IL-33–Mediated Innate Response and Adaptive Immune Cells Contribute to Maximum Responses of Protease Allergen–Induced Allergic Airway Inflammation

Seiji Kamijo, Haruna Takeda, Tomoko Tokura, Mayu Suzuki, Kyoko Inui, Mutsuko Harai, Hironori Matsuda, Akira Matsuda, Keisuke Oboki, Tatsukuni Ohno, Hirohisa Saito, Susumu Nakae, Katsuko Sudo, Hajime Suto, Saori Ichikawa, Hideki Ogawa, Ko Okumura and Toshiro Takai

*J Immunol* published online 1 April 2013
http://www.jimmunol.org/content/early/2013/03/31/jimmunol.1201212

---

Supplementary Material
http://www.jimmunol.org/content/suppl/2013/04/01/jimmunol.1201212.DC1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
IL-33–Mediated Innate Response and Adaptive Immune Cells Contribute to Maximum Responses of Protease Allergen–Induced Allergic Airway Inflammation

Seiji Kamijo,* Haruna Takeda,*,† Tomoko Tokura,*, Mayu Suzuki,*,† Kyoko Inui,*,† Mutsuko Hara,*, Hironori Matsuda,‡ Akira Matsuda,§ Keisuke Oboki,¶ Tatsukuni Ohno,‖ Hirohisa Saito,*,§ Susumu Nakae,*,†,‖,‡‡ Katsuko Sudo,*,†,‡‡ Hajime Suto,* Saori Ichikawa,*†,‡ Hideoki Ogawa,* Ko Okumura,* and Toshiro Takai*

How the innate and adaptive immune systems cooperate in the natural history of allergic diseases has been largely unknown. Plant-derived allergen, papain, and mite allergens, Der f 1 and Der p 1, belong to the same family of cysteine proteases. We examined the role of protease allergens in the induction of Ab production and airway inflammation after repeated intranasal administration without adjuvants and that in basophil/mast cell stimulation in vitro. Papain induced papain-specific IgE/IgG1 and lung eosinophilia. Der f 1 induced Der f 1–specific IgG1 and eosinophilia. Although papain-, Der f 1–, and Der p 1–stimulated basophils expressed allergy-inducing cytokines, including IL-4 in vitro, basophil-depleting Ab and mast cell deficiency did not suppress the papain-induced in vivo responses. Protease inhibitor–treated allergens and a catalytic site mutant did not induce the responses. These results indicate that protease activity is essential to Ab production and eosinophilia in vivo and basophil activation in vitro. IL-33–deficient mice lacked eosinophilia and had reduced papain-specific IgE/IgG1. Coadministration of OVA with papain induced OVA-specific IgE/IgG1, which was reduced in IL-33–deficient mice. We demonstrated IL-33 release, subsequent IL-33–dependent IL-5/IL-13 release, and activation of T1/ST2-expressing lineage–CD25–CD44– innate lymphoid cells in the lung after papain inhalation, suggesting the contribution of the IL-33–type 2 innate lymphoid cell–IL-5/IL-13 axis to the papain-induced airway eosinophilia. Rag2-deficient mice, which lack adaptive immune cells, showed significant, but less severe, eosinophilia. Collectively, these results suggest cooperation of adaptive immune cells and IL-33–responsive innate cells in protease-dependent allergic airway inflammation. The Journal of Immunology, 2013, 190: 000–000.

Protease activity of allergens has been suspected to be an important property that endows an allergen with its allergenicity (1–4). Protease activity of house dust mite (HDM) major group 1 allergens (Der f 1 and Der p 1), two of the most important allergens common worldwide, has been shown to cause barrier dysfunction, to induce the production of proinflammatory cytokines in epithelial cells and keratinocytes, to cleave various molecules, to modulate functions of various cell types, and to induce Th2 responses (1–11). Papain, a papaya fruit–derived occupational protease allergen, stimulates epithelial cells (12, 13) and mouse basophils in vitro (14, 15) and induces Th2 responses (14–17) and IL-33–dependent innate responses of lung eosinophilia in mice (18). HDM-derived Der f 1 and Der p 1 and plant–derived papain belong to the same family of cysteine proteases, family C1 of clan CA (19, 20).

Recently, the importance of basophils in type 2 immune responses has received much attention (14, 15, 21, 22). In vitro stimulation of human basophils with Der p 1 induces IL-4 expression (23), and Sokol et al. (14) reported that the Th2 differentiation induced by papain in mice is mediated by IL-4 derived from papain-stimulated basophils. However, Tang et al. (17) proposed a reactive oxygen species–mediated model of papain-induced Th2 immune responses, in which basophils act as an amplifier rather than an initiator, and Hammad et al. (24) reported that the true initiator of the HDM-induced Th2 response is not basophils, but inflammatory dendritic cells. Thus, the contribution of basophils to Th2 induction is controversial among different mouse models.

IL-33, an IL-1 family cytokine, contributes to type 2 immune responses (25, 26). In mice, intranasal (i.n.) administration of IL-33 induces asthma-like symptoms in a T/B cell–independent manner (27). Attenuated eosinophil influx in IL-33–deficient (IL-33−/−) mice was shown in the inhalation models of HDM extract and papain (18). Airway eosinophilia induced by short-term i.n. administration (once per day for 3 consecutive days) of high-dose...
papain (100 µg/20 µl per animal) occurred in Rag2-/- mice, but not in IL-33-/- mice and IL-4-/-/IL-13-/- mice, suggesting that the papain-induced “innate” allergic airway inflammation is IL-33 dependent and that innate cell derived, but not T cell derived, IL-4 or IL-13 or both are important for the event. However, the contribution of IL-33 and adaptive immune cells to protease–allergen–dependent allergic airway inflammation associated with the Ab response, in which the adaptive immune system should be activated, is unknown.

In the current study, we examined the contribution of enzyme activity of protease allergens, basophils, IL-33, and adaptive immune cells to Ab production and lung eosinophilia in an allergic model, in which the papain-induced “innate” allergic airway inflammation is IL-33 dependent and that innate cell derived, but not T cell derived, IL-4 or IL-13 or both are important for the event. However, the contribution of IL-33 and adaptive immune cells to protease–allergen–dependent allergic airway inflammation associated with the Ab response, in which the adaptive immune system should be activated, is unknown.

Materials and Methods

**Mice**

Female 7- to 10-wk-old C57BL/6 mice (Charles River Japan, Yokohama, Japan; or Japan SLC, Shizuoka Japan), IL-33-/- mice, IL-4-/- mice, and IL-13-/- mice were maintained in a specific pathogen–free facility at Juntendo University (Tokyo, Japan) and used in accordance with the guidelines of the institutional committee on animal experiments.

**Ags**

Papain was purchased from Calbiochem (San Diego, CA). Recombinant Der p 1 and Der f 1 were prepared as described previously (29, 30), with some modifications. Briefly, proforms of recombinant proteins were secreted into the culture supernatant of yeast *Pichia pastoris* and converted into their prosequence-removed mature forms. Der p 1-N52Q, Der f 1-N53Q, and Der f 1-WT, and rDer f 1-C35S were treated with an irreversible inhibitor specific to cysteine proteases, E64 (Peptide Institute, Osaka, Japan), as described previously (10), with minor modifications. After the treatment, free E64 was removed by dialysis. Protease allergens, which were incubated similarly to E64-treated allergens (but without the addition of E64) and dialyzed, were prepared and used for in vivo and in vitro experiments for comparison with E64-treated ones. Purity, no degradation, and no aggregation were confirmed by electrophoresis, and protease activity was analyzed using synthetic fluorogenic substrates (10, 31). Chicken OVA (Grade V; Sigma-Aldrich, St. Louis, MO) and that with low endotoxin content (EndoGrade OVA; Hyglos GmbH, Regensburg, Germany) were used in ELISA and i.n. administration, respectively.

**i.n. administration of protease allergens to mice**

Mice were lightly anesthetized with an i.p. injection of pentobarbital (Somnopentyl; Kyoritsu Pharmaceutical, Tokyo, Japan) and allowed to inhale 40 µl allergens following alternate application to both nares with a pipette. Papain and OVA were each i.n. administered twice per week, and rDer f 1 was i.n. administered three times every 2 wk. At 3 d after the last i.n. administration, sera and bronchial alveolar lavage cells were collected.

**Bronchial alveolar lavage**

The tracheas of terminally anesthetized mice were cannulated, and the internal airspaces were lavaged with 1000 µl PBS containing 5% FCS. Fluids were centrifuged at 500 × g for 10 min, and the pellets were recovered for cellular analysis. Bronchial alveolar lavage (BAL) specimens were prepared on glass slides by Cytospin 4 (Thermo Shandon, Cheshire, UK) followed by Diff-Quick (Sysmex, Kobe, Japan) staining. Differential cell counts were performed with a minimum of 200 cells. For detecting cytokines in BAL fluid, the internal airspaces were lavaged three times with 500 µl, 250 µl, and 250 µl HBSS. Fluids were centrifuged at 500 × g for 10 min, and the cell-free supernatants were subjected to cytokine-specific ELISA (DuoSet; R&D Systems, Minneapolis, MN).

**ELISA for serum total IgE and allergen-specific Abs**

Serum total IgE and allergen-specific Abs were measured by a sandwich ELISA, as described previously (10, 32–35) with minor modifications. Plates were coated with papain (30 µg/ml for the experiment of Fig. 1 and 5 µg/ml for the other experiments), Der f 1-WT (5 µg/ml), or OVA (1 mg/ml); and blocked with BlockAce (Megasilk Snow Bland, Sapporo, Japan), in the case of papain, or ImmunoBlock (DS Pharma Biomedical, Osaka, Japan), in the case of Der f 1-WT or OVA. Allergen-specific Abs were detected with HRP-conjugated Abs specific to the mouse IgE and IgG subclasses, as described previously, with some modifications. Sera and detection Abs were diluted with Solutions 1 and 2 of CanGetSignal (TOYOBO, Osaka, Japan), respectively. For detecting allergen-specific IgE, serum dilutions were 1/200 in Figs. 1A, 1C, 1D, 2 and 5/100 in Fig. 2A. For detecting allergen-specific IgG1, serum dilutions were 1/5000 in Figs. 1A, 2A, and 1B/1000 in Figs. 1C and 2C. For detecting IgE, plates were coated with 10 µg/ml papain and blocked with ImmunoBlock; then serum samples diluted (serum dilution was 1/40) with PBS containing 0.05% Tween 20 and 1/200 volume ImmunoBlock were applied to each well of the plates. Biotinylated anti-mouse IgE (clone: R35-118; BD Biosciences, San Diego, CA), followed by incubation with HRP-conjugated streptavidin (BD Biosciences), was used for detecting papain-specific IgE.

**Generation and stimulation of bone marrow–derived basophils**

Mouse bone marrow–derived (BM) basophils were generated as previously described (14). In brief, bone marrow cells prepared from the tibias and femurs of mice were cultured in RPMI 1640 medium (Sigma-Aldrich) supplemented with 30 ng/ml recombinant mouse IL-3 (Peprotech, Rocky Hill, NJ), 2 mM L-glutamine, 10% (v/v) heat-inactivated FCS, 0.05 mM 2-ME, and antibiotics at a density of 5 × 10⁶ cells per milliliter (day 0). Every 3–4 d, cells were replated at a density of 1 × 10⁶ cells per milliliter. Day 14, cells were collected and subjected to magnetic separation for the CD49b+ population using anti-CD49b microbeads and autoMACS (Miltenyi Biotec, Bergisch Gladbach, Germany). The purity of the separated cells was assessed by flow cytometry. A total of 92% of the cells were CD49b+ FcεRια- after the magnetic separation. CD49b+ cells were suspended in fresh medium containing 5% FCS were plated onto 96-well culture plates (3 × 10⁶ cells per well). Finally, 20 µl solution containing protease allergens was added to each well (total, 100 µl per well). To crosslink the FcεRια receptors, CD49b+ cells were sensitized with 10 µg/ml anti-trinitrophenol IgE mAb (clone IgE-3; BD Biosciences) for 1 h, washed, and then suspended in fresh medium containing 5% FCS. Cells were stimulated with 10 µg/ml anti-IgE mAb (clone R35-72; BD Biosciences).

**Generation and stimulation of BM mast cells**

Bone marrow cells prepared from tibias and femurs of C57BL/6 mice were cultured in RPMI 1640 medium supplemented with 10% heat-inactivated FCS, 0.1 mM 2-ME, 0.01 mM MEM–nonessential amino acids, 100 U/ml penicillin, 0.1 mg/ml streptomycin, and 10 ng/ml mouse IL-3. After 5–8 wk of culture, cells suspended in fresh medium containing 5% FCS and 10 ng/ml mouse IL-3 were plated onto 96-well culture plates (5 × 10⁶ cells per 80 µl per well). Finally, a 20 µl solution containing protease allergens was added to each well (total, 100 µl per well). To crosslink the FcεRια receptors, CD49b+ cells were sensitized with 10 µg/ml anti-trinitrophenol IgE mAb (clone IgE-3; BD Biosciences) for 1 h, washed, and then suspended in fresh medium containing 5% FCS. Cells were stimulated with 10 µg/ml anti-IgE mAb (clone R35-72; BD Biosciences).

**Quantitative PCR**

Total RNA was extracted from cells using an RNeasy Plus Micro Kit (Qiagen, Clifton Hill, Australia). First-strand cDNA was synthesized from total RNA using a High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA). Real-time quantitative PCR was performed with the TaqMan method and an ABI 7500 apparatus (Applied Biosystems). The mRNA levels of the target gene were normalized to the gene expression of GAPDH and are shown as relative expression levels to the control group.

**Cytokine ELISA of the culture supernatants of BM basophils and BM mast cells**

After stimulation for 24 h, culture supernatants were recovered by centrifugation at 310 × g for 5 min. Cytokine concentrations were measured with ELISA kits (Quantikine or DuoSet; R&D Systems).

**Flow cytometric analysis of in vivo basophil depletion and lung innate lymphoid cells**

Mice were i.p. injected with anti-FcεRια mAb, and the depletion of basophils was confirmed by flow cytometry (22). The following Abs were used: anti-mouse FcεRια mAb (clone MAR-1), Armenian hamster IgG (eBioscience, San Diego, CA), PE-conjugated anti-mouse CD49b (clone 3H102), PE-conjugated anti-mouse CD200R3 (clone Ba160) (BioLegend, Downloaded from http://www.jimmunol.org/ by guest on September 25, 2017
San Diego, CA), PE-Cy7–conjugated anti-mouse CD3 (clone 145-2C11), PE-Cy7–conjugated anti-mouse B220 (clone RA3-6B2), and anti-mouse CD16/CD32 (clone 2.4G2) mAbs (B D Pharmingen, San Diego, CA), mouse IgE (clone SPE-7) (Sigma-Aldrich), FITC-conjugated anti-mouse IgE (clone: 23G3) mAb (SouthernBiotech, Birmingham, AL), and allophycocyanin-conjugated anti-mouse CD49b (clone DX5) mAb (Bio-Legend). C57BL/6 mice were treated i.p. with 5 mg MAR-1 or control Armenian hamster IgG twice per day for 3 consecutive days (22). At 1 or 5 d after the last i.p. injection, a single-cell suspension of splenocytes was prepared and stained with PE- or allophycocyanin-conjugated anti-CD49b, PE-Cy7–conjugated anti-CD3, PE-Cy7–conjugated anti-B220, IgE and FITC-conjugated anti-IgE, or PE-conjugated anti-CD200R3 after blocking the Fc receptors with anti-CD16/CD32. Depletion of basophils was assessed by detection of the CD3- B220- CD49b+IgE+ or the CD3- B220- CD49b+CD200R3+ cell population.

Lineage CD25-CD44+ innate lymphoid cells (ILCs) in the lung were analyzed as follows. At 3 or 5 h after the last i.n. administration of PBS or papain, single-cell suspensions were prepared from the lungs digested with collagenase type 4 (1.6 mg/ml; Worthington Biochemical, Lakewood, NJ) at 37˚C for 1 h with gentle shaking. The lung cells were stained and analyzed using the following Abs: PE-Cy7–conjugated anti-mouse lineage markers [B220 (clone RA3-6B2), CD3 (clone 145-2C11), CD11b (clone 2.4G2)].

**FIGURE 1.** Protease-dependent induction of Ab production and eosinophilic airway inflammation by inhalation of papain. C57BL/6 mice were i.n. administered papain or E64-treated papain (1.1–30 mg/animal, days 0 and 7). BAL fluid and serum were collected 3 d after the last administration. Dose-dependent (A, B) and protease-dependent (C, D) induction of serum Ab production (A, C) and airway inflammation (B, D). Data are indicated as mean ± SD of four or five mice per group. Data are representative of three independent experiments with similar results. *p < 0.05, **p < 0.01 versus vehicle (Papain 0) by Mann–Whitney U test.

**FIGURE 2.** Protease-dependent induction of Ab production and eosinophilic airway inflammation by inhalation of mite major protease allergen Der f 1 and no responses to OVA. C57BL/6 mice were i.n. administered rDer f 1, E64-treated rDer f 1, or rDer f 1-C35S (days 0, 7, and 14) in (A) and (B) with OVA or papain (days 0 and 7) in (C) and (D) (30 mg per animal). BAL fluid and serum were collected 3 d after the last administration. (A and C) Serum Ab levels. (B and D) Airway inflammation. Data are indicated as mean ± SD of four or five mice per group. Data are representative of three independent experiments with similar results. *p < 0.05, **p < 0.01, ***p < 0.001 versus PBS by Mann–Whitney U test (A, B) and by one-way ANOVA with the Tukey post hoc test (C, D).
M1/70), CD16/CD32 (clone 2.4G2) (BD Pharmingen), and CD14 (clone Sa2-8) (eBioscience), allophycocyanin-conjugated anti-mouse CD25 (clone PC61), FITC-conjugated anti-mouse/human CD44 (clone eBioscience), PE-conjugated anti-mouse CD45 (clone 30-F11) (BioLegend), PE-conjugated anti-mouse Sca-1 (clone E13-161.7), PE-conjugated anti-mouse CD127 (clone A7R34) (eBioscience), PE-conjugated anti-mouse Thy1.2 (clone 30-H12) (BD Pharmingen), biotinylated anti-mouse T1/ST2 (clone DJ8) (MB Bioproducts, Zürich, Switzerland), and streptavidin-PE (BD Pharmingen). Acquisition and analyses were performed using a FACSCalibur cell sorter and Cell Quest software (BD Biosciences).

Statistical analysis

One-way ANOVA with the Tukey post hoc test was used to analyze the data from in vitro experiments. One-way ANOVA with the Tukey post hoc test, unpaired t test, and Mann–Whitney U test (two-tailed) were used to analyze data from in vivo experiments. A p < 0.05 was regarded as statistically significant.

Results

Intranasally administered papain and an HDM major protease allergen induced Ab production and lung eosinophilia in a cysteine protease–dependent manner

Differentiation of Th2 cells in mice immunized s.c. with a plant-derived protease allergen, papain, with no adjuvants has been reported (14); however, the mechanism by which protease allergen inhalation leads to allergic diseases is not well investigated. We analyzed mouse allergic airway inflammation induced by repeated i.n. administration of protease allergens without using adjuvants such as Alum. In preliminary experiments (S. Kamijo, T. Tokura, and T. Takai, unpublished observations), even a single i.n. administration of papain at a higher dose (100 µg/40 µl per animal) resulted in hemorrhage in BAL fluid collected 1 d after papain administration. These results indicate that the protease activity of high-dose papain may have caused tissue injury; therefore, we selected lower doses (≤30 µg/40 µl per animal) for our experiments.

When i.n. administered twice, with a 7-d interval, to wild-type C57BL/6 mice (days 0 and 7), papain at the doses of 30 µg and 10 µg/40 µl per animal increased the serum level of total IgE and induced papain-specific IgE and IgG1 (Fig. 1A), along with infiltration of inflammatory cells mainly consisting of eosinophils into the lung (Fig. 1B) at day 10. Inhalation of papain treated with an irreversible cysteine protease inhibitor E64 did not lead to production of IgE and IgG1 or eosinophil infiltration (Fig. 1C, 1D). When i.n. administered three times at 7-d intervals (days 0, 7, and 14), a recombinant form of HDM major protease allergen, Der f 1, induced Der f 1–specific IgG1 (Fig. 2A) and lung eosinophilia (Fig. 2B) at day 17. E64-treated rDer f 1 and a protease activity–
deficient mutant (rDer f 1-C35S) (Fig. 2A, 2B), and OVA (Fig. 2C, 2D), which have no enzyme activity, failed to induce the responses. These results indicate that repeated i.n. administration of plant-derived and HDM-derived protease allergens in mice can induce allergic airway inflammation associated with eosinophilia and induction of IgE and/or IgG1, the class-switch to which Th2 cytokines contribute to, and that cysteine protease activity of the allergens is essential for this process.

Cysteine protease activity of papain and HDM major protease allergens triggered expression of allergy-inducing cytokines in BM basophils in vitro in a cysteine protease–dependent manner

Some reports described that basophils play a pivotal role in Th2 immunity via IL-4 production (14, 22). As papain and rDer f 1 showed their capacity to induce IgE and/or IgG1 production and allergic airway inflammation (Figs. 1, 2A, 2B), we examined the expression of IL-4 and other allergy-inducing cytokines in mouse BM basophils in response to papain, rDer f 1, and rDer p 1 (Fig. 3).

Stimulation of BM basophils with papain induced mRNA expression of Th2 cytokines (IL-4 and IL-13); CCL-1, which is a chemoattractant for eosinophils (36, 37); and IL-31, a cytokine related to the itch-and-scratch behavior (38) (Fig. 3A), with or without L-cysteine, which can assist in the regeneration of cysteine protease activity by reducing the oxidized SH group at the catalytic site. Stimulation with rDer f 1 and rDer p 1 induced mRNA expression of IL-4, IL-13, and IL-31 (Fig. 3C). Stimulation with papain, rDer f 1, and IgE crosslink induced the secretion of extremely high levels of IL-4 and IL-13 (Fig. 3B, 3D). The E64-treated protease allergens (Fig. 3) and rDer f 1-C35S (Fig. 3D) exhibited no response. In contrast, papain, rDer f 1, and rDer p 1 did not induce mRNA expression of IL-4 and IL-31 in BM mast cells (Supplemental Fig. 1A, 1B). Thus, the cysteine protease activity of rDer f 1 and rDer p 1 can induce the production of allergy-related cytokines, including IL-4, by BM basophils, but not BM mast cells, in a manner similar to papain in vitro.

Basophil-depleting mAb did not reduce Ab production and lung eosinophilia in the protease allergen–induced allergic airway inflammation model

We examined the contribution of basophils to the pathogenesis of allergic airway inflammation induced by repeated airway exposure to papain. Basophil-deleted mice were prepared by injection of a mAb specific for the α subunit of the FcεRI, FcεRIα, (clone MAR-1) before each of the two i.n. injections of papain. The deletion of basophils was confirmed by flow cytometry of spleen cells. The CD49b+IgE+ basophil population was absent in the spleens of the MAR-1–treated mice 1 d prior to the first papain administration (day −1) (Fig. 4A, MAR-1) and 3 d after the second papain administration, which is the day when BAL was performed (day 10) (Fig. 4B, MAR-1). However, when detected as CD49b+CD200R3+ cells, a small population of basophils (0.11% on day 0, 0.07% on day 10) still remained even after MAR-1 administration (Fig. 4C).

The production of total IgE and papain-specific IgE/IgG1 (Fig. 4D) and the numbers of total infiltrating cells and eosinophils (Fig.
4E) in MAR-1–treated mice were equal to those of control hamster IgG-treated mice. The papain-induced Ab production and lung eosinophilic inflammation were equivalent between mast cell–deficient mice (WBB6F1-W/W v) and wild-type mice (WBB6F1-+/+)
(Supplemental Fig. 1C, 1D). Thus, ~90% reduction of basophils by MAR-1 administration does not affect the Ab production and lung eosinophilia induced by repeated i.n. administration of papain, and mast cells are dispensable for the model.

**IL-33 was essential for lung eosinophilia and contributed to Ab production in the protease allergen–induced allergic airway inflammation model**

To examine the contribution of IL-33 to the pathogenesis of allergic airway inflammation associated with the Ab response induced by repeated exposure to papain, we compared the responses between wild-type mice and IL-33−/− mice (Fig. 5). In papain-treated IL-33−/− mice, eosinophil infiltration was almost absent (Fig. 5A), and the serum level of papain-specific IgE and IgG1 was less than that in papain-treated wild-type mice (Fig. 5B). Thus, IL-33 is essential for eosinophil infiltration and contributes to Ab production in this model of allergic airway inflammation. Coadministration of OVA with papain also induced eosinophilic lung inflammation in a manner dependent on IL-33 (Fig. 5C). Papain showed adjuvant effect in inducing OVA-specific IgE and IgG1 in wild-type mice, and the level of upregulation of OVA-specific IgE/IgG1 and total IgE was less in IL-33−/− mice (Fig. 5D).

**Lung IL-33 induced by cysteine protease activity of papain was essential for release of IL-5 and IL-13 in the lung**

We examined cytokine release into the BAL fluid after the first (Fig. 6A) or second (Fig. 6B) i.n. papain administration (30 μg per animal). IL-33 release was observed 1 h after the first administration and peaked at 3 h, then subsided within 24 h (Fig. 6A, IL-33). Induction of lung IL-5 and IL-13 followed the release of IL-33 (Fig. 6A, IL-5 and IL-13). Whereas IL-5 persisted for 24 h, IL-13 rapidly subsided after peaking at 3 h (Fig. 6A). The time course and concentration of IL-33 after the second i.n. papain administration were similar to those observed after the first papain administration (Fig. 6B, IL-33). However, much greater amounts of IL-5 and IL-13 were released at a later time point (24 h) after the second administration (Fig. 6B, IL-5 and IL-13). The induction of IL-5 and IL-13 after the second papain administration showed two peaks; the earlier peak was at 3–5 h, and the late peak was at 24 h. Next, we examined the dose–response relationship of papain-induced release of IL-33 in the lung. A higher dose (100 μg per animal) of papain induced levels of IL-33 release similar to those induced by 33 μg per animal of papain (Fig. 6C). Papain at a dose of 11 μg per animal was not enough to induce IL-33 release that would be detectable in the BAL fluid. Pretreatment of papain with E64 abrogated the papain-induced cytokine release in the lung, and papain did not induce IL-5 and IL-13 in IL-33−/− mice (Fig. 6D).

To assess the possible proteolysis of IL-5, IL-13, and IL-33 in the lung caused by inhaled papain, we treated recombinant IL-5, IL-13, and IL-33 with papain.
and IL-33 with papain at a high concentration (0.75 mg/ml = 30 μg/40 μl) in vitro (Supplemental Fig. 2). IL-13 and IL-33 were undetectable by ELISA within 1 h after incubation with papain and IL-5 was less susceptible to papain than IL-13 and IL-33, suggesting that the concentrations of these cytokines in the lung are underestimated owing to the proteolysis by papain even if they were initially released in higher concentrations.

These results indicate that inhalation of papain results in release of IL-33 in the lung in a manner dependent on protease activity of papain and suggest that release of IL-5 and IL-13 in response to the papain-induced IL-33 release causes the lung eosinophilia.

**Papain induced activation of T1/ST2-expressing lineage CD25⁺CD44⁺ ILCs in the lung**

To identify the IL-33–responsive cells in the lung, we analyzed lineage CD25⁺CD44⁺ ILCs (39). The lineage CD25⁺CD44⁺ lymphoid cell population was detected in the lung of PBS- or papain-treated mice (Fig. 7A). Further analyses of cell surface marker expression revealed that the lineage CD25⁺CD44⁺ lymphoid cells are positive for T1/ST2 (a subunit of IL-33 receptor), Sca-1, and Thy1.2 (Fig. 7B); all of these molecules have been reported to be expressed on type 2 immune cells and/or allergen-specific Abs amplify the magnitude of the papain-induced lung eosinophilia.

**Adaptive immune system contributed to amplification of the magnitude of lung eosinophilia in the protease allergen–induced allergic airway inflammation model**

Significant cellular infiltration mainly consisting of eosinophils occurred in papain-treated Rag2⁻/⁻ mice; however, the numbers of total cells and eosinophils were significantly lower in Rag2⁻/⁻ mice than in wild-type mice (Fig. 8A). Whereas the eosinophil infiltration was partially dependent on adaptive immune cells, the induction of serum IgE/IgG1 was absent in Rag2⁻/⁻ mice owing to the lack of Rag2 recombinase (Fig. 8B). The results indicate that repeated inhalation of papain can induce eosinophil infiltration even in the absence of adaptive immune cells, but that adaptive immune cells and/or allergen-specific Abs amplify the magnitude of the papain-induced lung eosinophilia.

**Discussion**

Exposure to allergen sources such as HDMs and their feces, insects, pollen grains, fungal spores, animal dander, and enzymes used in the food industry (such as papain) triggers a Th2-skewed immune response toward allergic diseases, which are associated with Ab production and eosinophilic inflammation. Allergen source–derived proteases, some of which are allergens (protease allergens),...
are able to cause breakdown of the epithelial barrier and induce innate immune responses in various cell types (1–4). By the use of E64 to inactivate the protease activity, Ab production has been shown to depend on the protease activity of the HDM group 1 major allergen Der p 1 partially (9) or critically (10) when the allergen was i.p. administered to mice. Partial reduction (14, 16) or elimination (14) of Ab production has been reported in E64-treated or heat-denatured papain, respectively, when s.c. administered with no adjuvants. In the current study, we established a mouse allergic airway inflammation model associated with IgE/IgG1 Ab production and lung eosinophilia, which were induced by repeated airway exposure of naive mice to protease allergens without using the Th2-skewing adjuvants such as Alum (Figs. 1, 2), and analyzed mechanisms of the responses. The protease activity was essential to Ab production and lung eosinophilia in vivo (Figs. 1, 2) and BM basophil activation in vitro (Fig. 3), but administration of basophil-depleting Ab or mast cell deficiency did not suppress the in vivo responses in the model (Fig. 4). Our results using E64-treated protease allergens and rDer f 1-C35S (Figs. 1C, 1D, 2A, 2B) indicate that the lung eosinophilia and elevated serum Ab production are dependent on the cysteine protease activity of these allergens, but not to the conformational change or aggregation, which may cause different immune responses. OV A with no protease activity, which has been frequently used as a model allergen in combination with Alum for Th2-skewed immunization of mice, did not induce the in vivo responses in airway exposure without the use of adjuvants (Figs. 2C, 2D, 5C, 5D).

How the innate and adaptive types of immunity cooperate in the natural history of allergic diseases has been largely unknown. Our protocol of using repeated exposure to papain (30 μg/40 μl per day) is shown in Fig. 7.
animal at days 0 and 7; and BAL at day 10) or highly purified recombinant HDM major protease allergen (30 μg/40 μl per animal at days 0, 7, and 14; and BAL at day 17) induced lung eosinophilia and Ab production (Figs. 1, 2). Lung eosinophilia was absent in IL-33−/− mice (Fig. 5AC) and was less severe in Rag2−/− mice (Fig. 8A), and a single i.n. administration (30 μg/40 μl per animal at day 0 and BAL at day 3) was not sufficient to induce significant eosinophilia in wild-type mice (S. Kamijo, T. Tokura, and T. Takai, unpublished observations). Oboki et al. (18) reported that short-term i.n. administration of a higher dose of papain (100 μg/40 μl per animal at days 0, 1, and 2; and BAL at day 3) induced airway infiltration of eosinophils in Rag2−/− mice with numbers almost equivalent to (or even higher than) those in wild-type mice, but not in IL-33−/− mice, demonstrating an IL-33–dependent papain-induced “in vivo” allergic airway inflammation. Taken together, our results indicate that, whereas the IL-33–mediated innate immune response contributes to the initial response to the first airway exposure to protease allergens, the adaptive immune system plays an important role as an amplifier of allergic airway inflammation in the repeated exposure to protease allergens.

In our mouse model of protease allergen–dependent allergic airway inflammation, IL-33 is crucial for lung eosinophilia and contributes to Ab production (Fig. 5). Various types of cells have been reported to be target cells of IL-33 (25, 26, 44). Recently, newly identified Th2 cytokine-producing ILC populations have emerged as important players in the protection against helminth infection and the pathogenesis of allergic diseases (39, 40, 44–46). Common features of these type 2 ILCs are their capacity to produce extremely high amounts of Th2 cytokines IL-5 and IL-13 and their ability to expand in response to IL-33 and/or IL-25. Very recently, Halim et al. (47) reported that ILCs are a critical source of IL-5 and IL-13 in innate allergic airway inflammation induced by short-term (days 0, 1, and 2) administration of papain. IL-5 and IL-13 regulate eosinophils (48). We demonstrated IL-33 release in the lung 1–3 h after the single exposure to papain, but not to E64-treated papain and subsequent, IL-33–dependent IL-5/IL-13 release (Fig. 6A, 6D) and papain-dependent activation of lung ILCs (39) (Fig. 7C), which showed the expression profile of cell surface markers similar to natural helper cells originally identified in the peritoneal fat–associated lymphoid cluster (40) (Fig. 7A, 7B).

Of interest, the lung IL-5/IL-13 release after the second papain exposure showed two peaks at 5 h and 24 h after exposure (Fig. 6B), and concentrations of IL-5 and IL-13 at 24 h (Fig. 6B) were higher than those after the single papain exposure (Fig. 6A). Possible sources of IL-5 and IL-13 at the early (within 5 h) and late (after 24 h) time points are IL-33–activated ILCs and Th2 cells, respectively. Another possibility is that adaptive immune cell–derived factors might enhance the release of IL-5/IL-13 from ILCs upon the second papain exposure. These hypotheses can provide explanations for the significant requirement of the adaptive immune system for the papain-induced lung eosinophilia in our mouse model (Fig. 8A). In a study of papain-induced lung inflammation by Wilhelm et al. (49), IL-9 production was largely restricted to ILCs; i.n. administration of IL-33 increased the number of ILCs in the lung; IL-9 production depended on IL-2 and the adaptive immune system; and IL-9 promoted the expression of IL-5, IL-6, and IL-13 in ILCs themselves. Their results indicated the indirect dependence of the Th2 cytokine production by ILCs on IL-2 and adaptive immune cells. Upon the second exposure to papain, the IL-33–activated ILCs and allergen-specific Th2 cells may synergistically contribute to the maximum responses of the protease allergen–induced allergic airway inflammation (Fig. 8) via increased production of IL-5 and IL-13.

The protease activity of inhaled protease allergens crucially contributes to the Ag-specific Ab production (Figs. 1C, 2A). Inhaled papain induced IgE/IgG1 production specific to coadministered OVA (Fig. 5D) and architecture of papain itself (Fig. 5B) in an IL-33–dependent manner. The results suggest that protease activity present in allergen sources, such as HDMs, cockroaches, pollen, and fungi (1), contributes to induction of IgE specific to nonprotease allergens coexisting in the allergen sources. IL-33–responsive cells responsible for the adjuvant effect of protease allergens are yet to be identified.

Several recent reports have highlighted the importance of basophils in the induction and promotion of the Th2 response (14, 15, 17, 21, 22). Robust protein secretion of IL-4 and IL-13 along with mRNA expression of allergy-related cytokines such as IL-4, IL-13, IL-31, and CCL-1 in BM basophils upon in vitro stimulation with papain, rDer f 1, rDer p 1, and IgE crosslink (Fig. 3) supports the previous report of mRNA expression or intracellular cytokine staining for these cytokines in papain-stimulated BM basophils (14). However, treatment of wild-type mice with the mAb MAR-1, which is known to deplete basophils in vivo, did not affect the lung eosinophilia or Ab production (Fig. 4). When detected as CD49b+CD200R3+ cells, we found a small population of CD49b+IgE+ cells were completely absent (Fig. 4A–C). BM mast cells still remaining even after MAR-1 treatment, whereas CD49b+IgE+ cells were completely absent (Fig. 4A–C). BM mast cells did not show upregulation of cytokine mRNA expression upon stimulation with the protease allergens, and the mast cell deficiency did not affect the in vivo responses (Supplemental Fig. 1). Mast cells did not contribute to the in vivo responses of the lung eosinophilia and Ab production in our protease allergen-induced allergic airway inflammation model, and depletion of the majority of the basophil population also did not affect the in vivo responses. However, we cannot exclude the possibility that basophils contribute to inflammations and Ab production in other experimental settings with differences in the schedule, Ag dose,

![Diagram](image-url)
References

1. Takai, T., and S. Ikeda. 2011. Barrier dysfunction caused by environmental proteases and IL-33-mediated indirect stimulation, but also allergen-specific IgE.


