B Cell Activation Is Regulated by the Stiffness Properties of the Substrate Presenting the Antigens

Zhengpeng Wan, Shaosen Zhang, Yilin Fan, Kai Liu, Feng Du, Angel M. Davey, Huiyuan Zhang, Weidong Han, Chunyang Xiong and Wanli Liu

J Immunol published online 3 April 2013
http://www.jimmunol.org/content/early/2013/04/03/jimmunol.1202976

Supplementary Material
http://www.jimmunol.org/content/suppl/2013/04/03/jimmunol.1202976
6.DC1

Subscription
Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts

Errata
An erratum has been published regarding this article. Please see next page or:
/content/190/12/6711.full.pdf
B lymphocytes are the immune cells that are primarily responsible for the Ab response. Upon recognition of foreign Ags, the activation of B cells is initiated, which is subsequently linked to B cell proliferation and differentiation into plasma cells and memory B cells (1). B cells recognize the foreign Ags through their surface-expressed BCRs. The BCR is composed of a membrane-bound form of the Igα and Igβ noncovalently associated heterodimer of Igα and Igβ in a 1:1 membrane-bound form of the Igα/Igβ heterodimer stoichiometry (2, 3). It is well appreciated that Ags show great diversity based on their presentation formats, including Ag density (4, 5), Ag affinity (4, 5), Ag valency (6–8), and Ag mobility (9). The initiation of B cell activation has been shown to be sensitive to each type of these Ag presentation formats. For example, early studies extensively investigated how Ag valency can affect B cell activation (10–12) and the subsequent Ab responses (6–8). It is generally observed that multivalent Ags with high valency are more potent in inducing Ab responses as compared with monovalent Ags with low valency. Recent advances in applying high-resolution, high-speed live cell imaging techniques to B cell biology studies have significantly improved our understanding of how Ag presentation formats can affect the initiation of B cell activation. Ag density and Ag affinity are demonstrated to be key factors in influencing the initiation of BCR signaling. Fleire et al. (5) reported that the two-phase spreading and contraction responses of B cells following the encounter of membrane-bound Ags are sensitive to both Ag density and Ag affinity. Our early studies suggested that the formation and dynamic growth features of BCR microclusters in the initiation of B cell activation are also sensitive to the Ag presentation formats of Ag density, affinity, and mobility (4, 9).

Thus, through their surface-expressed BCRs, B cells are capable of sensing a wealth of antigenic information, including Ag valency, affinity, density, and mobility. It is not clear whether B cells have mechanosensing ability toward the substrate presenting the Ags; however, experimental evidence suggests that they do. Recent live cell imaging studies by other laboratories, as well as our own, showed that the formation of BCR microclusters and the B cell immunological synapse are two key early events in the initiation of B cell activation (1, 4, 5, 13). Subsequent studies demonstrated that reorganization of the B cell cytoskeleton provides indispensable support for both of these events in the process of B cell activation by maintaining the dynamic growth feature of BCR microclusters and the coalescence of BCR microclusters and signaling molecule microclusters (4, 14–16). Moreover, the centripetal movements of BCR microclusters to the center of the B cell immunological synapse are shown to depend on the coordination of the cytoskeleton, motor proteins, and BCR signaling molecules (15). Interestingly, the membrane cytoskeleton and motor proteins have been shown to be key players in regulating cell mechanics and morphology changes (17–19). Based on this information, it is reasonable to speculate that the BCR might have mechanosensing ability toward the substrate presenting the Ags.
that may allow it to regulate these molecular events in the cascade of B cell activation. This speculation is also supported by two recent reports on T cell mechanosensing capability (20, 21). An obviously related question is how likely is it that the substrate presenting the Ags will show different stiffness features in vivo, or that there will be microenvironments with different stiffnesses that B cells might encounter? The answer to this question also seems to be yes. It is well appreciated that the substrate presenting the Ags to B cells can be quite diverse (22). For example, Ags can be presented on the surface of rigid virus capsid vesicles that may exhibit high stiffness features, presented on the membrane of the enveloped virus particles that may show medium stiffness features, or presented in a soluble format, as in the case of secreted pathogen Ags that may exhibit very low stiffness features. Thus, it is highly possible that B cells can detect a diversity of stiffnesses of Ag-presenting substrates. From this point of view, it will be meaningful to investigate the mechanosensing ability of B cells and to address how such an ability can in turn regulate B cell activation events upon Ag recognition by the BCRs.

In this study, we established an experimental system to answer these questions. We used common polyacrylamide gel substrates with variable Young’s modulus (stiffness), including high, medium, and low stiffness (22.1, 7.4, and 2.6 kPa, respectively), to present Ag. We used high-resolution, high-speed live cell imaging techniques to examine early B cell activation events occurring seconds after Ag recognition by the BCRs. We also evaluated the extent of B cell activation by quantifying the surface expression of the B cell activation marker CD69, which is a cell surface activation marker that increases in expression on most hematopoietic cells after encountering Ags (23–25). We find that the initiation of B cell activation is indeed extremely sensitive to substrate stiffness. When encountering Ags tethered to substrates with high stiffness, B cells exhibit much stronger activation responses by showing significantly enhanced accumulation of BCR, phospho-spleen tyrosine kinase (pSyk), and phosphotyrosine (pTyr) signaling molecules into the B cell immunological synapse. Moreover, the formation of BCR microclusters, the basic platform for the initiation of BCR signaling, is also highly sensitive to substrate stiffness. We find that Ags tethered to stiff substrates induce the formation of more prominent BCR and pSyk (or pTyr) microclusters, with significantly enhanced colocalization as compared with Ags tethered to soft substrates. The expression of the B cell activation marker CD69 is significantly enhanced in B cells encountering Ags tethered to substrates with high stiffness. With the help of high-speed time-lapse live cell imaging, we determine that the differences in B cell responses are only evident 5 min after Ag recognition by the BCRs. Using a series of cytoskeleton inhibitors, we determine that the mechanosensing ability of B cells is dependent on microtubules, but only mildly linked to the actin cytoskeleton network. These results suggest the importance of mechanosensing capabilities of B cells in the initiation of B cell activation, which may facilitate the development of better vaccines and cures for autoimmune diseases or B cell tumors that are induced by abnormal B cell activation.

Materials and Methods

Mice, cells, Abs, and Ags

Primary B cells or the B1–8–specific B cells were isolated from spleens of BALB/c mice or the IgH B1–8/B1–8 Igp−/− transgenic mice as reported previously (4). Purified biotin-conjugated Fab fragment goat anti-mouse IgM Abs and biotin-conjugated goat F(ab')2 fragment anti-human IgM Abs were purchased from Jackson ImmunoResearch. Fluorophore-conjugated anti-human IgM C region or anti-mouse IgM C region Abs were also purchased from Jackson ImmunoResearch. Acrylamide-modified streptavidin was purchased from Invitrogen Life Sciences; 3-aminopropyltrimethoxysilane was purchased from Sigma-Aldrich.

Preparation of polyacrylamide gel substrates for tethering Ags

Polyacrylamide gel substrates were prepared and attached to glass coverslips following a well-established method (26, 27). Briefly, glass coverslips were treated with NaOH, 3-aminopropyltrimethoxysilane, and glutaraldehyde in a step-by-step manner. After washing extensively in distilled H2O, the glass coverslips were ready to support the polyacrylamide gels. The rigidity of the polyacrylamide gel substrate was controlled by using different amounts of bis-acrylamide cross-linker while keeping the total acrylamide concentration constant at 10% (w/v). In this study, polyacrylamide gels with different Young’s modulus were produced by using bis-acrylamide concentrations of 0.8, 0.4, and 0.05% (w/v). Ags were tethered to the surface of polyacrylamide gel substrates following the methods described previously (20). In this study, streptavidin-conjugated acrylamide was polymerized into the polyacrylamide gel for the purpose of tethering the biotinylated F(ab)2 anti-IgM Ab as surrogate Ag, which was generally incubated with the substrate at 37˚C for 30 min at a concentration of 30 μg/ml. After extensive washing, the polyacrylamide gel substrates tethering specific Ags were ready for use. To verify the exact concentration of Ag tethered to the gel surfaces, Alexa Fluor 647–conjugated biotinylated F(ab)2 anti-IgM surrogate Ags used were in the incubation step, and images of the polyacrylamide gel surfaces were acquired by confocal fluorescence microscopy. To examine the Ag accessibility to B cells, we incubated 100 nM Alexa 488–conjugated mouse IgM molecules (Santa Cruz Biotechnology) with either 2.21 or 2.6 kPa gels presenting anti-mouse IgM surrogate Ag and acquired the images by confocal fluorescence microscopy. The mean fluorescence intensity (MFI) of the tethered Ags or Alexa 488–conjugated mouse IgM molecules on the surfaces of the polyacrylamide gel substrate was quantified by Imaged (National Institutes of Health, Bethesda, MD) software using the protocol described previously (4).

Measurement of Young’s modulus of polyacrylamide gel substrates

The Young’s modulus of each polyacrylamide gel substrate was measured using an Agilent atomic force microscope following the standard protocol reported in our previous studies (28, 29). Briefly, an 11.2-μm-diameter sphere was glued to the end of a silicon nitride tip (spring constant of 0.093 N/m). Young’s modulus was calculated by converting the force/displacement curves into force/indentation curves and fitting with the Hertz model (29).

Examining the adhesion ability of B cells placed on polyacrylamide gel substrates

B cells (5 × 10^6) were placed on either 22.1 or 2.6 kPa gels, with or without tethered anti-IgM surrogate Ags for 10 min at 37˚C, 5% CO2, and then imaged by microscope with a 10× objective lens to quantify the amount of B cells on the substrate. Subsequently, the gels were washed thoroughly at flow speeds of 0.5, 1, 2, or 2.5 ml/s for a total amount of 10 ml PBS with 1% FBS washing buffer, and then imaged again the amount of B cells still adhered to the gel substrate. Because the entire area of the polyacrylamide gel can be captured under the 10× objective lens, the exact same area was used to quantify the amount of B cells on the gel substrate before and after the washing step. Mathematically, we quantified the ability of the B cells to adhere to the gel substrate using a parameter termed “percentage of adhesion,” which is calculated using the equation: percentage of adhesion = cell density on gel substrate after washing/cell density on gel substrate before washing.

Molecular imaging by spinning disk confocal fluorescence microscopy

B cells were placed on the surface of polyacrylamide gel substrates with tethered Ags for 10 min at 37˚C, 5% CO2, and then fixed with 4% paraformaldehyde. Unless otherwise indicated, all images were captured by a spinning disk confocal fluorescence microscope with a 40× objective lens. Time-lapse images were acquired immediately after the B cells encountered Ags tethered to polyacrylamide gel substrates. The acquisition was controlled by Andor iQ2 software. The exposure time was 100 ms unless otherwise indicated. Images were analyzed using ImageJ and Matlab (Mathworks) software as reported in our previous studies (4, 30). The MFI value of BCR, pSyk, or pTyr molecules within the immunological synapse was calculated on the basis of mean pixel intensity by ImageJ software. Briefly, images were subtracted for background and then marked with regions of interest. The MFI values obtained were the ratio of integrated fluorescence intensity of the regions of interest to the total area of pixels in the same regions of interest.
Intracellular immunofluorescence staining and molecular imaging of pSyk and pTyr within the immunological synapse

Recruitment of pSyk or pTyr into the immunological synapse of Ramos or mouse primary B cells upon encountering Ags tethered to substrates with high or low stiffness was imaged after intracellular staining with phospho-Zap70 (Tyr319)/Syk (Tyr525) Ab (Cell Signaling Technology) or FITC-conjugated anti-pTyr (clone 4G10; Upstate Biotechnology) as previously described (4). Briefly, B cells were placed on polyacrylamide gel substrates with tethered Ags, fixed with 4% paraformaldehyde, permeabilized with 0.1% Triton X-100, and pretreated with blocking reagent. Subsequently, these B cells were stained with phospho-Zap70 (Tyr319)/Syk (Tyr525) Ab, followed by secondary Ab staining with Alexa Fluor 647–conjugated F(ab')2 goat anti-mouse IgG (Invitrogen) or stained directly with FITC-conjugated anti-pTyr. Images were analyzed by Image J and Matlab software as described previously (4).

Mathematical quantification of BCR or pSyk microclusters for precise FI and size information using a Matlab-based two-dimensional Gaussian analysis algorithm

The analyses of BCR or pSyk microclusters for precise FI and size information were performed using a Matlab-based two-dimensional (2D) Gaussian analysis algorithm as reported previously (4). Briefly, precise 2D positions and integrated FI values of the BCR or pSyk microclusters were acquired by means of least squares fitting of a 2D Gaussian function (31), which was used to quantify each of the 2D FI profiles. We noticed that some of the profiles were not perfectly circularly shaped, and thus the Gaussian function was allowed to allow an elliptical shape. The 2D Gaussian function used in this study is described below (31):

\[f(x, y) = \frac{4\ln 2}{\pi \sigma_x \sigma_y} e^{-\left[\frac{4\ln 2}{\pi \sigma_x \sigma_y} \left(\frac{(x-x_c)^2}{\sigma_x^2} + \frac{(y-y_c)^2}{\sigma_y^2} \right) \right]} \]

The ellipticity is defined as:

\[\varepsilon = \sqrt{\sigma_x/\sigma_y} \]

The generalized 2D width is defined as:

\[\sigma_t^2 = \sigma_x^2 + \sigma_y^2 \]

The 2D Gaussian mathematical fitting yields several key parameters for each microcluster, including the local background (z_0), integrated FI (I), position (x_c, y_c), and full width at half-maximum peak height of the intensity distribution in the x and y direction, respectively (\sigma_x, \sigma_y). For the intensity and size analyses of BCR or pSyk microclusters, arithmetic means and SEs of the values of the respective parameters were calculated.

Detection of CD69 expression level by flow cytometry

Human Ramos or mouse primary B cells were placed on planar polyacrylamide gels of high or low stiffness presenting surrogate Ags for an extended amount of time (24 h). During this period of time, complete culture medium was used. After that, B cells were removed from the substrates by rigorous washings. B cells were stained with FITC hamster anti-mouse CD69 or FITC mouse anti-human CD69 (BD Biosciences) on ice. After washing with prechilled PBS, the expression level of CD69 was examined by flow cytometry analyses using FACS Calibur (BD Biosciences).

Treatment of B cells with pharmacological inhibitors

For inhibitor studies, Ramos B cells were pretreated with three cytokine inhibitors, including latrunculin B (Calbiochem), nocodazole (Sigma-Aldrich), or colchicine (Fluka Biochemicals), before the imaging experiment as reported earlier (4). Briefly, Ramos B cells were pretreated with 1 \mu M latrunculin B at room temperature for 10 min to block actin polymerization. Ramos B cells were pretreated with 2 \mu M nocodazole for 1 h at 4°C, followed with another 30 min at 37°C to disrupt microtubule filaments. Ramos B cells were pretreated with 100 \mu M colchicine at room temperature for 30 min to disrupt microtubule filaments. As a control, Ramos B cells were pretreated with DMSO for 1 h at 4°C, followed by another 30 min at 37°C.

Results

The polyacrylamide gels used to tether Ag ligands show different degrees of stiffness

Polyacrylamide gels have been widely used to produce planar substrate surfaces with different rigidities by varying the amount of bis-acrylamide crosslinker. In this study, we used 0.8, 0.4, and 0.05% of bis-acrylamide crosslinker to yield a set of polyacrylamide gels with a bulk Young’s modulus of 22.1 ± 2.7, 7.4 ± 2.4, and 2.6 ± 1.3 kPa, respectively (Fig. 1A). When preparing the polyacrylamide gels, streptavidin-conjugated acrylamide was used in a mixture with nonconjugated acrylamide for the purpose of tethering Alexa Fluor 647–conjugated biotinylated F(ab')2 anti-IgM surrogate Ags on gel surfaces (Fig. 1B). The polyacrylamide gels produce a layer of activating Abs as shown in reconstructed three-dimensional confocal images (Fig. 1B). In early studies, Ags tethered to planar surfaces of either fluid lipid bilayer or glass cover slides have been shown to efficiently induce the signaling cascades of B cell activation (4, 5, 9). We thus used the Ags tethered to the planar surface of polyacrylamide gels with varying stiffnesses to assess the extent of B cell activation. Although three-dimensional confocal microscopy revealed a lateral distribution of the tethered Ags that was planar and highly uniform (Fig. 1C, red area), we noticed that the density of Ag tethered to the gel surface differed greatly even when using the same percentage of streptavidin-conjugated acrylamide molecules in each gel of a particular stiffness (data not shown). Because the initiation of B cell activation has been demonstrated to be sensitive to Ag density in early studies of ours and others (4, 5), we adjusted the concentration of streptavidin-conjugated acrylamide in 2.6 and 7.4 kPa gels to produce an Alexa Fluor 647–conjugated F(ab')2 anti-mouse IgM surrogate Ag layer with an Ag density that was comparable to the 22.1 kPa gels (Fig. 1D).

Besides Ag density, Ag accessibility to B cells will also significantly affect the initiation of B cell activation. In the system using polyacrylamide gels, Ag accessibility had to be extensively examined to avoid inadvertently altering accessibility to Ag when varying the stiffness feature of the gels. We performed two independent experiments to assess the accessibility of Ag to B cells on 22.1 versus 2.6 kPa gels. First, we incubated 100 nM Alexa Fluor 488–conjugated mouse IgM molecules with either 22.1 or 2.6 kPa gels presenting anti-mouse IgM surrogate Ag and showed that the Ag layers on either of the gels are equally accessible to mouse IgM molecules (Fig. 1E). Second, we placed the same amount of human Ramos B cells on either 22.1 or 2.6 kPa gels, with or without tethered anti-human IgM surrogate Ags, for 10 min and then thoroughly washed the gels at flow speeds of 0.5, 1, 2, or 2.5 ml/s using 10 ml PBS/1% PBS washing buffer (Fig. 2A–E). For each condition, we showed that human Ramos B cells can adhere to the polyacrylamide gels in a comparable manner regardless of substrate stiffness (Fig. 2B–E). Unexpectedly, we found that Ramos B cells show comparable abilities to adhere to polyacrylamide gels with or without tethered surrogate Ags (Fig. 2B–E). It is known that tumor cells may significantly change their adhesive features, depending on the substrate (32). Thus, to ensure that these observations are not unique to laboratory B cell lines, we repeated the experiment using freshly isolated murine primary B cells at a washing speed of 2 ml/s (Fig. 2F). Some similar observations were obtained, although indeed primary B cells have a relatively weaker ability to adhere to polyacrylamide gels (~50% adhesion) as compared with the Ramos B cell line (~80% adhesion) (Fig. 2F). These results show that adhesion of B cells to the substrate is independent of the Ags. To determine whether Ag-independent adhesion of B cells to polyacrylamide gels could induce characteristics of B cell activation, we examined the accumulation of BCRs into the contact interface between the B cells and the gels with or without tethered Ags (Fig. 2G, Supplemental Fig. 1). The results showed that although B cells adhere to polyacrylamide gels in these two conditions equally well, only the gels
We observed the formation of a typical B cell immunological synapse (1, 4). The B cell immunological synapse is a critical platform in the initiation of BCR signaling by our studies and subsequent internalization of foreign Ags. We thus examined how the formation of the B cell immunological synapse is affected by Ags tethered to substrates with different stiffnesses. We pre-

stained Ramos human B cells with Alexa Fluor 568–conjugated Fab anti-human IgM C region and placed them on the poly-

crylamide gels with a Young’s modulus of 22.1, 7.4, or 2.6 kPa. Biotin-conjugated F(ab’)_2 anti-human IgM was tethered to the surface of these gels of varying stiffness at the same Ag density (Fig. 1C, 1D). Ten minutes later, we fixed and permeabilized the cells and stained them with pSyk- or pTyr-specific Abs. Images of the contact interface between the B cells and the Ag-presenting planar gels were acquired by confocal fluorescence microscopy. We observed the formation of a typical B cell immunological synapse with the accumulation of BCR and signaling molecule microclusters into the contact interface between the B cells and the Ag-containing planar gels (Fig. 3A, 3B). We quantified the accumulation of BCR, pSyk, and pTyr molecules into the B cell immunological synapse using an image analysis method reported in our earlier studies (30). We found that Ags tethered to the substrate with higher stiffness significantly enhanced the accumulation of BCR (Fig. 3C), pSyk (Fig. 3D), and pTyr (Fig. 3E) molecules into the Ramos B cell immunological synapse, with 22.1 kPa Ag demonstrating the greatest accumulation and 2.6 kPa Ag the least (Fig. 3). To ensure that these observations were not features exclusive to Ramos human B cells, we similarly examined the response of freshly isolated mouse primary B cells to Ags tethered to substrates with different stiffnesses. We confirmed that mouse primary B cells accumulated more BCR (Fig. 4A), pSyk (Fig. 4B), and pTyr (Fig. 4C) molecules into the B cell immunological synapse when encountering Ags tethered to substrates with high stiffness (Fig. 4).

These results suggest that the initiation of B cell activation is very sensitive to substrate stiffness. Clearly, Ags presented on substrates with high stiffness substantially facilitate the formation of the B cell immunological synapse and the initiation of B cell activation compared with Ags presented on substrates with low stiffness.

BCR and signaling molecule microclusters induced by Ags on substrates with high stiffness are much more prominent and show enhanced colocalization as compared with substrates with low stiffness.

BCR microclusters have been demonstrated to serve as the most basic platform in the initiation of BCR signaling by our studies and those of others (1, 13). We thus quantified the FI and size of each individual BCR microcluster induced by Ags tethered to sub-

FIGURE 1. Ags tethered to polyacrylamide gel substrates with different stiffnesses show the same density and accessibility. (A) Young’s modulus value for the polyacrylamide gel substrates exhibiting different stiffnesses. Each dot represents a single measurement by atomic force microscopy. Bars represent mean ± SD. Two-tailed t tests were performed for statistical comparisons. (B) Reconstructed three-dimensional confocal image showing the layer of tethered Ags (red) on the surface of a 0.15-mm-thick polyacrylamide gel substrate. Scale bar, 5 μm. (C) Merged two-color images showing the contact interface of a single B cell (green, but shown as yellow in merged image) placed on the surface of the polyacrylamide gel tethering the cognate Ags (red). Scale bar, 5 μm. (D) Quantification of Ag density on the surface of the polyacrylamide gel substrates with different stiffnesses. Each dot represents a single measurement for the MFI of Ag density obtained using ImageJ software. Bars represent mean ± SD. Two-tailed t tests were performed for statistical comparisons. (E) Quantification of the MFI of Alexa Fluor 488–conjugated mouse IgM molecules to compare the accessibility of goat anti-mouse IgM surrogate Ag tethered to polyacrylamide gels with either 22.1 or 2.6 kPa Young’s modulus values. Each dot represents a single measurement for the MFI of Alexa Fluor 488–conjugated mouse IgM density obtained using ImageJ software. Bars represent mean ± SD. Two-tailed t tests were performed for statistical comparisons.
strates with high or low stiffness. We mathematically fitted each BCR microcluster using a 2D Gaussian function as reported earlier (4). By doing this, we were able to use the parameters from the 2D Gaussian function to quantify the BCR microclusters (Fig. 5A). Specifically, for each BCR microcluster, the integrated FI defines the amount of BCRs accumulated into each BCR microcluster, whereas the full width at half-maximum peak height of the intensity distribution in the x and y direction defines the size of each individual BCR microcluster. The FI and size information of each representative BCR microcluster was determined from the

FIGURE 2. B cells similarly adhere to polyacrylamide gels with or without the presentation of Ags, but only accumulate BCRs into the contact interface with Ag-tethering polyacrylamide gels. (A) Representative images showing the adhesion of B cells to polyacrylamide gel substrates before and after washing with 10 ml PBS/1% FBS buffer. Scale bar, 20 μm. (B-E) Statistical quantification of the percentage of human Ramos B cells adhered to polyacrylamide gel substrates with high (22.1 kPa) versus low (2.6 kPa) stiffness. Percentage of adhesion is used for quantification, as detailed in Materials and Methods. Also presented is a comparison of the percentage of Ramos B cells adhered to substrates with tethered Ags, versus without. The results using four different washing speeds of 0.5, 1, 2, or 2.5 ml/s for a total amount of 10 ml PBS/1% FBS washing buffer are given. Bars represent mean ± SD from at least nine independent cell countings. Two-tailed t tests were performed for statistical comparisons. (F) Statistical quantification of the percentage of mouse primary B cells adhered to polyacrylamide gel substrates under different experimental conditions, but the same washing speed of 2 ml/s. Bars represent mean ± SD from at least nine independent cell countings. Two-tailed t tests were performed for statistical comparisons. (G) Statistical quantification of the MFI of BCRs within the immunological synapse of Ramos B cells on polyacrylamide gel substrates (22.1 kPa) with or without tethered Ags. Each dot represents one measurement from a single cell. Bars represent mean ± SD from two independent experiments. Two-tailed t tests were performed for statistical comparisons. All the end point images were acquired 10 min after the B cells were placed on Ag-containing polyacrylamide gels.
original image (Fig. 5A, top panel) or the images mathematically fitted to the 2D Gaussian function (Fig. 5A, middle and bottom panels). The comparison of hundreds of BCR microclusters clearly showed that Ags tethered to substrates with higher stiffness were more potent, inducing the formation of more prominent BCR microclusters that were brighter and larger (Fig. 5B, 5C). We

FIGURE 3. Recruitment of BCR, pSyk, and pTyr to the Ramos B cell immunological synapse induced by Ags tethered to substrates with different stiffnesses. (A) Representative images of BCR (red) and pSyk (green) within the immunological synapse of Ramos B cells encountering Ags tethered to polyacrylamide gel substrates with different stiffnesses (22.1, 7.4, and 2.6 kPa Young’s modulus). Scale bar, 1.5 µm. (B) Representative images of BCR (red) and pTyr (green) within the immunological synapse of Ramos B cells encountering Ags tethered to polyacrylamide gel substrates with different stiffnesses (22.1 and 2.6 kPa Young’s modulus). Scale bar, 1.5 µm. (C–E) Statistical quantification of the MFI of BCR (C), pSyk (D), and pTyr (E) within the immunological synapse of Ramos B cells on polyacrylamide gel substrates with different stiffnesses. Each dot represents one cell analyzed in three independent experiments. Bars represent mean ± SD. Two-tailed t tests were performed for the statistical comparisons in (C)–(E). All the end point images were acquired 10 min after the B cells were placed on Ag-containing polyacrylamide gels.

FIGURE 4. Recruitment of BCR, pSyk, and pTyr to the mouse primary B cell immunological synapse induced by Ags tethered to substrates with different stiffnesses. (A–C) Statistical comparison of the MFI of BCR (A), pSyk (B), and pTyr (C) within the immunological synapse of BALB/c mouse primary B cells encountering Ags tethered to polyacrylamide gel substrates with different stiffnesses. Each dot indicates one cell analyzed in three independent experiments. Two-tailed t tests were performed for statistical comparisons. All the end point images were acquired 10 min after the B cells were placed on Ag-containing polyacrylamide gels.
also quantified the FI and size of pSyk microclusters. Similarly, we found that Ags tethered to substrates with higher stiffness induced formation of more prominent pSyk microclusters than Ags presented on substrates with lower stiffness (Fig. 6), suggesting a boosted initiation of membrane proximal BCR signaling cascades.

Early studies of ours and others showed that signaling-active BCR microclusters were usually well colocalized with membrane-proximal signaling microclusters, such as pSyk and pTyr microclusters (4, 15, 16, 33). We thus compared the spatial distribution of BCR microclusters to either pSyk or pTyr microclusters induced by Ags tethered to substrates with high or low stiffness using Pearson correlation index analysis as reported previously (4). These analyses indicated that BCR microclusters induced by Ags tethered to substrates with high stiffness were more signaling active by showing significantly enhanced colocalization to either pSyk or pTyr signaling molecule microclusters, as compared with BCR microclusters induced by Ags tethered to substrates with low stiffness (Fig. 7).

Thus the initiation of B cell activation is very sensitive to the stiffness features of the substrate presenting the Ags, suggesting that B cells have a mechanosensing ability that can efficiently regulate the early events in B cell activation.

The mechanosensing ability of B cells affects downstream B cell activation events

We also wanted to determine whether the B cell mechanosensing ability can be delivered to the nucleus and therefore affect the...
expression profiles for the genes responding to B cell activation. We thus measured expression of the B cell surface activation marker CD69, which is significantly increased upon Ag recognition by the BCRs as indicated in published studies (23–25, 34). In contrast to activation of Syk, the activation of CD69 takes place at the late stage of the BCR signaling transduction cascade, with a response occurring at the mRNA level through changes in the gene expression profile. Accordingly, to determine changes in CD69 expression, we thus incubated Ramos or mouse primary B cells in general culture medium with the planar polyacrylamide gels of high or low stiffness presenting surrogate Ags for an extended amount of time (24 h) and followed up with flow cytometry analyses. We found that B cells encountering Ags tethered to substrates with high stiffness showed significantly enhanced expression of the B cell activation marker CD69 as compared with B cells recognizing Ags tethered to substrates with low stiffness (Fig. 8). This effect was readily observed in mouse primary B cells (MFI of CD69 was 36.9 on B cells applied to substrates with high [22.1 kPa] stiffness versus 15.5 on substrates with low [2.6 kPa] stiffness) (Fig. 8A), although it was mild in Ramos human B cells (MFI of CD69 was 3.31 on substrates with high stiffness versus 2.17 on substrates with low stiffness) (Fig. 8B). The upregulation

FIGURE 6. 2D Gaussian analyses of pSyk microclusters induced by Ags tethered to substrates with high versus low stiffness. (A) Representative original (top panel), pseudo-colored 2D (middle panel), and 2.5D Gaussian images (bottom panel) of typical pSyk microclusters induced by Ags tethered to substrates with high versus low stiffness. Scale bars, 1.5 μm. The FI and size of each microcluster upon 2D Gaussian fitting were used to quantify the pSyk microclusters, as detailed in Materials and Methods. (B and C) Statistical comparison of FI (B) or size (C) of hundreds of pSyk microclusters within the immunological synapse of Ramos B cells placed on Ag-tethered substrates with high versus low stiffness. Bars represent mean ± SEM of pSyk microclusters analyzed (n is indicated in the insert symbol legend) from at least 50 cells that were acquired from three independent experiments. Two-tailed t tests were performed for statistical comparisons. All the end point images were acquired 10 min after the B cells were placed on Ag-containing polyacrylamide gels.
of CD69 upon Ag stimulation in human Ramos B cells is much weaker, consistent with previously published studies (35). Thus, it is clear that the mechanosensing ability of B cells can be delivered to the nucleus and can subsequently affect the expression profiles for the genes responding in B cell activation.

The different responses of B cells to substrate stiffness are only evident 5 min after Ag recognition by the BCRs

Early studies from ours and those of others showed that there are dynamic but ordered molecular events in the initiation of B cell activation (1, 13). We then wanted to determine at which stage the B cells show a mechanosensing ability to distinguish substrates with high or low stiffness after Ag recognition by the BCRs. We applied high-speed time-lapse live cell imaging to address this question. Using spinning disk confocal microscopy, we captured with high temporal resolution the responses of Ramos human B cells placed on Ag-containing polyacrylamide gels with high or low stiffness features. Scale bar, 1.5 μm. (A and B) FI profiles from (A) show the BCR and pSyk localization of Ramos B cells encountering Ags tethered to substrates with high (C) or low (D) stiffness. (E and F) FI profiles from (B) show the BCR and pTyr localization of Ramos B cells encountering Ags tethered to substrates with high (E) or low (F) stiffness. (G and H) Pearson correlation index analyses were used to quantify the spatial distribution of BCR microclusters with either pSyk (G) or pTyr (H) microclusters from Ramos B cells encountering Ags tethered to the substrate with high or low stiffness. Each dot represents an individual measurement from a single B cell for colocalization analysis by ImageJ software. Bars represent mean ± SD from at least three independent experiments. Two-tailed t tests were performed for statistical comparisons. All the end point images were acquired 10 min after the B cells were placed on Ag-containing polyacrylamide gels.

The mechanosensing ability of B cells helps BCRs exert affinity discrimination

In the experiments described thus far, we used IgG anti-IgM Abs as surrogate Ags for B cell activation. To test the general hypothesis that B cell activation events are regulated by the mechanosensing ability of B cells, we analogously assessed primary B cells from IgH B1-8/B1-8 Igk^−/− transgenic mice (termed B1-8 primary B cells) (36). B1-8 primary B cells expressing B1-8 IgM-BCRs specifically recognize the hapten 4-hydroxy-3-nitrophenyl (NP) (37). We thus tethered biotin-conjugated NP8-BSA Ag on poly-
FIGURE 8. Analyses of the surface expression of B cell activation marker CD69 on B cells encountering Ags tethered to substrates with high versus low stiffness. (A and B) Flow cytometry analyses for the B cell activation marker CD69 from mouse primary B cells (A) or Ramos human B cells (B) following 24 h incubation on Ag-containing substrates with high versus low stiffness. The MFI of CD69 is provided in the histogram plots as indicated. Data in (A) and (B) are representative of three independent experiments.

acrylamide gel surfaces with high or low stiffness features. We detected the accumulation of IgM-BCRs on B1-8 primary B cells into the immunological synapse to double-check our observations that the accumulation of BCRs is sensitive to stiffness of substrate. These results confirmed that B1-8 primary B cells show an obvious mechanosensing ability to determine the stiffness features of the substrate presenting NP8-BSA Ags (Fig. 10A). Our conclusion is consistent with the observation that B cells respond much more readily to surrogate Ags tethered to substrates with high stiffness.

Moreover, an important function of BCRs in cell activation is to perform affinity discrimination (1). We were thus curious to determine whether affinity discrimination of BCRs will be regulated by the mechanosensing ability of B cells. To do so, we used J558L cells expressing reconstructed B1-8-high or B1-8-low IgM-BCRs as reported in our early studies (4, 30). Early biochemical studies suggested that the affinities (K_a) of B1-8-high and B1-8-low Ab to NP are 5×10^4 and 1.25×10^5 M$^{-1}$, respectively, a 40-fold difference (38–40). By tethering biotin-conjugated NP8-BSA Ags to polyacrylamide gels with high or low stiffness features, we assessed the accumulation of IgM-BCRs into the immunological synapse. The results suggest that both B1-8-high and B1-8-low IgM-BCRs expressing J558L cells maintained mechanosensing capabilities well (Fig. 10B, 10C). Importantly, we noticed that B1-8-high IgM-BCRs showed a 3.06-fold enrichment in the immunological synapse as compared with B1-8-low IgM-BCRs when recognizing the same NP8-BSA Ags tethered to substrates with high stiffness (22.1 kPa) (Fig. 10B, 10C). In contrast, we only observed a 1.73-fold enrichment of B1-8-high IgM-BCRs compared with B1-8-low IgM-BCRs when recognizing Ags tethered to substrates with low stiffness (2.6 kPa) (Fig. 10B, 10C). Thus, it is interesting to know that BCRs demonstrate much stronger affinity discrimination ability when recognizing Ags presented on substrates with high stiffness as compared with Ags presented on substrates with low stiffness.

The mechanosensing ability of the BCR is more dependent on the microtubule network than the actin cytoskeleton

Next, we attempted to identify the molecular mechanism of the mechanosensing ability of BCRs. Because the membrane cytoskeleton, including actin and microtubule network, have been demonstrated to regulate cell mechanics and polarized morphology in published studies (17–19), we chose to evaluate the contribution of actin and the microtubule network to the mechanosensing ability of BCRs. We used the actin polymerization inhibitor latrunculin B to pretreat Ramos B cells to disrupt actin filaments as reported previously (4). We then placed these pretreated Ramos B cells on Ag-containing polyacrylamide gels with high or low stiffness. We first evaluated the ability of these pretreated B cells to acquire Ags when encountering Ag tethered to substrates with either high or low stiffness. As expected, such ability was sig-

FIGURE 9. Time-lapse imaging of the accumulation of BCR microclusters into the immunological synapse of Ramos B cells encountering Ags tethered to substrates with high versus low stiffness. (A) Representative time-lapse images at the indicated time points showing the contact interface of Ramos B cells with Ag-presenting polyacrylamide gels having high versus low stiffness (also see Supplemental Video 1). Scale bar, 2 μm. (B) Statistical comparisons showing the dynamic accumulation of BCR microclusters into the immunological synapse during a time frame of 14 min. Bars represent mean ± SEM of 20 cells taken from three independent experiments. At the indicated time points, two-tailed t tests were performed for statistical comparisons and a p value is given. Linear fittings were also performed for the BCR MFI growth curves within the range of 0–5 min or time period after 5 min. Within the first 5 min, the slopes of the two growth curves induced by Ags on stiff (22.1 kPa) or soft (2.6 kPa) substrates were comparable (3.814 versus 3.067); however, after 5 min, the slope of the growth curve from stiff substrates is 2.5-fold greater than the slope from soft substrates (4.936 versus 1.979).
nificantly impaired when the actin cytoskeleton was disrupted, as quantified by the amount of BCRs accumulated into the B cell immunological synapse (Supplemental Fig. 2A, 2B) and the size of the B cell contact area with the Ag-containing gels (Supplemental Fig. 2C, 2D). This builds upon our study reporting that the initiation of BCR signaling and the growth of BCR microclusters in response to Ags tethered to planar fluid lipid bilayers were severely impaired by latrunculin B treatment (4).

We then compared the response of BCRs to Ags tethered to substrates with high versus low stiffness. We found that Ramos B cells pretreated with latrunculin B still showed an enhanced response upon encountering Ags on substrates with high stiffness as compared with Ags on substrates with low stiffness ($p = 0.0167$) (Fig. 11A, 11B). However it is clear that the mechanosensing ability of B cells was slightly impaired in B cells with disrupted actin filaments, as the Ramos B cells pretreated with DMSO, rather than latrunculin B, exhibited better mechanosensing ability ($p = 0.0058$) (Fig. 11A, 11B). Moreover, we compared the contact area of Ramos B cells with the Ag-containing polyacrylamide gel substrates. Ramos B cells encountering Ags on substrates with high stiffness showed an obviously larger contact area as compared with Ags on substrates with low stiffness ($p < 0.0001$) (Fig. 12A, 12B). These results were observed in both the DMSO control and the latrunculin B–pretreated B cells ($p < 0.0001$) (Fig. 12A, 12B), suggesting that the actin cytoskeleton contributes only mildly to the mechanosensing ability of B cells.

Using a similar approach, we evaluated the contribution of the microtubule network to the mechanosensing ability of the BCR. We disrupted microtubules by pretreating Ramos B cells with the microtubule polymerization inhibitor nocodazole as reported earlier (4). We then imaged and analyzed the response of these pretreated B cells to Ags tethered to polyacrylamide gels with high versus low stiffness. The results suggest that the Ramos B cells pretreated with nocodazole completely lost their mecha-
mechanosensing ability, accumulating comparable amounts of BCR into the B cell immunological synapse (Fig. 11C, p = 0.3428) and showing a similar contact area when encountering Ags on substrates with high stiffness versus low stiffness (Fig. 12C, p = 0.5673). Because published studies have indicated that nocodazole can inhibit other molecules independent of its effects on the microtubule network (41), we pretreated Ramos B cells with another type of microtubule inhibitor, colchicine, to disrupt microtubule polymerization. The effects of colchicine on the formation of the B cell immunological synapse were similar to those obtained using nocodazole (Figs. 11D, 12D), suggesting that the mechanosensing ability of B cells is more dependent on the microtubule network than on the actin cytoskeleton.

Discussion

In this study, we show that B cells have excellent mechanosensing ability to survey the stiffness features of the substrate presenting the Ags and such ability in turn efficiently regulates B cell activation events upon Ag recognition by BCRs. It is perhaps not surprising that B cells can perform mechanosensing, as almost all types of cells have such capability (42). However, we think that it is interesting to discover that the B cell responses induced by Ag recognition by BCRs, similar to early B cell activation events, are efficiently subjected to regulation by the mechanosensing ability of the B cell. It is well known that B cells function to search for evaded Ags. The substrate harboring Ags can be very diverse by nature, and thus the stiffness features of these substrates can be highly different, as described in detail in the Introduction (22). Two extreme samples include rigid virus capsid that is usually very stiff and body fluid containing secreted pathogen Ags that is extremely soft. Recent progress of advanced intravital imaging techniques has demonstrated that B cells can be activated by Ags that are captured on the plasma membrane of APCs. For example, viruses and immune complexes are mainly presented to B cells by macrophages, dendritic cells lining the subcapsular sinuses, and the well-appreciated follicular dendritic cells (43–46). When investigating the activation of B cells upon recognition of these types of membrane-bound Ags, the stiffness features of both APCs and B cells cannot be neglected, as complex membrane structures involving multiple receptors, ligands, and signaling molecule interactions, now referred to as the immunological synapse, will form between the membrane interface of APCs and B cells (47). It is well documented that the immunological synapse plays essentials roles in regulating B cell activation, whereas the formation and maturation of the immunological synapse are likely to be affected by the stiffness features of the substrate presenting the Ags and the B cell itself. This type of speculation is supported by recent studies that the membrane and cytoskeleton of a cell maintain its tension features. These tension features are closely linked to the formation of cell polarity (17, 18, 48–50), whereas the B cell immunological synapse is a highly polarized structure. It is not completely clear whether the stiffness of a cell is linked to the tension features of its membrane and cytoskeleton, but it is well documented that both lipid raft membrane domains and membrane cytoskeletons play pivotal roles in the formation of the B cell immunological synapse.

In this study, we established an experimental system to use common polyacrylamide gel substrates with variable Young’s modulus (22.1, 7.4, and 2.6 kPa respectively) to present Ag. To capture the early events of B cell activation, seconds after the recognition of Ags tethered to substrates with varying stiffnesses, we used high-resolution, high-speed live cell imaging techniques to examine the B cell response. Our experiments showed that when B cells encounter Ags tethered to substrates with higher stiffness, they demonstrated significantly enhanced accumulation of pSyk, and pTyr signaling molecules into the B cell immunological synapse as compared with B cells recognizing Ags tethered to substrates with lower stiffness. The enhanced initiation of BCR signaling is transmitted to the nucleus and affects downstream gene expression profile changes as quantified by the enhanced expression of the B cell activation marker CD69. These results suggest that B cells have mechanosensing ability and such capability can efficiently regulate B cell activation events.

Our observation in this study mirrors the findings of a recent study by Kam and colleagues (20), who investigated the mechanosensing features of T lymphocyte cells. Their studies demonstrated that within a stiffness range between 10 and 100 kPa, the activation of T cells was obviously enhanced upon increasing substrate stiffness, as quantified by IL-2 secretion and phosphorylated Src family kinases and ZAP70 recruitment to the immunological synapse. However, for substrate stiffness >100 kPa, the activation of T cells did not seem to be enhanced, but was instead
somewhat impaired (20). These results and speculations were further supported by a recent study by Milone and colleagues (21). Using polydimethylsiloxane (PDMS) substrates, they were able to produce substrate stiffnesses ranging from 100 to 8000 kPa. They extensively compared T cell activation, proliferation, and differentiation when cultured on an extremely stiff PDMS surface of \(\sim 8000\) kPa and a relatively softer PDMS surface of \(\sim 100\) kPa. Indeed, they found that when increasing stiffness \(>100\) kPa, T cell activation was actually impaired, and this was especially the case when comparing substrates with stiffness of 8000 versus 100 kPa.

Note that both B and T lymphocyte cells are not likely to encounter Ags tethered to a surface with a stiffness as high as 8000 kPa in vivo, although in general in vitro biochemical studies the surfaces of plastic culture plates or glass coverslides can exhibit stiffnesses that high. It is also well known that when coating Ags on substrate surfaces with extremely high stiffness, B or T lymphocyte cells can be readily activated. From a physiological point of view, the commonly used polyacrylamide gel substrate can produce a surface stiffness value that lymphocyte cells are most likely to encounter in vivo, as it is well documented that the stiffness of polyacrylamide gel can be controlled between 150 Pa and 150 kPa, a range well covering the stiffness of most tissues within the human body (1–50 kPa) (32, 51–53). Thus, we think that the range of 2.6–22.1 kPa used in this study fits well with the range of substrate stiffnesses that B cells are likely to encounter in vivo, and within this range, our data show that B lymphocyte cells demonstrate obviously enhanced activation responses when recognizing Ags tethered to substrate with high stiffness.

A follow-up question is how can B cells distinguish Ag-containing substrates with high versus low stiffness? This question is even more intriguing considering that we did not include any typical adhesive ligand molecules, such as ICAM-1, on the surface of the polyacrylamide gels. We simply tethered anti-IgM surrogate Ags or NP8-BSA Ags to the surface of polyacrylamide gels. Our experimental system is very similar to the system used by Kam and colleagues (20) in which IgG anti-CD3 and anti-CD28 surrogate Ags were tethered to polyacrylamide gels, or to the system used by Milone and colleagues (21) in which IgG anti-CD3 and anti-CD28 surrogate Ags were tethered to PDMS gels. In their systems, no adhesive ligands were used, but in both cases, T cells similarly showed strong mechanosensing abilities. These results from T cells studies and the results of B cell studies presented in this study show that for lymphocyte cells, the mechanosensing abilities may not solely function through conventional ICAM-1 and LFA-1 interactions, where LFA-1 serves as a well-established mechanosensor. However, note that the potential contribution of ICAM-1 and LFA-1 interactions to maintaining and regulating the mechanosensing ability of lymphocyte cells cannot be neglected, as there are many early studies showing that ICAM-1 and LFA-1 interactions can fine-tune the adhesion and activation of both B and T lymphocyte cells (54–60). From this point of view, it will be very interesting to investigate the exact role of ICAM-1 and LFA-1 interactions in regulating the mechanosensing ability of B cells.

We have some speculations about how B cells can perform mechanosensing functions even under conditions where only Ags but no ICAM-1 adhesion molecules are tethered to the surface of the substrates. Early cell biological studies have reported that the focal adhesions between the opposing plasma membranes of the cell-to-cell contact interface can themselves serve as mechanosensors (61). Within these focal adhesions, the mechanical features of the extracellular matrix can be transmitted across the membrane to the membrane-proximal cytoskeleton to activate cytoplasmic signaling proteins (61). When B cells encounter membrane-bound Ags presented by APCs, a typical focal adhesion structure referred to as the immunological synapse forms (1). Is it possible that the B cell immunological synapse functions as the mechanosensor here? In this study, using a series of optical imaging-based techniques, we captured the dynamic molecular events in the formation of the B cell immunological synapse, including the formation and growth of BCR microclusters, the recruitment of signaling molecule pSyk and pTyr microclusters, and the coalescence of these microclusters (1). By comparing hundreds of BCR microclusters induced by Ags tethered to substrates with high or low stiffness, we determined that the Ags tethered to substrates with high stiffness are more potent and induced the formation of more prominent BCR microclusters that contain more BCRs and Ags. Similarly, when quantifying the FI and size of pSyk microclusters, we determined that Ag tethered to substrates with high stiffness induced the formation of more prominent pSyk microclusters that are much larger and brighter than those induced by Ags tethered to substrates with low stiffness. More importantly, BCR microclusters showed enhanced colocalization to either pSyk or pTyr microclusters in the case of B cells encountering Ags tethered to substrates with high stiffness. All of these data suggest that the typical events involved in the formation and maturation of the B cell immunological synapse are very sensitive to the stiffness feature of substrates presenting the Ags, although no typical adhesive molecules such as ICAM-1 are tethered to that very substrate. These experiments do not lead us to the conclusion that B cells perform mechanosensing by using the immunological synapse as the mechanosensor machinery, as we cannot exclude the possibility that these events in the formation and maturation of the B cell immunological synapse are actually regulated by the mechanosensing capability of B cells through some other unidentified mechanosensor machinery. It will be very interesting to investigate the molecular nature of the mechanosensor machinery to distinguish the stiffness features of substrates without tethered ICAM-1 adhesion molecules, as is the case for B cells in the present study and for T cells in the published studies from Kam and colleagues and from Milone and colleagues.

Another intriguing observation from our report is that the Ag-independent adhesion of B cells to polyacrylamide gel substrates is even more striking in human Burkitt’s lymphoma Ramos B cells (\(\sim 80\%\) adhesion) as compared with the case of freshly isolated mouse primary B cells (\(\sim 50\%\) adhesion). Although it is known that tumor cells may significantly change their adhesive features (32), the molecular mechanism of the Ag-independent adhesion of tumor B cells and its function in B cell tumorigenesis deserve further investigation.

We are just beginning to learn about the mechanosensing ability of B cells. Two interesting features are clear based on this study. First, a response time of 5 min is needed for B cells to show an obvious ability to distinguish substrate stiffness. Through time-lapse live cell imaging, we determined that the differences in B cell responses were not evident until 5 min after BCRs encountered Ags tethered to substrates with variable stiffnesses. Second, not all of the receptors and cytoskeleton networks involved in lymphocyte activation are associated with the mechanosensing ability of lymphocyte cells. The study of Kam and colleagues (20) on T cells showed that the mechanosensing ability of T cells is more strongly associated with TCR CD3 molecules rather than the costimulatory molecule CD28. In our studies, B cell mechanosensing ability is found to be more dependent on the microtubule network, but it is only mildly linked to the actin cytoskeleton, suggesting that the mechanosensor machinery may likely rely on the microtubule rather than the actin cytoskeleton system. Although actin is not closely involved in the mechanosensing ability of B cells, it is clear that the actin cytoskeleton plays important
supporting roles in the formation of the B cell immunological synapse. Indeed, in this study we find that the ability of B cells to acquire Ags when encountering Ags tethered to substrates with either high or low stiffness is significantly impaired when the actin cytoskeleton is disrupted. This builds upon our published study and studies of others reporting that the accumulation of BCRs into the B cell immunological synapse in response to Ags tethered to planar fluid lipid bilayers is basically blocked by latrunculin B treatment (4).

Overall, the mechanosensing and mechanotransducing abilities of B cells obviously deserve further investigation, as these studies can enhance our understanding of B cell activation upon Ag recognition and may help us to build better vaccines and cure diseases that are induced by hyper– or hypo–B cell activation, such as B cell tumors and certain types of autoimmune diseases.

Acknowledgments
We thank Dr. Susan K. Pierce (National Institute of Allergy and Infectious Diseases, National Institutes of Health), Dr. Klaus Rajewsky (Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine), and Dr. Mark Shlomchik (Yale University) for providing experimental materials. We thank Dr. Yan Shi at the University of Calgary for critical reading and helpful suggestions on the manuscript. We thank Dr. Dong Han at the National Center for Nanoscience and Technology of China for assistance with mechanical testing of polycrylamide gels. Wanli Liu gives heartfelt thanks to Dr. Susan K. Pierce for her inculcated mentoring in his postdoctoral studies.

Disclosures
The authors have no financial conflicts of interest.

References

Acknowledgments
We thank Dr. Susan K. Pierce (National Institute of Allergy and Infectious Diseases, National Institutes of Health), Dr. Klaus Rajewsky (Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine), and Dr. Mark Shlomchik (Yale University) for providing experimental material. We thank Dr. Yan Shi at the University of Calgary for critical reading and helpful suggestions on the manuscript. We thank Dr. Dong Han at the National Center for Nanoscience and Technology of China for assistance with mechanical testing of polycrylamide gels. Wanli Liu gives heartfelt thanks to Dr. Susan K. Pierce for her inculcated mentoring in his postdoctoral studies.

Disclosures
The authors have no financial conflicts of interest.

References

Corrections

The first institutional affiliation was published incorrectly. The affiliation should read “MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China.”

An institutional affiliation was also omitted from the affiliations. The corrected author line and affiliations are shown below.

Zhengpeng Wan,* Shaosen Zhang,* Yilin Fan,* Kai Liu,† Feng Du,‡ Angel M. Davey,ґ Huiyuan Zhang,* Weidong Han,* Chunyang Xiong,†,‡ and Wanli Liu* ǁ

*MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China; †Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; ‡College of Engineering, Peking University, Beijing, 100871, China; ґNational Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; ¶Department of Immunology, Biotherapeutic Center, Institute of Basic Medicine, Chinese People’s Liberation Army General Hospital, Beijing, 100853, China; and ǁCollaborative Innovation Center for Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1390030
Supplemental Information

Supplemental Figure 1. Quantification of the accumulation of BCRs into the immunological synapse of Ramos B cells placed on substrates with or without tethered antigens.

(A) Statistical quantification of the mFI of BCRs within the immunological synapse of Ramos B cells on polyacrylamide gel substrates (2.6 kPa) with or without tethered antigens. Each dot shows one measurement from a single cell. Bars represent mean ± SD from 2 independent experiments. Two-tailed t tests were performed for statistical comparisons. All the end point images were acquired 10 min after the B cells were placed on polyacrylamide gels.

Supplemental Figure 2. Quantification of immunological synapse formation in Latrunculin B-pretreated B cells encountering antigens tethered to polyacrylamide gel substrates

(A, B) Statistical comparisons of the accumulation of BCRs into the B cell immunological synapse of Ramos B cells that were pretreated with DMSO versus Latrunculin B upon encountering antigens tethered to polyacrylamide gel substrates.

(C, D) Similar to (A) and (B), the contact area of B cells with antigen-presenting polyacrylamide gel substrates was compared statistically. In A-D, each dot shows one measurement from a single cell. Bars represent mean ± SD. Two-tailed t tests were performed for statistical comparisons.

Supplemental Video 1

Time lapse images of the accumulation of BCR microclusters into the immunological
synapse of Ramos B cells upon encountering antigens tethered to substrates with high versus low stiffness. The video was recorded with a 10 s time interval and is shown at 10 frames per second.
Supplemental Fig. 1

A

2.6 kPa

P<0.0001

BCR (mFI)

Ag+ Ag−