayers of human A549 airway epithelial cells were incubated with 10⁶ PFU of HKx31 or PTX3K in serum-free media with or without 20ng of recombinant human TNFα, or in an equivalent concentration of TNFα in the absence of virus, for 1 hr at 37 °C. Cells were washed and cultured for 24 hr before clarified supernatants were assayed for levels of PTX3 by ELISA. Mock-infected cells were included to determine background levels of PTX3. ** p < 0.01, *** p < 0.001, one-way ANOVA, Tukeys post-test, in comparison to mock-treated cells.
Supplementary Table 1A. Ability of wild-type and PTX3^R mutants to agglutinate erythrocytes bearing defined sialic acid linkages

<table>
<thead>
<tr>
<th>Virus</th>
<th>Native</th>
<th>Asialo</th>
<th>SA α(2,3)</th>
<th>SA α(2,6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BJx109</td>
<td>64</td>
<td><1</td>
<td><1</td>
<td>64</td>
</tr>
<tr>
<td>PR8</td>
<td>64</td>
<td><1</td>
<td>128</td>
<td><1</td>
</tr>
<tr>
<td>HKx31</td>
<td>64</td>
<td><1</td>
<td>16</td>
<td>128</td>
</tr>
<tr>
<td>HKx31 PTX3<sup>R</sup></td>
<td>64</td>
<td><1</td>
<td>8</td>
<td>128</td>
</tr>
<tr>
<td>PC/73</td>
<td>64</td>
<td><1</td>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>PC/73 PTX3<sup>R</sup></td>
<td>64</td>
<td><1</td>
<td>64</td>
<td>32</td>
</tr>
</tbody>
</table>

*Chicken erythrocytes were unmodified (Native) or treated with *V. cholera* sialidase (Asialo), or sialidase- treated and resialylated with CMP-sialic acid and specific sialyltransferases to express either Neu5Aca2,6Gal and NeuAca2,3Gal.

Supplementary Table 1B. Wild-type and PTX3^R mutants ability to bind to erythrocytes treated with increasing amounts of RDE.

<table>
<thead>
<tr>
<th>Virus</th>
<th>Concentration of RDE (mU/ml)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>PR8</td>
<td>+</td>
</tr>
<tr>
<td>HKx31</td>
<td>+</td>
</tr>
<tr>
<td>HKx31 PTX3<sup>R</sup></td>
<td>+</td>
</tr>
<tr>
<td>PC/73</td>
<td>+</td>
</tr>
<tr>
<td>PC/73 PTX3<sup>R</sup></td>
<td>+</td>
</tr>
</tbody>
</table>

*Turkey erythrocytes were treated with increasing concentrations of *V. cholera* sialidase (RDE) and the ability of 4 HAU of virus to agglutinate cell was determined. “+” indicates agglutination, “-” indicates inability to agglutinate.

Supplementary Table 1C. Ability of WT and PTX3^R mutants to agglutinate erythrocytes derived from different species

<table>
<thead>
<tr>
<th>Origin of erythrocyte</th>
<th>HKx31</th>
<th>HKx31 PTX3<sup>R</sup></th>
<th>PC/73</th>
<th>PC/73 PTX3<sup>R</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Horse</td>
<td><1</td>
<td><1</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Turkey</td>
<td>64</td>
<td>64</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Human</td>
<td>128</td>
<td>128</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Rabbit</td>
<td><1</td>
<td><1</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>