TLR3-Triggered Reactive Oxygen Species Contribute to Inflammatory Responses by Activating Signal Transducer and Activator of Transcription-1

Chul-Su Yang, Jwa-Jin Kim, Sung Joong Lee, Jung Hwan Hwang, Chul-Ho Lee, Myung-Shik Lee and Eun-Kyeong Jo

J Immunol published online 13 May 2013
http://www.jimmunol.org/content/early/2013/05/08/jimmunol.1202574

Supplementary Material
http://www.jimmunol.org/content/suppl/2013/05/13/jimmunol.1202574.4.DC1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
TLR3-Triggered Reactive Oxygen Species Contribute to Inflammatory Responses by Activating Signal Transducer and Activator of Transcription-1

Chul-Su Yang,*† Jwa-Jin Kim,*‡ Sung Joong Lee,‡ Jung Hwan Hwang,§ Chul-Ho Lee,§ Myung-Shik Lee,¶ and Eun-Kyeong Jo*†∥

Intracellular reactive oxygen species (ROS) are essential secondary messengers in many signaling cascades governing innate immunity and cellular functions. TLR3 signaling is crucially involved in antiviral innate and inflammatory responses; however, the roles of ROS in TLR3 signaling remain largely unknown. In this study, we show that TLR3-induced ROS generation is required for the activation of NF-κB, IFN-regulatory factor 3, and STAT1-mediated innate immune responses in macrophages. TLR3 induction led to a rapid increase in ROS generation and a physical association between components of the NADPH oxidase (NOX) enzyme complex (NOX2 and p47^{phox}) and TLR3 via a Ca²⁺-c-Src tyrosine kinase–dependent pathway. TLR3-induced ROS generation, NOX2, and p47^{phox} were required for the phosphorylation and nuclear translocation of STAT1 and STAT2. TLR3-induced activation of STAT1 contributed to the generation of inflammatory mediators, which was significantly attenuated in NOX2- and p47^{phox}-deficient macrophages, suggesting a role for ROS-STAT1 in TLR3-mediated innate immune responses. Collectively, these results provide a novel insight into the crucial role that TLR3-ROS signaling plays in innate immune responses by activating STAT1. The Journal of Immunology, 2013, 190: 000–000.

© 2013 by The American Association of Immunologists, Inc. 0022-1767/13/$16.00
of TLR3-induced ROS-STAT1 signaling in innate immune responses, as well as the mechanisms by which TLR3 can trigger ROS generation in macrophages. We found that TLR3-dependent ROS generation is essential for the activation of NF-κB, IRF-3, and STAT1, and it enhances the release of inflammatory mediators. TLR3 stimulation led to a physical and functional association between components of the NOX enzyme complex (NOX2 and p47phox) and TLR3. The generation of NOX2-dependent ROS and NOX2 association with TLR3 were dependent on the activation of c-Src tyrosine kinase and intracellular Ca2+ release. TLR3-dependent ROS generation was required for the phosphorylation and nuclear translocation of STAT1 and STAT2. Furthermore, activation of TLR3-induced ROS and STAT1 was crucial for the release of antiviral inflammatory mediators, including chemokines and NO. These data provide novel insight into the role of TLR3-ROS signaling in innate immune responses through activation of STAT1.

Materials and Methods

Mice and Cells

Primary bone marrow–derived macrophages (BMDMs) were prepared from 6- to 8-wk-old female NOX2, p47phox, TLR3, TRIF, and STAT1 knockout (KO) mice (on the C57Bl/6 background), as described previously (16, 18). Briefly, bone marrow cells from the femur and tibia were cultured for 4–5 d in DMEM (Life Technologies BRL) containing M-CSF (25 ng/ml), 4 mM glutamine, and 10% FBS. After culture, the BMDMs were washed vigorously to remove nonadherent cells and then were used in the desired assay. Peritoneal macrophages were isolated from 4% thioglycollate-elicited peritoneal exudate cells and purified by adherence. The adherent monolayer was incubated in DMEM with 2% FBS under experimental or control conditions for the indicated times before assay. All animals were maintained in a pathogen-free environment. All experimental procedures were reviewed and approved by the Institutional Animal Care and Use Committee of Chungnam National University. The mouse macrophage cell line RAW264.7 (ATCC TIB-71; American Type Culture Collection) was maintained in DMEM (Invitrogen) containing 10% FBS (Invitrogen), sodium pyruvate, nonessential amino acids, penicillin G (100 IU/ml), and streptomycin (100 μg/ml).

Reagents, DNA, and Abs

The poly(I:C) and LPS (Escherichia coli 0111:B4) used for the in vitro assay were purchased from Sigma-Aldrich. BAPTA-AM, 4-amino-5-(4-methylphenyl)-7-((butyl)pyrazolo[3,4-d]-pyrimidine (PP1), 4-amino-5-(4-chlorophenyl)-7-((butyl)pyrazolo[3,4-d]-pyrimidine (PP2), 4-amino-7-phenylpyrazolo[3,4-d] pyrimidine (PP3), N-acetylcyesteine (NAC), diphenylene iodonium (DPI), pyrrolidine dithiocarbamate ammonium, leupeptin (2-aminoethyl)-benzenesulfonyl fluoride hydrochloride, and allopurinol were purchased from Calbiochem. A rat anti-mouse IFN-γ mAb (clone RMMB-1, IgG1), an isotype control mAb (clone RAMB-1, IgG1), and an isotype control mAb (IgG1) was purchased from PBL Interferon Source. DMSO (Sigma-Aldrich) was added to the cultures at a concentration of 0.1% (v/v) as a solvent control. The NF-κB luciferase reporter plasmid was a gift from Dr. G.M. Hur (Chungnam National University, Daejeon, south Korea). The mouse RIG-I, MDA5, c-Src, and STAT1 small interfering RNAs (siRNAs; Santa Cruz Biotechnology) were a pool of three target-specific siRNAs (20–25 nt in length) designed to knock down gene expression. The cells were transfected using Lipofectamine 2000 (Invitrogen), as indicated by the manufacturer. Specific Abs against c-Src, phospho-(Tyrosine-416)-c-Src, phospho-(Tyrosine-527)-c-Src, STAT1, phospho-(Ser727)-STAT1, STAT2, phospho-(Tyrosine-690)-STAT2, and phospho-IκB kinase (IKK)α/β were purchased from Cell Signaling Technology. Abs specific for α-actin (I-19), β-actin (C-21), NOX2 (G-1), TLR3 (H-125), p47phox (H-195), IRF-3 (FL-425), lamin B1 (H-90), and NF-κB p65 (C-20) were purchased from Santa Cruz Biotechnology. C2-conjugated anti-mouse, rhodamine (tetramethylrhodamine isothiocyanate)-conjugated anti-rabbit, and PE-conjugated anti-mouse Abs were purchased from Jackson Immunoresearch Laboratories.

Western blotting and communoprecipitation

RAW264.7 cells and BMDMs were treated as indicated and processed for analysis by Western blotting and immunoprecipitation, as previously described (16). For Western blot analysis, primary Abs were used at a 1:1000 dilution. The membranes were developed using a chemiluminescence assay (ECL; Amersham Pharmacia) and were subsequently exposed to chemiluminescence film (Amersham Pharmacia). For the immunoprecipitation assays, RAW264.7 cells were harvested and lysed with Nonidet P-40 buffer (50 mM HEPES [pH 7.4], 150 mM NaCl, 1 mM EDTA, 1% [v/v] Nonidet P-40) containing 1% CHAPS and supplemented with a complete protease inhibitor mixture (Roche). The lysates were mixed and precipitated with Abs and protein A-Sepharose by incubation at 4°C for 18 h on a rotator. The samples were subsequently solubilized in SDS sample buffer and separated by SDS-PAGE for Western blot analysis.

Subcellular fractionation and detection of nuclear translocation

Cell stimulation was terminated by the addition of ice-cold PBS, and nuclear and cytosolic protein extracts were prepared using a nuclear extraction kit (Active Motif, Carlsbad, CA), according to the manufacturer’s instructions. All steps of subcellular fractionation were carried out at 4°C. Fraction purity was tested by Western blotting using actin as a cytoplasmic marker and lamin B1 as a nuclear marker.

RNA extraction and RT-PCR

Total RNA was extracted using TRIzol reagent (Invitrogen), as described previously (18). Total RNA (2 μg) was used for first-strand cDNA synthesis with Moloney murine leukemia virus reverse transcriptase (Promega), according to the manufacturer’s instructions. The PCR conditions were as described previously (18). The primer pairs used for PCR are listed in Supplemental Table I. PCR products were resolved on 1.5% agarose gels and were stained with ethidium bromide.

Immunofluorescence and confocal analysis

The cells were fixed on coverslips with 4% (v/v) paraformaldehyde in PBS and then permeabilized through incubation for 10 min with 0.25% (v/v) Triton X-100 in PBS at 25°C. NF-κB p65, STAT1, or IRF-3 was detected after incubation with a 1:100 dilution of the primary Ab for 1 h at 25°C. After washing, the secondary Abs were added and the cells were incubated in 1% BSA/PBS buffer for 30 min. The nuclei were visualized following incubation for 15 min with 1 μg/ml DAPI (Sigma-Aldrich). The slides were examined using an LSM 510 laser-scanning confocal microscope (Zeiss, Oberkochen, Germany).

Intracellular Ca2+ measurements

BMDMs grown on coverslips were loaded with the Ca2+ indicator Fluoro-4/AM (10 μM; Molecular Probes) in HBSS for 30 min, according to the manufacturer’s protocol. Confocal images were obtained using an LSM 510 confocal microscope (Zeiss), with an excitation wavelength of 488 nm (argon laser) and emission from 500–550 nm.

Determination of NF-κB and IRF-3 DNA binding activities

Nuclear extracts were prepared as previously described (18). IRF-3 and NF-κB DNA-binding activities in nuclear extracts were measured using Trans-AM IRF-3 and p65 transcription factor assay kits, respectively (Active Motif Europe, Rixensart, Belgium), according to the manufacturer’s protocols. Briefly, 5 μg nuclear extract was incubated in plates coated with consensus IFN-activated-response elements and NF-κB oligonucleotides. Plates were washed and anti-IRF-3 or p65 Abs were added to the wells. Ab binding was detected with a secondary HRP-conjugated Ab, and the signal was developed with tetramethylbenzidine substrate. The intensity of the signal at 450 nm was measured.

Measurement of intracellular ROS

Intracellular ROS levels were measured using the oxidative fluorescent dye dihydroethidium (DHE; Calbiochem), as previously described (16, 18). Cells were examined with an LSM 510 laser scanning confocal microscope (Zeiss), and the mean relative fluorescence intensity for each group of cells was measured with the Zeiss LSM 510 vision system (version 2.3). Intracellular ROS levels were also measured by flow cytometry using a FACScalibur flow cytometer (BD Biosciences, San Jose, CA). The data were plotted using CellQuest software (BD Biosciences). Intracellular superoxide production was measured by the lucigenin (bis-N-methylacridinium nitrate)-ECL method, as described previously (16, 18). Briefly, cells were allowed to equilibrate for 30 min at 37°C in a reaction mixture containing 50 mM phosphate buffer (pH 7.0), 1 mM EGTA, 150 mM NaCl, and a protease inhibitor mixture prior to the addition of Krebs-HEPES buffer containing lucigenin (5 μM) as the electron acceptor and NADPH (100 μM) as the electron donor. The values are expressed as relative light units per 1 × 106 cells.
Results

TLR3-TRIF signaling triggers intracellular ROS generation in macrophages

It has been demonstrated that intracellular ROS is required in TLR2- (16, 19) and TLR4-dependent inflammatory responses (17). However, TLR3-ROS signaling remains largely uncharacterized. We first determined whether stimulation with poly(I:C), a synthetic dsRNA analog, leads to ROS generation in murine BMDMs in a TLR3-dependent manner. To achieve this, we treated murine BMDMs with poly(I:C) and measured the generation of ROS by staining with the oxidative fluorescent dye DHE to detect superoxide production. As shown in Fig. 1A, poly(I:C) induced a robust burst of ROS production in wild-type macrophages within 30 min of stimulation (Fig. 1A). However, TLR3-induced ROS generation was markedly inhibited in BMDMs from NOX2 KO and p47phox KO mice (Fig. 1B).

We next examined whether poly(I:C)-triggered ROS production depends on TLR3 and TRIF, an essential adaptor of TLR3 signaling (5, 6). As shown in Fig. 1C and 1D, poly(I:C)-mediated ROS production was markedly attenuated in BMDMs from TLR3 and TRIF KO mice, as compared with those from WT mice. However, LPS-induced ROS generation was not decreased in TLR3 KO and WT cells, but it was significantly decreased in TRIF KO cells (Fig. 1D). Similar results were obtained using TLR3 siRNA-transfected RAW264.7 cells (data not shown). Thus, TLR3-TRIF signaling appears to be required for poly(I:C)-induced ROS production in macrophages. We further examined the roles of RIG-I and MDA5, key cytoplasmic helicases implicated in viral dsRNA recognition (20), in ROS generation triggered by poly(I:C) recognition. To investigate this, RigI and Mda5 were knocked down in RAW264.7 cells by transfection of siRNA specific for RigI or Mda5, before transfection with poly(I:C). No significant differences were detected in poly(I:C)-induced ROS production between RAW264.7 cells transfected with scrambled control nonspecific siRNA (siNS) and cells transfected with siRNA specific for RigI or Mda5 (Fig. 1E). Taken together, these results indicate that poly(I:C)-induced ROS generation is mediated by TLR3, but not by RIG-I or MDA5.

TLR3-induced ROS generation is mediated by intracellular Ca2+-dependent Src kinase activation in macrophages

The tyrosine kinase c-Src is activated by dsRNA and is essential for TLR3-induced antiviral responses (21). We next examined whether TLR3 stimulation induced the activation of c-Src. The results showed that phosphorylation of c-Src at Tyr416 peaked within 20 min in murine BMDMs (Fig. 2A). Poly(I:C)-induced c-Src activation was attenuated by the c-Src kinase inhibitors PP1 and PP2, but not by PP3, an inactive analog (Fig. 2B). c-Src can translocate to the plasma membrane and initiate the TLR2-associated signaling involved in Ca2+ release (22). We thus examined intracellular Ca2+ influx in BMDMs in response to poly(I:C) treatment. As shown in Fig. 2C, Ca2+ fluxes were generated in BMDMs loaded with Fluo-4/AM after treatment with poly(I:C). We then examined whether Ca2+-dependent signaling is involved in the c-Src activation induced by poly(I:C). Blocking Ca2+-dependent signaling with BAPTA-AM, an intracellular calcium chelator, dose-dependently inhibited poly(I:C)-induced c-Src phosphorylation (Fig. 2D).

Statistical analysis

All data were analyzed by a Student t test with Bonferroni adjustment or by ANOVA for multiple comparisons and are presented as the means ± SD. Differences were considered significant at p < 0.05.
Because the data above showed that TLR3 stimulation induced ROS generation and c-Src activation, we further examined whether c-Src is required for poly(I:C)-dependent ROS generation. Selective inhibition of c-Src using pharmacological inhibitors (PP1 and PP2) substantially decreased TLR3-dependent ROS generation (Fig. 2E, 2F). To further evaluate the role of c-Src in TLR3-mediated ROS generation, c-Src was silenced in RAW264.7 cells by transfection with siRNA specific for c-Src, and the cells were then stimulated with poly(I:C). Data showed significantly reduced ROS generation in RAW264.7 cells transfected with siRNA specific for c-Src compared with cells transfected with siNS (Fig. 2G). These results indicate that TLR3-induced ROS generation requires a Ca²⁺/c-Src tyrosine kinase–dependent pathway.

TLR3 associates with NOX2 and p47phox via intracellular Ca²⁺–dependent c-Src in macrophages

Previous studies showed that TLR2 physically and functionally interacts with NOX2 to activate innate immune responses against mycobacteria (16). Because the data above indicate that TLR3-dependent ROS generation is mediated by Src activation, we further investigated whether TLR3 associates with NOX2 in an Src-dependent manner. The interaction between endogenous NOX2 and TLR3 was assessed in RAW264.7 macrophage cells by immunoprecipitation experiments with anti-TLR3 and anti-NOX2 Abs. As shown in Fig. 3A, NOX2 associates with TLR3 transiently (from 15 to 30 min). No further association was detected during prolonged incubation with poly(I:C). Endogenous TLR3 was able to specifically pull down NOX2 from cell lysates of RAW264.7 macrophages stimulated with poly(I:C). Similarly, TLR3 was also detected in the immunoprecipitates of endogenous NOX2 (Fig. 3A).

We next examined whether intracellular Ca²⁺ and c-Src tyrosine kinase contribute to the interaction of TLR3 with NOX2. As shown in Fig. 3B and 3C, pharmacologic inhibitors of intracellular Ca²⁺ (BAPTA-AM) and c-Src kinases (PP1 and PP2) significantly inhibited the poly(I:C)-induced interaction between NOX2 and TLR3, whereas PP3 had no significant effect. These data were further confirmed using RAW264.7 cells transfected with siRNA specific for c-Src or siNS. Consistent with the findings shown in Fig. 3C, specific silencing of c-Src resulted in marked reduction of the poly(I:C)-induced association of NOX2 with TLR3; siNS did not show such an effect (Fig. 3D).
Because p47phox is an essential cytosolic component of the activated NOX complex (23), we next investigated whether TLR3 is associated with p47phox in an Src-dependent manner in coimmunoprecipitation assays. In RAW264.7 macrophages, TLR3 was indeed associated with p47phox (Fig. 3E), and the interaction between p47phox and TLR3 was significantly diminished by pharmacologic inhibitors of c-Src kinases (PP1 and PP2) (Fig. 3F). Taken together, these results indicate that the polyclonal (IgG)-induced interaction between TLR3 and NOX components (NOX2 and p47phox) is mediated by intracellular Ca2+-dependent c-Src activation.

TLR3-dependent ROS generation is required for the phosphorylation and nuclear translocation of STAT1 and STAT2

The transcription factor STAT1 plays an essential role in innate and inflammatory responses to type I and type II IFNs (24, 25). We first examined whether stimulation of TLR3 by poly(I:C) induces the phosphorylation of STAT1 at Tyr701 and Ser727 in BMDMs. As shown in Fig. 4A, poly(I:C) stimulation of BMDMs led to transient phosphorylation of STAT1 at Tyr701 and Ser727 (Fig. 4A). The poly(I:C)-induced nuclear translocation of STAT1 was significantly reduced in BMDMs from NOX2 and p47phox KO mice compared with WT mice (Fig. 4B). Furthermore, STAT1 was actively translocated into the nucleus from 2 h after poly(I:C) stimulation (Supplemental Fig. 1A). The poly(I:C)-induced nuclear translocation of STAT1 was significantly reduced in BMDMs from NOX2 and p47phox KO mice (Fig. 4C). Consistent with this, pretreatment of BMDMs with the ROS scavenger NAC and DPI significantly inhibited the poly(I:C)-induced nuclear translocation of STAT1 (Supplemental Fig. 1B).

Similar to STAT1, STAT2 is a key player in cellular responses to type I IFN (26). Thus, we examined whether TLR3 stimulation would activate STAT2 phosphorylation through intracellular ROS generation. As shown in Fig. 4D, stimulation of human monocytic THP-1 cells with poly(I:C) robustly induced the phosphorylation of STAT2 at Tyr690. Poly(I:C)-induced STAT2 phosphorylation was dose-dependently attenuated by NAC and DPI, but not by the xanthine oxidase inhibitor allopurinol (Fig. 4E). Additionally, poly(I:C) stimulation induced the nuclear translocation of STAT2 in THP-1 cells, a response that was significantly inhibited by DPI (Fig. 4F).

We further questioned whether TLR3-induced type I IFN is involved in the activation of STAT proteins. To address this, BMDMs were treated with a neutralizing anti–IFN-α/β mAb (for 1 h) and then stimulated with poly(I:C). As shown in Fig. 4G, the phosphorylation of STAT1 at Tyr701 was slightly attenuated, and the phosphorylation of STAT1 at Ser727 was significantly reduced by pretreatment with anti–IFN-α/β mAb, compared with BMDMs treated with an isotype-matched control Ab (Fig. 4G). Taken together, these results indicate that NOX-dependent ROS generation is required for poly(I:C)-induced STAT1 and STAT2 activation through an autocrine type I IFN pathway.
TLR3-dependent ROS generation is required for NF-κB and IRF-3 activation

TLR3 signaling activates the transcription factors NF-κB and IRF-3, inducing production of the proinflammatory cytokines TNF-α and IFN-β, respectively (27, 28). We next examined whether ROS generation is involved in the nuclear translocation and activation of NF-κB and IRF-3 after stimulation with poly(I:C). The nuclear translocation of NF-κB and IRF-3 peaked at 1 and 3 h, respectively (data not shown). Poly(I:C)-induced translocation of endogenous NF-κB p65 into the nucleus (assessed by immunofluorescence) was reduced in NOX2- and p47phox-deficient BMDMs compared with WT cells (Fig. 5A). Similar inhibition of the poly(I:C)-induced translocation of NF-κB p65 into the nucleus was observed in macrophages subjected to ROS scavenger and NOX inhibitor treatment (Supplemental Fig. 2A). Additionally, poly(I:C)-induced NF-κB DNA-binding activity was markedly reduced in NOX2- and p47phox-deficient BMDMs (Fig. 5B). Consistent with this, poly(I:C)-induced NF-κB DNA-binding activity was markedly reduced by pretreatment with antioxidants (NAC, 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride, and pyrrolidine dithiocarbamate ammonium) and DPI, but not the xanthine oxidase inhibitor allopurinol (Supplemental Fig. 2B). In TLR stimulation, activation of the three-subunit inhibitor of the NF-κB kinase (IKKα/β/γ) complex and phosphorylation of IkB-α are crucial for the translocation of NF-κB dimers into the nucleus (29). Consistent with the results for the nuclear translocation of NF-κB, poly(I:C)-induced activation of IKKα/β and IkB-α degradation was abrogated in BMDMs from NOX2 and p47phox KO mice compared with WT mice (Fig. 5C).

Furthermore, we found that the poly(I:C)-induced nuclear translocation of IRF-3 was significantly inhibited in BMDMs from NOX2 and p47phox KO mice compared with those from WT mice (Fig. 5D). Moreover, poly(I:C)-induced nuclear translocation of IRF-3 in BMDMs was dramatically reduced by pretreatment with NAC and DPI, but not allopurinol (Supplemental Fig. 2C). We also quantified the DNA-binding activity of IRF-3 using an ELISA-based assay. The level of IRF-3 DNA binding was significantly attenuated in BMDMs from NOX2 and p47phox KO
mice compared with those from WT mice (Fig. 5E). Taken together, these data suggest that TLR3-induced ROS are important for the activation of the transcription factors NF-κB and IRF-3.

TLR3-induced STAT1 activation is required for the expression of CXCL10, CCL5, IFN-β, and inducible NO synthase in BMDMs

TLR3-dependent IRF-3 activation results in type I IFN production and the subsequent induction of IFN-responsive genes such as CXCL10 (5, 6). Type I IFN–dependent biological effects are mediated through activation of the JAK/STAT pathway (7). We thus investigated the roles of NOX2, p47^{phox} and STAT1 in the poly(I:C)-induced production of inflammatory chemokines and inducible NO synthase (iNOS). As shown in Fig. 6A, poly(I:C)-induced CXCL10 and CCL5 mRNA synthesis was significantly reduced in STAT1 KO macrophages. Additionally, poly(I:C)-induced iNOS expression and nitrile synthesis were markedly reduced in STAT1 KO macrophages and in siRNA targeting of STAT1-transfected RAW264.7 cells (Fig. 6A–C). Furthermore, poly(I:C)-induced expression of CXCL10, CCL5, IFN-β, and iNOS (Fig. 6D) and nitrile production (Fig. 6E) were markedly decreased in NOX2- and p47^{phox}-deficient macrophages compared with WT cells. Poly(I:C)-induced TNF-α production was also substantially decreased in NOX2- and p47^{phox}-deficient macrophages compared with WT cells (Fig. 6D). These data show that macrophage expression of IRF-3–inducible genes requires STAT1 activation and the expression of NOX2 and p47^{phox}.

Discussion

Innate immune responses triggered by TLR signaling are mediated through generation of intracellular ROS, which are now being recognized as important second messengers (13, 30). Previously, it was suggested that NOX2-dependent ROS generation is required for TLR2-dependent inflammatory responses in macrophages (16). Bae et al. (19) showed that minimally oxidized low-density lipoprotein-dependent ROS generation catalyzed by NOX2 involves a TLR4-dependent pathway and plays a role in the production of RANTES and migration of smooth-muscle cells. Our findings indicate a broader role for ROS in TLR3-dependent inflammatory mediator expression by macrophages. Poly(I:C)-induced ROS generation was diminished in TLR3 KO macrophages, and the TLR3 adaptor TRIF could play a role in poly(I:C)-mediated ROS generation. Our data partially correlate with previous studies showing that ROS can mediate lung injury and inflammatory cytokine production by lung macrophages via a TLR4-TRIF–dependent pathway (30). Additionally, a recent study showed that MyD88, a well-characterized TLR adaptor, is essential for lactic acid bacteria–induced ROS generation, which is primarily catalyzed by NADPH oxidase, and IL-12 production (31). Thus, TLR signaling and key adaptors may play pivotal roles in innate immune signaling through ROS generation. Our demonstration that the TLR3/TRIF axis, but not RIG-I or MDA5, is required for dsRNA-induced ROS generation and downstream signaling is unique.

Our results indicate that NOX2 is an important source of TLR3-induced ROS and that the essential components of NOX enzyme complex (NOX2 and p47^{phox}) bind to TLR3 to initiate an intracellular signaling cascade. In terms of the role of ROS as modulators of cellular signaling and gene regulation, NOX enzymes are regarded to be a key source of cellular ROS in a variety of cells (15, 30, 32). Previous studies showed that NOX2-derived ROS are required for efficient RIG-I-mediated IRF-3 activation and expression of the antiviral cytokine IFN-β (33). Additionally, NOX2 plays an important role in the expression of the mitochondria-associated adaptor MAVS (33). In dendritic cells, NOX2-dependent ROS negatively regulate IL-12 expression by attenuating p38-MAPK activity (32). Furthermore, recent studies have shown
that the NOX isozyme dual oxidase 2 is critically involved in TLR3-induced innate immune responses, manifested by IL-8 production and mucin generation in human nasal epithelial cells and mice (34). Tang et al. (35) further suggested that ROS play an important role in the initiation and orchestration of Th2 type 2 responses to cytochrome proteases. It has been suggested that there is also a connection between innate signaling and mitochondrial ROS, which also play a crucial role in killing intracellular bacteria in response to stimulation of TLR1, TLR2, and TLR4 (36). In this study, we focused on the role of NOX-derived cellular ROS; however, future studies will clarify the roles of mitochondrial ROS in TLR3-induced inflammatory responses. Taken together, these data reveal a new facet of the role of NOX2-derived ROS, which tailor regulation of innate host immune responses initiated by pattern recognition receptors and bridging adaptive immunity.

Poly(I:C)-induced Src phosphorylation and intracellular Ca\(^{2+}\) influx appear to be important for TLR3-mediated ROS generation owing to their regulation of the TLR3-NOX2 and p47\(^{phox}\) interaction in macrophages. Previous studies have shown that TLR3 is translocated to endosomes in response to dsRNA and colocalizes with c-Src on endosomes containing dsRNA in human monocyte-derived dendritic cells (21). dsRNA-induced activation of IRF-3 and STAT1 is dependent on c-Src kinase (21). Furthermore, Src family kinases play important roles as receptor-proximal regulators of TLR tyrosine phosphorylation and signaling (21, 37). Ca\(^{2+}\) is a second messenger in many cellular signaling cascades, including T and B cell receptor cascades (38, 39). Calcium signaling also seems to play a central role in TLR signaling because it provides evidence of a vital role for NOX-dependent ROS signaling in TLR3-mediated innate immune activation in macrophages.

Our data partly correlate with previous in vitro studies showing that synthesis of poly(I:C)-stimulated TNF-α and IFN-β is significantly reduced in BMDMs from p47\(^{phox}\) KO mice as compared with those from WT mice (28). Additionally, it was shown that dual oxidase 1 is involved in TLR ligand–induced IL-8 and VEGF production in airway epithelial cells (44). These studies, together with findings in the present study, strongly suggest that TLRs and ROS regulate inflammatory responses in a cell typespecific manner. Patients with chronic granulomatous disease (CGD) in infancy or childhood often suffer from life-threatening bacterial and fungal infections (45, 46); however, it is not known whether susceptibility to viral infections is increased in CGD patients. Recent studies have shown that CGD patients maintain an intact memory response in humoral immunity, with normal serum IgG and influenza-specific Ab levels, although they have reduced numbers of circulating CD27\(^{+}\) memory B cells (47). Moreover, NOX2-deficient T cells show a skewed Th1 response, with augmented IFN-γ and decreased IL-4 production (48).
immune defect and contribute to enhanced responses to influenza virus infection in CGD patients and animal models.

In conclusion, we provide evidence of a critical role for NOX2-dependent ROS in regulating TLR3-mediated innate immune responses in macrophages. NOX2 and p47phox interact with TLR3 to activate inflammatory responses; this is regulated by intracellular calcium-Src activation. TLR3-induced ROS generation is essential for STAT1 activation, which plays a key role in inflammatory mediator release. These observations reveal a new role for NOX in regulating innate immune responses triggered by TLR3 engagement. The vital role of NOX-derived ROS in regulating TLR3-induced innate immune responses suggests that modulating ROS functions may represent a novel therapeutic strategy for the treatment of infections and inflammatory disorders.

Acknowledgments

We thank Dr. Y.S. Bae (Ewha University, Seoul, South Korea) for provision of NOX2 KO mice, Dr. I. Flavel (Yale University, New Haven, CT) for provision of TLR3 KO mice, Dr. S. Akira (Osaka University, Osaka, Japan) for provision of TRIF KO mice, Dr. G.M. Hur (Chungnam National University) for provision of NF-κB luciferase reporter plasmid, J.M. Yuki and H.M. Lee (Chungnam National University) for critical reading of the manuscript, and H.S. Jin (Chungnam National University) for excellent technical assistance.

Disclosures

The authors have no financial conflicts of interest.

References

Supplemental Figure Legends

FIGURE S1. Poly(I:C) induced STAT1 nuclear translocation is mediated through an NADPH oxidase-derived ROS. BMDMs were stimulated with poly(I:C) (25 µg/ml) for the indicated lengths of time (A) or for 2 h in the presence or absence of NAC (30 mM), DPI (20 µM), or allopurinol (0.1 mM) (B). The cells were fixed and stained with anti-STAT1 Ab and 4,6-diamidino-2-phenylindole (DAPI), and then examined under a confocal microscope. Bar, 20 µm. The quantitative data are shown as the means ± SD of three experiments. ***P < 0.001, compared with the solvent control. The results are from at least three separate experiments. U, untreated; DIC, differential interference contrast; SC, solvent control (0.1% DMSO).

FIGURE S2. Poly(I:C) induced NF-κB and IRF-3 activation in an NADPH oxidase-derived ROS-dependent manner. BMDMs were stimulated with poly(I:C) for 1 h (A) or 3 h (C) in the presence or absence of NAC (30 mM), DPI (20 µM), or allopurinol (0.1 mM) and assessed by immunofluorescence microscopy. The cells were fixed and stained with anti-NF-κB p65 Ab (A) or anti-IRF-3 Ab (C) and DAPI, and then examined under a confocal microscope. The results are from at least three separate experiments. Bar, 20 µm. The quantitative data (A right and C right) are shown as the means ± SD of three experiments. ***P < 0.001, compared with the solvent control. (B) RAW264.7 cells were transiently transfected with pNF-κB -luc. At 48 h post-transfection, the cells were stimulated for 1 h with poly(I:C) in the presence or absence of NAC (30 mM), PDTC (50 µM), DPI (20 µM), AEBSF (1 mM), rotenone (10 µM), or allopurinol (0.1 mM). The cells were then harvested, and luciferase activity was measured and corrected for differences in transfection efficiency based on β-galactosidase activity. The luciferase activities
shown are the means ± SD of three independent experiments. ***$P < 0.001$, compared with the solvent control. U, untreated; DIC, differential interference contrast; SC, solvent control (0.1% DMSO).
Online Supplemental Information

Supplementary Table 1. oligos used for RT-PCR detection in this study

<table>
<thead>
<tr>
<th>Gene</th>
<th>5' - 3' Forward primer</th>
<th>5' - 3' Reverse primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>CXCL10</td>
<td>CACCATGAACCCAAGTGCTGCGGT</td>
<td>AGGAGCCCTTTTAGACCTTTTTTG</td>
</tr>
<tr>
<td>RANTES</td>
<td>CCAGAGAAGAAGTGGGTTCAAG</td>
<td>AAGCTGGCTAGGACTAGAGCAA</td>
</tr>
<tr>
<td>STAT1</td>
<td>GAGATAATTCACAAAATCAGAGAG</td>
<td>CTGATCCAGGCAGGCGTTG</td>
</tr>
<tr>
<td>iNOS</td>
<td>GTTTCAGCCCAACAATACAAGA</td>
<td>GTGGACGGGTGATGTCAC</td>
</tr>
<tr>
<td>IFN-β</td>
<td>GCAGCTGAATGGAAAGATCA</td>
<td>TGGCAAAGGCAGTGTAACTC</td>
</tr>
<tr>
<td>βactin</td>
<td>GTGGGGCGCCCCAGGCACCA</td>
<td>CTTCTTAATGTACGCACGATTTG</td>
</tr>
</tbody>
</table>