J Immunol published online 24 May 2013
http://www.jimmunol.org/content/early/2013/05/23/jimmunol.1202905

Enhanced T Cell Function in a Mouse Model of Human Glycosylation

George Buchlis, Pamela Odorizzi, Paula C. Soto, Oliver M. T. Pearce, Daniel J. Hui, Martha S. Jordan, Ajit Varki, E. John Wherry and Katherine A. High

http://www.jimmunol.org/content/suppl/2013/05/24/jimmunol.1202905.DC1

Supplementary Material

Substitution

Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Enhanced T Cell Function in a Mouse Model of Human Glycosylation

George Buchlis,*† Pamela Odorizzi,* Paula C. Soto,‡ Oliver M. T. Pearce,§ Daniel J. Hui,† Martha S. Jordan,* Ajit Varki,‡ E. John Wherry,* and Katherine A. High,*†§

Clinical evidence for a more active immune response in humans compared with our closest hominid relative, the chimpanzee, includes the progression of HIV infection to AIDS, hepatitis B- and C-related inflammation, autoimmunity, and unwanted harmful immune responses to viral gene transfer vectors. Humans have a unique mutation of the enzyme CMP-N-acetylneuraminic acid hydroxylase (CMAH), causing loss of expression of the sialic acid Neu5Gc. This mutation, occurring 2 million years ago, likely altered the expression and function of ITIM-bearing inhibitory receptors (Siglecs) that bind sialic acids. Previous work showed that human T cells proliferate faster than chimpanzee T cells upon equivalent stimulation. In this article, we report that Cmah−/− mouse T cells proliferate faster and have greater expression of activation markers than wild-type mouse T cells. Metabolically reintroducing Neu5Gc diminishes the proliferation and activation of both human and murine Cmah−/− T cells. Importantly, Cmah−/− mice mount greater T cell responses to an adenovirus encoding an adeno-associated virus capsid transgene. Upon lymphocytic choriomeningitis virus infection, Cmah−/− mice make more lymphocytic choriomeningitis virus–specific T cells than WT mice, and these T cells are more polyfunctional. Therefore, a uniquely human glycosylation mutation, modeled in mice, leads to a more proliferative and active T cell population. These findings in a human-like mouse model have implications for understanding the hyperimmune responses that characterize some human diseases. The Journal of Immunology, 2013, 191: 000–000.

Mammalian cells are coated with a complex layer of glycans that mediate pathogen binding, cell adhesion, cell trafficking, cell signaling, endocytosis, apoptosis, and proliferation (1). Although heterogeneity in the expression and structure of these glycans can exist within the same individual and even within the same organ, an interesting species-specific divergence in these sugars was discovered in 1998. Two groups reported the human-specific inactivating mutation of the enzyme CMP-N-acetylneuraminic acid hydroxylase (CMAH), which is responsible for the conversion of sialic acid precursor CMP-Neu5Ac to CMP-Neu5Gc by the addition of a single hydroxyl group (2, 3). As a result, Neu5Gc is not synthesized in human cells and is, in fact, immunogenic (4, 5). This mutation appears to have set in motion a series of genetic and biochemical changes in the biology of sialic acids that may contribute to several unique aspects of human biology in health and disease (6, 7).

Of the many functions that sialic acids play in cellular physiology, their role as ligands of inhibitory Siglecs is well recognized. Siglecs, or sialic acid–binding Ig superfamily lectins, are broadly and variably expressed on cellular surfaces of the mammalian immune system and have unique binding preferences for the type of sialic acid and its linkage to the underlying glycan chain (8). Many Siglecs, including CD22 and most of the CD33-related Siglecs, contain ITIMs in their cytoplasmic tails, which, when phosphorylated by Src family kinases, recruit phosphatases that attenuate downstream signaling (9, 10). A number of studies have characterized the inhibitory effects of Siglecs in human (11–15) and murine (16–18) immune systems. Humans lost expression of Siglec-5 on T cells, which potentially occurred as a result of genetic pressure on Siglec loci after the loss of CMAH function and thus the absence of sialic acid ligand Neu5Gc. Subsequent investigation showed that when equivalently stimulated, human T cells proliferate much faster than nonhuman primate (NHP) T cells, and this proliferation can be slowed by expressing Siglec-5 in the human T cells (19, 20).

Interestingly, humans are much more prone to AIDS progression during HIV infection when compared with HIV-infected chimpanzees and West African chimpanzees that are hosts for related simian immunodeficiency viruses. One hypothesis for human progression to AIDS is that enhanced activation of the human immune system in response to HIV eventually leads to exhaustion and death of CD4+ T cells (7). The hepatitis viruses provide another example of differences in immune response; a large proportion of humans infected with hepatitis B or hepatitis C virus progress to chronic active hepatitis, whereas the disease tends to be acute and self-limited in chimpanzees. Even in those unusual cases that progress to chronic infection in hepatitis B virus– and hepatitis C virus–infected chimpanzees, the severity of complications related to these pathologies is reduced compared with...
improve the immune response to infectious agents and act as a natural defense against overactive immune responses. The Cmah gene, which plays a critical role in immune regulation, may provide evolutionary insights into the cause of overactive immune pathologies in humans. The human-specific glycosylation profiles of the Cmah gene would serve as an evolutionary model for the unique immune response–related pathologies.

Recently, a Cmah−/− mouse was generated to examine the effect of this human enzyme mutation in the context of both normal and disease settings in an animal model. Initial studies in these mice showed physiologic features such as delayed wound healing and age-related hearing loss, and a human-like muscular dystrophy phenotype following combined mutation of the dystrophin gene. Immunologically, these mice have enhanced B cell proliferation and Ab production, which is consistent with the observation that Neu5Gc is physiologically downregulated during normal B cell activation. In addition, a recent publication showed a similar downregulation of CMAH function and Neu5Gc levels in activated wild-type (WT) murine T cells.

We hypothesized that mice engineered to mimic the human mutation of the Cmah gene would display enhanced T cell responses to in vitro and in vivo stimulation. We found that, upon equivalent T cell stimulation in vitro, Cmah−/− T cells proliferated faster, had greater expression of activation markers, and secreted more IFN-γ than WT T cells. In addition, the responses in both human T cells (which are naturally Cmah deficient) and Cmah−/− mouse T cells were blunted by reintroducing the missing Neu5Gc sialic acid onto the cell surface via metabolic incorporation from the culture media. Immunization of Cmah−/− mice with an adenoviral (Ad) vector encoding the AAV (Ad-AAV) capsid elicited a stronger T cell response in Cmah−/− mice compared with WT littermate mice. Finally, we asked whether the robust T cell immune responses of Cmah−/− mice were seen in the context of a live replicating viral infection. Cmah−/− mice infected with acute lymphocytic choriomeningitis virus (LCMV) strain Armstrong developed more LCMV-specific T cells in the blood and spleen. Importantly, LCMV peptide-stimulated splenic T cells from Cmah−/− mice produced a higher proportion of cytokines than WT T cells at day 42 post-infection. These findings shed light on the role that glycosylation plays in immune regulation, and may give evolutionary insight into the cause of overactive immune pathologies in humans.

Materials and Methods

Mice

Cmah−/− mice generated as described previously (27) and backcrossed to C57BL/6 mice >10 generations were bred with C57BL/6 mice purchased from Jackson Laboratories to obtain heterozygous breeding pairs. Heterozygous breeding pairs were then mated, creating Cmah+/− (essentially WT and will be referred to as such in this article) mice. The Cmah−/− and WT mice were used in experiments as littermates, and surplus Cmah−/− heterozygous mice were saved for future mating. Mice were bred and maintained, and investigations were conducted according to an approved Children’s Hospital of Philadelphia Institutional Animal Care and Use Committee protocol.

In vitro proliferation and activation assays

Naïve Cmah−/− and WT mouse spleens were harvested, and splenocytes were isolated using a 70-μm nylon cell strainer and plunger. Isolated splenocytes were either directly labeled with Cell Trace CFSE (Invitrogen) and plated in culture, or subjected to CD8+ T cell isolation using the CD8+ T Cell Negative Isolation Kit (Dynal/Invitrogen) and then labeled with CFSE. 2E6 CFSE-labeled cells were plated with 25 μl anti-CD3/anti-CD28 activator beads (Dynal/Invitrogen) in 1 ml AIM V culture medium (Life Technologies) supplemented with 3% FBS, penicillin/streptomycin, and glucose. Cells were cultured in these conditions for 3 or 5 d, harvested, washed, and stained with 1:100 anti-CD62L-PE (BD Bioscience) and 1:100 anti-CD25-allophycocyanin-Cy7 (BD Bioscience) for 30 min at 4°C. Cells were washed twice, resuspended in 4% paraformaldehyde solution, and read on a FACSCanto II (BD) flow cytometer.

Neu5Gc feeding experiments

Mouse T cell experiments. CFSE (5 μM)-labeled negatively isolated mouse T cells were cultured for 2 d in 6 mM Neu5Gc- or Neu5Ac-containing media, stimulated with immobilized anti-CD3 (200 ng/ml) and soluble anti-CD28 (1 μg/ml), and analyzed for CD69 (anti-CD69-PE; BD) expression and CFSE dilution after 5 d.

Human T cell experiments. Isolated human CD4 T cells were cultured for 3 d in 3 mM Neu5Gc- or Neu5Ac-containing media, stimulated with immobilized anti-CD3 (25 ng/ml) and soluble anti-CD28 (1 μg/ml), and analyzed for CD25 expression after 2 d. For proliferation analysis, human PBMCs were labeled with 5 μM CFSE, stimulated with immobilized anti-CD3 (25 ng/ml) and soluble anti-CD28 (1 μg/ml) for 5 d, and analyzed for CFSE dilution. Neu5Gc and Neu5Ac sialic acid stocks were synthesized as described previously (31).

In vitro stimulation

Isolated splenocytes were plated at either 1E6/200 μl (LCMV and AAV peptide stimulations) or 1E6/500 μl (PMA and anti-CD3 stimulations) and incubated for 5 h in either 10% FBS RPMI (LCMV stimulations; Life Technologies) or 3% FBS AIM V media as described earlier (AAV peptide, PMA, and anti-CD3 stimulations). For PMA, anti-CD3, and AAV peptide stimulations, 1 μl BD GolgiStop (BD) was added to the stimulation medium to block transport and intracellularly accumulate cytokines. For LCMV stimulations, 1:500 GolgiStop and 1:1000 GolgiPlug (BD) were added to the stimulation media, along with 1:1000 anti-CD107a-Alexa Fluor 488 (BioLegend). Stimulant concentrations were as follows: 50 ng/ml PMA along with 1 μg/ml ionomycin, 1 μg/ml anti-CD3, 5 μg/ml AAV2 H2Kb peptide (SYNKNKSVNY) (32), 0.4 ng/ml LCMV GP276 or GP066-77 peptides.

Intracellular cytokine staining

Surface stains. After 5 h of stimulation, cells were harvested, washed, and surface stained for 30 min at 4°C. For LCMV stimulations, cells were stained for 20 min at room temperature with 1:600 Live/Dead Fixable Aqua Dead Cell Stain, washed, stained 30 min at 4°C with 1:400 anti-CD4-PE Texas Red (Invitrogen) or 1:100 anti-CD8-PE Texas Red (Invitrogen) and anti–CD44-Aqua Fluor 700 (BioLegend). For AAV stimulations, cells were stained for 30 min at 4°C with 1:100 anti-CD8-Pacific Blue (BioLegend) and 1:100 anti-CD44-allophycocyanin-Cy7 (BD). For PMa and anti-CD3 stimulations, cells were stained for 30 min at 4°C with 1:100 anti-CD8-FITC (BD) and anti-CD4-PE (BD).

Intracellular stains. Cells were washed twice, fixed, and permeabilized with Cytofix/Cytoperm solution (BD) for 20 min at 4°C. Cells were washed twice with Perm Buffer (BD) and stained for 30 min at 4°C. For LCMV stimulations, 1:100 anti–IFN-γ–PerCp–Cy5.5 (BioLegend), 1:100 anti–TNF-α-Pacific Blue (BioLegend), 1:20 anti–Mip10-PE (R&D Systems), and 1:100 anti–IL-2–allophycocyanin (eBioscience). For AAV peptide, PMA, and anti-CD3 stimulations, 1:100 anti–IFN-γ–allophycocyanin (BD) was used. Cells were washed twice with Perm Buffer, resuspended in fixative, and read on either an LSRII (BD) or FACS CantoII.

Viral infections

Four-month-old littermate WT and Cmah−/− mice were injected with either 50 μl/kg l.m. in the quadriceps with 1E9 PFU/mouse (LCMV experiments: Ad human 5 construct encoding the AA V2 capsid proteins as a transgene) (32) or 300 μl i.p. with 2E5 PFU/mouse (LCMV experiments: LCMV strain Armstrong). Mice were bled and sacrificed at day 10 post-immunization (Ad–AAV immunization) or bled weekly until sacrifice at day 42 (LCMV infections). Blood was collected retro-orbitally at various points during immunization (Ad–AAV immunization) or bled weekly until sacrifice at day 42 (LCMV infections). Blood was collected retro-orbitally at various time points via heparinized microcapillary tubes (Fisher Scientific) into 1 ml of 4% sodium citrate and 1 ml 1% RPMI. Spleens were harvested and processed at sacrifice as previously described. Cells were washed and then stained for surface markers.

Longitudinal surface stains and LCMV plaque assays

LCMV experiment stains. PBMCs were stained first for 20 min at room temperature with 1:600 Live/Dead Fixable Aqua Dead Cell Stain, washed, and plated in culture, or subjected to CD8+ T cell isolation using the CD8+ T Cell Negative Isolation Kit (Dynal/Invitrogen) and then labeled with CFSE.
then stained 30 min at 4°C with 1:100 anti-KLRG1-FTTC (Beckman Coulter), anti–CD4–PE Texas Red (Invitrogen), anti–CD8–Pacific Blue (BioLegend), anti–CD217–PE (BioLegend), anti–CD44–Alexa Fluor 700 (BioLegend), and LCMV Gp33 tetramer-allophycocyanin.

AAV experiment stains. PBMCs were stained 30 min at 4°C with 1:10 AAV-SNYNSKVNV Pentamer (Proimmune), 1:100 anti–CD8–Pacific Blue (BioLegend), and 1:100 anti–CD44–allophycocyanin-Cy7 (BD). Cells were then washed twice, resuspended in fixative, and read on either an LSRII or FACS CantoII.

LCMV plaque assays. Spleens were homogenated were titrated for viral load using a Vero cell plaque assay as previously described (33).

Ly5.2 donor CD8 transfer into Ly5.1 recipient mice

Spleens were harvested from both Cmah /−/− and WT mice, and processed as previously described to obtain splenocytes. CD8 T cells were negatively isolated from mouse strain pooled splenocyte populations using the Dynal CD8 negative isolation kit. Because Cmah /−/− mice are on a C57BL/6 WT background, they express the Ly5.2 isofrom of CD45. We are thus able to transfer these cells into congenic recipient mice expressing Ly5.1 to track donor cells. Four- to 6-week-old female Ly5.1 mice were purchased from either the National Cancer Institute or Jackson Laboratories to be used as recipient mice. 200E L/S Ly5.2 naive donor (Cmah /−/− or WT) CD8 T cells were suspended in 200 μl RPMI and injected i.v. into the tail vein of recipient mice. Recipient mice were also infected with LCMV. Mice were then stained 30 min at 4°C with 1:10 AAV-SNYNSKVNV Pentamer (Proimmune), 1:100 anti–CD8–Pacific Blue (BioLegend), and 1:100 anti–CD44–allophycocyanin-Cy7 (BD). Cells were then washed twice, resuspended in fixative, and read on either an LSRII or FACS CantoII.

Gating strategy for flow cytometric analysis

General gating schemes for the live viral infection analyses throughout this article are described in Supplemental Fig. 1. In brief, cells were plotted forward scatter area versus side scatter area to determine the lymphocyte population. After gating on the lymphocyte population, gates were subsequently made to only include singlets and were further gated on live cells. Then CD8+ cells were selected and either plotted for tetramer response or for cytokine analysis and IFN-γ production.

Statistical analysis

All statistical analysis was performed in GraphPad Prism software, and data significance was determined by two-tailed Student t test.

Results

In vitro T cell proliferation and activation is augmented in Cmah /−/− mice

To assess T cell proliferation and activation in vitro, we isolated both Cmah /−/− and WT splenocytes from naive mice. We labeled total splenocytes with CFSE and plated them with anti-CD3/anti-CD28 activator beads for 5 d. By day 5, Cmah /−/− CD8 T cells within the splenocyte population proliferated faster than their WT counterparts (Fig. 1A), as did CD4 T cells (Supplemental Fig. 2A). In addition to the observed enhanced dilution of CFSE, division and proliferation indices at 5 d were significantly greater in Cmah /−/− CD8 T cells when compared with WT CD8 T cells (Fig. 1B). Unstimulated splenocytes showed no difference in CFSE dilution after 5 d (Supplemental Fig. 2C). This apparent difference in proliferation was not due to potential survival effects of the Cmah mutation, as both WT and Cmah /−/− cultures had similar levels of cell death when compared with the expected number of cells at 5 d (Supplemental Fig. 2F). In addition, both Cmah /−/− CD8 and CD4 T cells had lower levels of CD62L (L-selectin) than WT T cells, the loss of which is a hallmark of T cell activation (Fig. 1A, 1B). Baseline levels of unstimulated CD8 and CD4 T cells showed no difference in CD62L levels (Supplemental Fig. 2D and data not shown). To determine whether the heightened activation and increased proliferation in Cmah /−/− T cells was an intrinsic cell phenomenon or was dependent on the context of other splenic populations, we negatively isolated CD8 T cells from naive spleens of both Cmah /−/− and WT mice. These CD8 T cells were CFSE labeled, plated at equal numbers, and activated for either 3 or 5 d with anti-CD3/anti-CD28 activator beads. Cmah /−/− CD8 T cells had lower levels of CD62L and higher expression of IL-2Rα (CD25), which is upregulated during T cell activation. These differences emerged as early as day 3 poststimulation and were sustained through day 5 (Fig. 1C). Although there was a subtle increase in Cmah /−/− CD8 T cell proliferation at day 3, they had proliferated to a much greater extent than WT CD8 T cells by day 5 (Fig. 1C).

To investigate whether the enhanced activation and proliferation observed in Cmah /−/− versus WT CD8 T cells are associated with early signaling/activation differences, we evaluated CD62L and CD25 expression at early time points after TCR and CD28 stimulation. As early as 5 h postactivation, there were significantly higher frequencies of Cmah /−/− T cells that lost CD62L expression when compared with WT littermate CD8 T cells (Fig. 1D). In addition, Cmah /−/− CD8 T cells had higher levels of CD25 expression on their surface at 5 h (Fig. 1D). To assess whether these differences in proliferation and activation markers corresponded to functional differences, we stimulated naive T cells with PMA and stained intracellularly for IFN-γ production. After 5 h of stimulation, a significantly higher frequency of Cmah /−/− CD8 and CD4 T cells produced IFN-γ when compared with WT T cells (Fig. 1E). Similarly, Cmah /−/− CD8 T cells stimulated for 5 h with an anti-CD3 Ab displayed a higher frequency of IFN-γ–producing T cells when compared with WT CD8 T cells (Supplemental Fig. 2B). Thus, Cmah /−/− T cells more rapidly acquire an activated phenotype, proliferate faster, and produce more IFN-γ than WT T cells upon equivalent T cell stimulation in vitro.

Metabolically reintroducing Neu5Gc to Cmah /−/− T cells and human T cells blunts proliferation and activation

Because both human T cells and Cmah /−/− T cells lack the ability to produce Neu5Gc sialic acid, we hypothesized that metabolically reintroducing Neu5Gc into these cells (34) via the culture media would blunt the previously observed enhanced activation and proliferation. We activated CFSE-labeled human PBMCs and Cmah /−/− mouse T cells for 5 d with immobilized anti-CD3 and soluble anti-CD28 in either Neu5Gc-containing media or Neu5Ac-containing control media. Efficient incorporation of Neu5Gc from the culture medium was visualized in human cells with an Ab recognizing Neu5Gc (Supplemental Fig. 2E). Both human and Cmah /−/− T cell proliferation was blunted by the introduction of the missing Neu5Gc sialic acid when compared with control Neu5Ac-fed T cells, as seen by decreased dilution of CFSE at 5 d postactivation (Fig. 2A). When we preincubated human CD4 T cells for 3 d in Neu5Gc-containing media and activated them for 2 d, they showed an ∼50% reduction in CD25 expression over Neu5Ac control fed T cells, indicating that Neu5Gc feeding of human T cells blunts activation (Fig. 2B). Similarly, preincubating Cmah /−/− T cells for 2 d with Neu5Gc and activating them for 5 d greatly decreased activation marker CD69 levels in both CD4 and CD8 T cells when compared with Neu5Ac-fed control T cells (Fig. 2B). These results indicate that the metabolic reintroduction of missing sialic acid Neu5Gc to both human and Cmah /−/− T cells blunts their activation and proliferation during in vitro stimulation.

Cmah /−/− mice mount a greater CD8 T cell response to AAV after Ad-AAV immunization

We hypothesized that the absence of CMAH in humans may have contributed to the unanticipated immune responses seen in AAV gene therapy trials (21–23). To test this, we moved to an in vivo viral immune challenge, to correlate the in vitro hyperactivation of Cmah /−/− T cells to an in vivo phenotype. We i.m. immunized Cmah /−/− and WT mice with a human Ad serotype 5 vector encoding the AAV serotype 2 capsid. No difference in AAV-
specific T cells was observed at baseline as expected (Fig. 3A), and no difference in naive T cell numbers was observed in the spleen of unimmunized mice (data not shown). However, a significantly higher number of T cells against the AAV2 capsid was found in the peripheral blood of Cmah\(^{2-/-}\) mice at day 10 when compared with WT mice (Fig. 3A). Although not as dramatic, an increase in Cmah\(^{2-/-}\) AA V2 capsid-specific T cells over WT T cells was also seen in day 10 splenocytes (Fig. 3B). In addition, when we stimulated day 10 splenocytes with the H-2Kb AAV2 peptide SNYNKSVNV, we observed a significantly higher frequency of Cmah\(^{2-/-}\) T cells producing IFN-\(\gamma\) when compared with WT T cells (Fig. 3C). Therefore, i.m. immunization with Ad-expressing AAV2 capsid leads to a more robust CD8 T cell response at day 10 in Cmah\(^{2-/-}\) mice versus WT mice.

Cmah\(^{2-/-}\) mice mount a greater T cell response during acute LCMV Armstrong infection

Although the Ad immunization results showed an enhanced T cell response in Cmah\(^{2-/-}\) mice, we sought to assess the T cell kinetics and activation during a live, replicating viral infection, predicting that Cmah\(^{2-/-}\) mice would mount a stronger T cell response during infection. To do this, we infected Cmah\(^{2-/-}\) mice and WT mice with the acute Armstrong strain of LCMV. Mice were bled longitudinally for PBMC analysis and sacrificed at day 42 for terminal splenocyte analysis. A representative flow cytometric gating strategy depicts how the data were analyzed (Supplemental Fig. 1). At the peak of the T cell response on day 8 postinfection, we observed a dramatic increase in the frequency of total CD8 T cells in the blood of Cmah\(^{2-/-}\) mice when compared with WT mice (Fig. 4A). We also observed significantly more Cmah\(^{2-/-}\) T cells directed against the gp33 epitope of LCMV at day 8 in the blood, and this difference remained significant throughout the duration of the 42-d study (Fig. 4B). Furthermore, we saw a marked increase in the number of LCMV-specific KLRG1-CD127\(^+\) memory precursor T cells in Cmah\(^{2-/-}\) mice versus WT mice. This difference was apparent at day 14 postinfection and remained significant in the blood at day 42 (Fig. 4C). Interestingly, there was no difference in splenic LCMV viral titers during the course of the infection between Cmah\(^{2-/-}\) and WT mice (Supplemental Fig. 4). At day 42 postinfection, Cmah\(^{2-/-}\) mice also had a higher frequency
of LCMV-specific CD8 T cells in the spleen compared with WT mice (Fig. 4D), and a higher frequency of these LCMV-specific T cells were memory precursor KLRG1-CD127+ (Fig. 4E). In an attempt to determine whether the in vivo response to LCMV is CD8 autonomous, we transferred 20E6 CD8 T cells from either Cmah$^{-/-}$ or WT mice into congenic Ly5.1 mice. Because Cmah$^{-/-}$ and WT littermates are on a C57BL/6 background, they are Ly5.2+ and can be tracked in the Ly5.1 recipient mice. Recipient mice were infected with LCMV and sacrificed at days 6–7 to analyze PBMCs and splenocytes. We observed greater numbers of Cmah$^{-/-}$ gp33+ donor CD8 T cells in the spleen and a trend for greater numbers in the PBMCs when compared with the response of WT CD8 T cells in recipient mice (Fig. 4F). This supports the hypothesis that the observed CD8 T cell response to LCMV infection is CD8 autonomous. Thus, after a live viral infection with LCMV, Cmah$^{-/-}$ mice generate a greater number of LCMV-specific T cells in the blood and spleen compared with WT mice. In addition, a greater proportion of the Cmah$^{-/-}$ LCMV-specific T cell compartment is composed of KLRG1-CD127+ memory precursor cells.

LCMV-specific T cells in Cmah$^{-/-}$ mice produce a higher proportion of cytokines than WT T cells

We also hypothesized that T cells generated against LCMV were themselves more functional in Cmah$^{-/-}$ mice versus WT mice. To test this, we stimulated equal numbers of day 42 splenocytes from Cmah$^{-/-}$ and WT mice with LCMV peptides and stained for intracellular cytokine production. We observed a higher proportion of IFN-γ+ Mip1α+ T cells in Cmah$^{-/-}$ mice compared with WT mice (Fig. 5A, 5B), which correlated well with the observed increase in LCMV-specific T cells by tetramer staining. To assess the polyfunctionality of the CD8 T cell compartment, we looked at production of TNF-α and IL-2 by the IFN-γ+ Mip1α+ T cells. A significantly greater proportion of Cmah$^{-/-}$ Mip1α+IFN-γ+ CD8 T cells made both TNF-α and IL-2 when compared with WT CD8 T cells (Fig. 5C). Similar trends in increased T cell functionality were observed in day 8 splenocytes (Supplemental Fig. 3). Furthermore, Cmah$^{-/-}$ mice had an increase in the proportion of day 42 CD8 T cells capable of performing multiple functions simultaneously (expression of CD107a, Mip1α, IFN-γ, TNF-α, and IL-2) upon peptide stimulation. This was especially evident in the fraction of CD8 T cells that produced four or five functions simultaneously (Fig. 5D, 5E). In summary, the T cell response to LCMV Armstrong in Cmah$^{-/-}$ mice is more robust than the response seen in WT mice.

Discussion

Several theories have been proposed to explain the loss of function of the CMAH enzyme in humans after their evolutionary divergence from nonhuman hominids. One holds that a pathogen that bound Neu5Gc sialic acid may have been so detrimental to human survival that the mutation of CMAH, and thus the loss of Neu5Gc expression, allowed humans to escape this pathogen (7, 35). This would have placed an enormous benefit on fixing this mutation in the human population, perhaps even at the cost of reduced inter-
action of glycans with ITIM-bearing inhibitory receptors and altered immunologic effects.

In our study, we showed that Cmah^{−/−} mouse T cells had higher levels of activation markers and proliferated faster in vitro upon equivalent stimulation when compared with WT mice. These results are similar to studies done in human versus chimpanzee T cells, where human T cells proliferate more than equivalently stimulated chimpanzee T cells (19, 20). In those human versus chimpanzee

FIGURE 3. Cmah^{−/−} mice mount a greater CD8 T cell response to AAV after Ad-AAV immunization. Mice were immunized with human Ad serotype 5 i.m. (A) Representative frequency of H-2K^b AAV2-Pentamer⁺ CD8⁺ T cells in the blood at baseline (top) and day 10 (bottom) of WT (left panels) and Cmah^{−/−} (middle panels) mice and the number of H-2K^b AAV2-Pentamer⁺ CD8⁺ T cells per 10⁶ lymphocytes (right panels). (B) Representative frequency of H-2K^b AAV2-Pentamer⁺ CD8⁺ T cells in the spleen at day 10 of WT (left panel) and Cmah^{−/−} (middle left panel) mice and the frequency of H-2K^b AAV2-Pentamer⁺ CD8⁺ T cells (middle right panel). Absolute numbers of H-2K^b AAV2-Pentamer⁺ CD8⁺ T cells are plotted in the far right panel. (C) Representative frequency of IFN-γ⁺ CD8 T cells in day 10 spleens of WT (left panel) and Cmah^{−/−} (middle left panel) mice after 5 h of H-2K^b AAV2 peptide SNYNKSVNV stimulation and the summary plot of all frequencies in each group (middle right panel). Absolute numbers of IFN-γ⁺ CD8 T cells are plotted in the far right panel. n = 5 mice/group. Results are representative of at least two experiments. *p < 0.05, #p < 0.1, Student t test.
studies, it was hypothesized that the loss of Siglecs on human T cells, likely a result of evolution from the loss of CMAH function, reduced the inhibitory threshold for activation. Accordingly, Siglec-5 transfection of human T cells was able to blunt the proliferation effect. In our study, we metabolically reintroduced Neu5Gc sialic acid via the culture media of both human and Cmah-/- T cells, and observed reduced proliferation and activation.

The observed blunting of proliferation and activation upon Neu5Gc feeding fits well with a recent study that reported a physiologic reduction of CMAH function and Neu5Gc expression during normal murine T cell activation (30). This article showed decreased binding of activated T cells to several ITIM-bearing Siglecs, including CD22, a known B cell inhibitory Siglec that preferentially binds Neu5Gc. Less clear is the presence of these Siglecs on murine T cells, with the exception of one study that showed CD22 on some murine T cells (36). Indeed, we confirmed that CD22 is both transcribed and expressed on WT and Cmah-/- T cells, with the exception of one study that showed CD22 on some murine T cells (36). Therefore, the loss of Neu5Gc may have rendered these cells more readily activated, because there would be less CD22 (and thus less associated phosphatase activity) clustering with sialylated receptors at the surface. Although this may be a suitable explanation for the subset of cells expressing CD22, we cannot conclude that this is entirely responsible for the observed proliferation and activation differences.

When we challenged mice in vivo with a live, replicating acute strain of LCMV (Armstrong), Cmah-/- mice generated greater numbers of CD8 T cells directed against the LCMV virus. The higher frequencies of LCMV-specific T cells are likely a result of reduced activation thresholds and corroborate the observed increases in proliferation and activation in vitro. Previous studies have shown that a long-lived memory T cell population arises from a killer cell lectin-like receptor G1 (KLRG1) low, IL-7Rα (CD127) high subset of Ag-specific cells (37, 38). Interestingly, among the

FIGURE 4. Cmah-/- mice mount a greater T cell response during acute LCMV Armstrong infection. Mice were infected with acute LCMV strain Armstrong and bled at various time points until sacrifice and spleen isolation at day 42. (A–C) Mouse PBMCs. (A) Frequency of CD8+ T cells at day 8 in the blood of WT (left plot) and black triangles in right plot) and Cmah-/- (middle plot and red squares in right plot) mice. Left and middle plots show the median representative dot plots from each group, whereas the right plot shows quantification of the frequencies. (B) Number of LCMV H2-D^b gp33 tetramer+ CD8+ T cells per 1E6 lymphocytes in the blood of WT (black line, right plot) and Cmah-/- (red line, right plot) mice over 42 d. Left and middle plots show the median representative dot plots from day 42 from each group, whereas the right plot graphs the number of tetramer+ cells per 1E6 lymphocytes over time. (C) Number of LCMV H2-D^b gp33 tetramer+ CD8+ T cells that are KLRG1-CD127+ per 1E6 lymphocytes in the blood of WT (black line, right plot) and Cmah-/- (red line, right plot) mice over 42 d. Left and middle plots show the median representative dot plots from day 42 from each group, whereas the right plot graphs the number of memory-phenotype tetramer+ cells per 1E6 lymphocytes over time. (D and E) Mouse splenocytes at day 42. (D) Left and middle plots show the median representative dot plots of the frequencies of LCMV H2-D^b gp33 tetramer+ CD8+ splenocytes from day 42 from each group, whereas the right plot shows quantification of the absolute numbers of these cells in the spleen. WT (black triangles in right plot) and Cmah-/- (red squares in right plot). Similar trends were observed in the number of gp276 tetramer+ CD8+ splenocytes. (E) Left and middle plots show the median representative dot plots of the frequencies of KLRG1-CD127+ LCMV H2-D^b gp33 tetramer+ CD8+ splenocytes, whereas the plot on the right shows quantification of these frequencies in WT (black triangles in right plot) and Cmah-/- (red squares in right plot) spleens. (F) Day 7 CD8 donor (Ly5.2) analysis in Ly5.1 recipient mice infected with LCMV. Left plot shows the number of gp33+ CD8+ donor T cells per spleen and right plot shows the number of gp33+ CD8+ donor T cells per 1E6 lymphocytes in the blood. Cmah-/- (red squares, four mice), WT (black triangles, three mice). n = 5 mice/group (A–E). Results are representative of at least two experiments. *p < 0.05, #p < 0.1. Student t test.
LCMV-specific T cells, there was a higher frequency of KLRG1-
CD127+ memory-precursor T cells in Cmah−/− mice. This precursor
difference did not seem to be due to a difference in LCMV viral load
kinetics in the spleen at days 3, 5, and 7 (Supplemental Fig. 4). It
remains possible that even a minor change in Ag level that we may
have not detected could have led to differences in memory formation,
as Ag removal is known to lead to memory transition of T cells (39).

Other factors known to influence memory T cell formation include
CD4 T cell help (40), the strength and duration of TCR stimulation
(39, 41, 42), inflammation during T cell activation (39, 41), and clonal
competition (42). Although we observed enhanced CD4 responses in
primates compared with WT littermate mice. This finding is of particular relevance to recent clinical
results in trials of AAV-mediated gene transfer of factor IX to the
liver of men with severe hemophilia B. Animal gene transfer
models had failed to predict a T cell–mediated immune response
directed against the AAV capsid that resulted in transient ele-
vation in liver enzymes and a loss of the donated gene in patients
with severe hemophilia (21, 22). Subsequent attempts to develop
an animal model that accurately mimicked the observed T cell
response to the AAV capsid transgene when compared with WT
mice. This has been shown that despite the presence
of CD8 T cells specific for AAV in NHP, humans have a more
polyfunctional resident memory population of AAV-specific
cells, whereas NHP have a population of CD8 T cells with an
effectors cell phenotype that seems to be less functional upon stim-
ulation (45). In preclinical gene transfer studies in which NHPs

FIGURE 5. LCMV-specific T cells in Cmah−/− mice produce a higher proportion of cytokines than WT T cells. Mice infected with acute LCMV Armstrong were sacrificed at day 42, and isolated splenocytes were stimulated for 5 h with LCMV peptides and stained for multiple cytokines to assay functionality. (A) and (C) Functionality of CD8+ T cells upon LCMV peptide stimulation in WT (black triangles in right plot) and Cmah−/− (red squares in right plot) mice. Left and middle plots show the median representative dot plots from each group, whereas the right plot shows the quantification of the frequencies. (B) Frequency of Mip1α+ IFN-γ CD4+ T cells upon LCMV peptide GP66-77 stimulation in WT (black triangles in right plot) and Cmah−/− (red squares in right plot) mice. Left and middle plots show the median representative dot plots from each group, whereas the right plot shows the quantification of the frequencies. (C) Frequency of Mip1α+ IFN-γ CD8+ T cells from (A) that are TNF-α-IL-2-. Representative plots on the left and middle; quantification on the right as described in (A). (D) Polyfunctional pie charts of day 42 stimulated CD8+ T cells from WT (left pie chart) and Cmah−/− (right pie chart) mice. Red = 5 functions, blue = 4 functions, orange = 3 functions, yellow = 2 functions, green = 1 function. Functions = CD107a, Mip1α, IFN-γ, TNF-α, and IL-2. (E) Bar graph representation of each combination of the functions defined in (D) between WT (blue bars) and Cmah−/− (red bars) CD8+ T cells, with the corresponding pie chart color on the bottom. n = 5 mice/group. Results are representative of at least two experiments. *p < 0.05, Student t test.
were infused with AAV, there was no observed T cell response or transaminasis (46–48).

To put our results in a wider context, there are many instances of what might be termed inappropriate immune responses in human pathology, including autoimmune disease, chronic inflammation, and the progression of HIV infection to AIDS. These pathologic conditions are not as frequent in other species and, for research purposes, are generally experimentally induced, because they are not naturally occurring. Many changes over human evolution have likely contributed to the presently heightened immune response in humans compared with other species. However, our findings of augmented T cell responses, in a mouse with a uniquely human glycosylation mutation likely to alter binding to ITIM-bearing inhibitory receptors, highlight the relationship between glycosylation and immune regulation in human pathology.

Acknowledgments
We acknowledge Robert Davidson for assistance with animal procedures and Dr. Sarah Ratcliffe for helpful discussion on statistical analysis. We also acknowledge Des. Robert H. Vonderheide, Michael R. Betts, Kyong-Mi Chang, and all members of the High, Wherry, Koretzky, and Variki laboratories for helpful comments and discussion.

Disclosures
The authors have no financial conflicts of interest.

References