Bcl6 Expressing Follicular Helper CD4 T Cells Are Fate Committed Early and Have the Capacity To Form Memory

Youn Soo Choi, Jessica A. Yang, Isharat Yusuf, Robert J. Johnston, Jason Greenbaum, Bjoern Peters and Shane Crotty

J Immunol published online 13 March 2013
http://www.jimmunol.org/content/early/2013/03/13/jimmunol.1202963

Supplementary Material http://www.jimmunol.org/content/suppl/2013/03/13/jimmunol.1202963.3.DC1

Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription

Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
Bcl6 Expressing Follicular Helper CD4 T Cells Are Fate Committed Early and Have the Capacity To Form Memory

Youn Soo Choi,* Jessica A. Yang,* Isharat Yusuf,* Robert J. Johnston,*,† Jason Greenbaum,* Bjoern Peters,* and Shane Crotty*†,‡

Follicular helper CD4 T (Tfh) cells are a distinct type of differentiated CD4 T cells uniquely specialized for B cell help. In this study, we examined Tfh cell fate commitment, including distinguishing features of Tfh versus Th1 proliferation and survival. Using cell transfer approaches at early time points after an acute viral infection, we demonstrate that early Tfh cells and Th1 cells are already strongly cell fate committed by day 3. Nevertheless, Tfh cell proliferation was tightly regulated in a TCR-dependent manner. The Tfh cells still depend on extrinsic cell fate cues from B cells in their physiological in vivo environment. Unexpectedly, we found that Tfh cells share a number of phenotypic parallels with memory precursor CD8 T cells, including selective upregulation of IL-7Rx and a collection of coregulated genes. As a consequence, the early Tfh cells can progress to robustly form memory cells. These data support the hypothesis that CD4 and CD8 T cells share core aspects of a memory cell precursor gene expression program involving Bcl6, and a strong relationship exists between Tfh cells and memory CD4 T cell development. The Journal of Immunology, 2013, 190: 800–800.

Abbreviations used in this article: B6, C57BL/6J; BTLA, B and T lymphocyte attenuator; DC, dendritic cell; KLH, keyhole limpet hemocyanin; LCMV, lymphocytic choriomeningitis virus; NP-OVA, 4-hydroxy-3-nitrophenyl acetyl-OVA; PSGL1, P-selectin glycoprotein ligand 1; SLAM, signaling lymphocyte activation molecule; Tfh, follicular helper CD4 T.
differentiation into other differentiated cell types (Th1, Th2, Th17, and induced regulatory T cells) (1, 6, 25, 26). Bcl6 can repress Blimp1 expression by directly binding to the Prdm1 gene (encoding Blimp1) (27, 28). In B cells, Bcl6 is critically required for germinal center B cell differentiation and survival, whereas Blimp1 drives terminal differentiation of B cells into plasma cells (29, 30). Antagonistic regulation of Bcl6 and Blimp1 is also associated with molecular regulation of fate determination of CD8 T cells (31, 32). Recent studies demonstrated Thf cells contribute to memory compartment of CD4 T cells (18, 19, 33). We therefore explored the regulation of Bcl6 and the stability of Thf cell differentiation and the potential relationship between Bcl6 expression of Thf cells and memory CD4 T cell formation.

Using adoptive cell transfer experiments, we found that early Bcl6$^{−/−}$CXCR5$^{−/−}$ Thf cells exhibited substantial cell fate commitment and B cell help capacities. Gene expression profile analysis revealed that mature Thf cells and early memory precursor CD8 T cells share a transcriptional signature, including Bcl6 expression and IL-7R$α$ re-expression. We demonstrate that Thf cells contribute substantially to memory CD4 T cell generation after a viral infection, implying that aspects of Thf differentiation and memory CD4 T cell development have shared mechanisms.

Materials and Methods

Mice and viral infections

C57BL/6J (B6), B cell-deficient μMT (B6 μMT), and TCRα-deficient (B6,129S2-Tcratm1MomJ) mice were purchased from The Jackson Laboratory. SMARTA (‘SM’). LCMV gp66-77-IA1 specific) (34) and Blimp1-YFP BAC tg mice (35) were obtained from in-house breeders at LIAI. Lymphocytic choriomeningitis virus (LCMV) Armstrong strain was made, and P895 were determined as described previously (36). All animal experiments were performed in compliance with approved animal protocols at LIAL. Whole-genome microsatellite analysis was conducted through the UCLA Southern California Genotyping Consortium. SM mice were >99% B6.SJL. Ptpna. All mice were housed in ventilated racks with HEPA filters and provided with irradiated PicoLab Rodent Diet (20-5053) food.

4-Hydroxy-3-nitrophenyl acetyl-OVA and gp61-keyhole limpet hemocyanin immunization

4-Hydroxy-3-nitrophenyl acetyl-OVA (NP-OVA) was prepared in alum and injected as described previously (6). Briefly, three parts of NP4OVA (Biosearch Technologies) in PBS were mixed with one part of Alum (Pierce) for 60 min at 4°C. A total of 100 μg NP-OVA-Alum immunizations were done i.p. gp61-keyhole limpet hemocyanin (KLH) was prepared as follows. LCMV gp61 peptide (GLNGPDIYKGVYQFKSVEFD) was biotinylated and FACS buffer twice, followed by secondary step stains with streptavidin–PE (PE Cy7 or allophycocyanin) (eBioscience) and mAbs for other surface molecules of interest. For later time point analysis, the tertiary CXCL5 stain was used. Briefly, cells were stained with purified anti-CXCL5 mAb (BD Biosciences) for 1 h at 4°C in FACS buffer, followed by secondary biotinylated goat anti-rat IgG (Jackson ImmunoResearch Laboratories) for 30 min at 4°C. After two washes with FACS buffer, tertiary staining was performed with streptavidin–PE (PE Cy7 or allophycocyanin) (eBioscience) and other mAbs for surface molecules of interest. Primary and secondary stains were done in PBS + 0.5% BSA + 2% FCS + 2% normal mouse serum.

Intracellular Bcl6 (K112-91) was performed using Foxp3 staining buffers (eBioscience). The cells were fixed (30 min to 1 h) at 4°C and then washed twice with 1× permeabilization buffer. Anti-Bcl6 mAbs were diluted in 1× permeabilization buffer and applied to fixed samples (30 min to 1 h) at 4°C. For intracellular IFN-γ stain, spleenocytes were stimulated with PMA (20 ng/ml) and ionomycin (1 μM) for 4 h in the presence of brefeldin A. Intracellular IFN-γ was detected as described previously (6).

All FACS samples were washed twice with FACS buffer and either acquired using an LSRII (BD Biosciences) or sorted by FACS Aria (BD Biosciences). Data were analyzed using FlowJo (Tree Star).

CellTrace Violet label

Cell suspensions were washed and resuspended in PBS at 107 cells/ml concentration. CellTrace Violet (Invitrogen) at a final concentration of 2.5 μM was incubated with cells for 20 min at 37°C, protected from light. Unlabeled CellTrace Violet was washed by adding two to five times volume of FBS to the original staining volume of cell suspensions, spun, and resuspended in appropriate media.

Cell transfer and in vitro culture

Naive SM CD4 T cells were purified from whole spleenocytes by negative selection using magnetic beads (Miltenyi Biotec). Naive SM or retrovirally transduced OVA 323-339 I$^{	ext{A}}$-E (OTII) CD4 T cells were transferred into recipient mice by i.v. injections via the retro-orbital sinus. Cell transfer numbers for each time point were as follows: for naive SM cells, 1 × 107, 4–5 × 107, and 5 × 107 SM CD4$^+$ T cells for day 2, 3, and 8 experiments, respectively. A total of 2.5 × 103 transduced OTII CD4 T cells were transferred for analysis of OTII CD4 T cells 8 d after NP-OVA protein immunization. For adoptive transfer of sorted cells in the fate commitment and memory analysis, two groups of infection–matched B6 or Bcl6$^{−/−}$ mice were injected with the same numbers of Thf and Th1 SM cells (range of 50–100 × 103). DMEM was used for all adoptive cell transfer procedure.

In for vitro cultures of Thf and Th1 SM cells, 96-well flat bottom plates were precoated with 8 μg/ml anti-CD3 and anti-CD28, unless the amount of anti-CD28 mAb was specified in the figure legends. Cells were resuspended in the complete culture media (DMEM + 10% FCS supplemented with 2 μM Glutamax [Life Technologies]. 100 U/ml penicillin/streptomycin [Life Technologies], and 50 μM β-mercaptoethanol) and 2 μg/ml recombinant human IL-7 (PeproTech).

Microarray meta-analysis

Datasets. All CEL files were downloaded from the National Center for Biotechnology Information Gene Expression Omnibus database (GSE19825 and GSE21379–GSE21381).

Data normalization and summarization. Data from three separate studies were analyzed in this analysis. Microarrays were background-corrected and normalized using the “rma” function of the Bioconductor “affy” package (37). Data from each study were normalized separately. Within each study, each possible comparison of Th1 versus Thf and CD8 effector versus CD8 memory precursors was performed. Genes that had an average 2-fold difference across all comparisons are included in Supplemental Table I. A heat map for selected genes of interest was generated using matrix2png (38) and shown in Fig. 5B.

Statistics

Statistical analyses were done using Prism 5.0 (GraphPad), and p values were obtained by using two-tailed unpaired Student t tests with a 95% confidence interval. Error bars on bar graphs depict the SEM. For statistical analysis of microarray data, a contingency table of genes that were up- or downregulated in both the Th1 versus Thf CD4 T cells and effector versus memory pre-
cursors CD8 T cells comparisons was produced (Supplemental Table I) and used to calculate \(p = 1.0 \times 10^{-14} \) with a Fisher’s exact test.

Results

Early Tfh versus Th1 bifurcation after acute viral infection

Bcl6+CXCR5+ Tfh cells are generated early during the DC priming stage of immune responses (9–11, 39). Careful analysis of Bcl6 protein expression during the early phase of CD4 T cell activation confirmed that Bcl6 is specifically induced early in Tfh cells (Fig. 1A, 1B, Supplemental Fig. 1). At the same time points after LCMV infection, Bcl6+ CXCR5+ non-Tfh cells are also identifiable and were shown to strongly express IL-2Ra, the high-affinity IL-2R subunit, and Blimp1, as measured with a Blimp1-YFP reporter (9, 18). We then established that the non-Tfh SM cells were Th1 cells. Day 3 IL-2Ra+Blimp1-YFP+ non-Tfh and IL-2Ra+Blimp1YFPint Tfh cells were sorted for quantitative PCR analysis. Tbx21 mRNA (encoding T-bet) was expressed 10-fold higher in IL-2Ra+Blimp1YFP+ cells compared with IL-2Ra+Blimp1YFPint Tfh cells (\(p = 2.5 \times 10^{-6} \); Fig. 1C). T-bet protein was strongly expressed in IL-2Ra+Blimp1YFP+ cells (\(p = 0.0004 \); Fig. 1D). IL-2Ra+ cells were the major population in IFN-\(\gamma \) production at day 3 after LCMV infection (\(p = 2.3 \times 10^{-5} \); Fig. 1E). Thus, the early Tfh cells are CXCR5+IL-2Ra/Blimp1YFP+ and the T-bet/IL-2Ra/Blimp1YFPint cells are Th1 cells.

Cell fate commitment of early Tfh and Th1 cells

Different models have been put forward as to whether Tfh differentiation is an independent pathway or a subsequent state of other effector CD4 T cells (1, 9, 40). Therefore, we explored whether early Bcl6+CXCR5+ CD4 T cells are cell fate committed. To address whether early Tfh and Th1 cells interconvert, we sorted Tfh and Th1 cells from “donor” B6 mice 3 d after LCMV infection (Fig. 2A). SM cells were sorted as either IL-2Ra+Blimp1YFP+ (Bcl6+ CXCR5+) Tfh cells or IL-2Ra+Blimp1YFPint (Bcl6+CXCR5+) Tfh cells (Fig. 2A–C) and then transferred into separate groups of infection-matched B6 recipients to provide the same physiological environment (Fig. 2A). Eight days after LCMV infection (5 d after transfers), we examined Tfh and Th1 cell–recipient mice to analyze the stability of Tfh and Th1 cell populations in each recipient group. Quite strikingly, we found that Tfh and Th1 cells maintained their original phenotypes (Fig. 2D). The vast majority of input Tfh cells remained SLAMf6CXCR5+ Tfh cells (80–92%, \(p = 2.7 \times 10^{-10} \); Fig. 2D, 2E). The majority of input Th1 cells retained their phenotype and did not convert to Tfh cells (80–87%, \(p = 1.4 \times 10^{-9} \); Fig. 2D, 2E). High levels of Bcl6 were maintained by transferred Tfh SM cells (\(p = 5.9 \times 10^{-6} \); Fig. 2F), whereas Blimp1YFP was highly expressed by SM cells in Th1 recipients B6 mice (\(p = 3.7 \times 10^{-10} \); Fig. 2G). Tfh cells are distinguished from other effector CD4 T cells, by their prominent roles in providing B cell help (1). Hence, we addressed whether day 3 Tfh cells were capable of B cell help. Day 3 Tfh and Th1 cells were isolated from LCMV infected donor B6 mice and then transferred into TCR\(\alpha \)−/− mice that were immunized with gp61-KLH. Day 3 Tfh cells were able to induce germinal center B cells in TCR\(\alpha \)−/− mice (\(p = 2.7 \times 10^{-3} \); Fig. 2H), which was associated with a robust formation of...
Bcl6+CXCR5+ Tfh cells ($p = 1.0 \times 10^{-5}$; Fig. 2I). These results demonstrate that Tfh and Th1 cells are predominantly fate committed within 72 h of responding to an acute infection, both by transcription factor expression and cell function.

Early Tfh cells require Ag presentation for every round of cell division

When we analyzed Tfh and Th1 cell–recipient B6 mice, we observed that SM cell recoveries from Tfh cell recipients were 5- to 10-fold more than from Th1 cell recipients ($p = 6.3 \times 10^{-7}$; Fig. 3A). Comparable levels of activation of endogenous CD4 and CD8 T cells excluded the possibility of different levels of LCMV infection (data not shown). We therefore examined whether early Tfh cells have different proliferative capacity than Th1 cells. To address this point, Tfh cells (IL-2Rα2Blimp1^{YFP}2) and Th1 cells (IL-2Rα+Blimp1^{YFP}+)) were sorted from B6 mice 3 d after LCMV infection as described in Fig. 2A, labeled with a proliferation tracking dye, and then transferred into infection-matched B6 mice. **FIGURE 2.** Tfh cells are fate determined early during an acute viral infection. (A–G) Naive Blimp1-YFP SM (CD45.1+) CD4 T cells were transferred into B6 (CD45.2+) mice that were infected with LCMV. (A) Three days after LMCV infection, SM cells were FACS sorted into Tfh (IL-2Rα[−]Blimp1^{YFP}−) versus Th1 (IL-2Rα⁺Blimp1^{YFP}+) SM cells. The sorted Tfh and Th1 SM cells were transferred into separate groups of infection-matched B6 mice and analyzed 5 d later. (B) Overlaid histograms for Bcl6 (left panel) and Blimp1^{YFP} (right panel) by day 3 Th1 (blue) and Tfh (red) SM cells, with endogenous CD4 T cells (gray filled). (C) Overlaid histograms for CXCR5 expression by day 3 Th1 (blue) and Tfh (red) SM cells. Gray-filled histograms show background stains by isotype control (rat IgG2a) mAb. Quantitation calculated as mean fluorescence intensities (MFIs). (D) Representative FACS plots of splenic SM cells in Tfh (left)– and Th1 (right)-recipient mice 5 d after transfer. Gates indicate Tfh (SLAM^{lo}CXCR5^{hi}) and Th1 (SLAM^{hi}CXCR5^{lo}) cells. Relative frequencies of Th1 and Tfh SM cells calculated as percentages of respective populations among total SM cells in Th1- and Tfh-recipient mice. (E) MFIs of CXCR5 and SLAM were calculated on total SM cells in Th1- and Tfh-transferred mice. Overlaid histograms of Bcl6 (F) and Blimp1^{YFP} (G) expressions by SM cells in Th1 (blue)- and Tfh (red)-recipient mice. MFIs were calculated. (H and I) Day 3 Tfh and Th1 cells were isolated as shown in Fig. 2A and were transferred into TCRα[−]/2 mice that had been immunized with gp61-KLH 48 h prior to adoptive cell transfer. The mice were analyzed 10 d after immunization. (H) Shown are representative FACS plots of germinal center B cells (Fas⁺PNA⁺) of Tfh, Th1, or no cell-transferred TCRα[−]/2 splenocytes. Quantitation calculated as percentage of germinal center B cells among total B cells. (I) Representative FACS plots of donor cells. Gates indicate Bcl6+CXCR5⁺ Tfh cells. Percentage of Tfh cells among total donor cells. Data are representative of two independent experiments using five to six mice per group. **p < 0.01, ***p < 0.001, shown as mean and SEM.
Five days after transfers, both Tfh and Th1 cells had fully diluted the proliferation tracking dye (Fig. 3B), which indicated that both cell types proliferated extensively ($n = 10$ divisions).

We next investigated the proliferation capacities of Tfh and Th1 cells in a defined in vitro environment. For this, Tfh and Th1 SM cells were sorted from LCMV infected mice 3 d postinfection (Fig. 2A) and cultured in the presence or absence of TCR- and co-stimulation-mediated activation (anti-CD3/CD28 mAbs) (Fig. 3C, 3D). In the presence of stimulation, Th1 cells proliferated more than Tfh cells ($p = 6.3 \times 10^{-6}$; Fig. 3C). Interestingly, we also found that Th1 cells underwent several rounds of cell division in the absence of antigenic stimulation, which was in marked contrast to Tfh cells that underwent no proliferation in the absence of TCR-mediated stimulation ($p = 5.9 \times 10^{-6}$; Fig. 3D).

TCR stimulation leads to upregulation of IL-2Rα on T cells (41). This results in a possible conundrum during the expansion phase of the CD4 T cell response, where repeated TCR stimulation is strictly required for Tfh cell proliferation but also results in antagonism of Bcl6 by upregulation of IL-2Rα and Blimp1 (9, 15). We therefore examined the regulation of these proteins in early Tfh...
and Th1 cells during proliferation. Day 3 Tfh cells do not express IL-2Rα or Blimp1_{YFP} (Fig. 3E, 3F), but Tfh cells nevertheless require TCR stimulation for continued expansion. Interestingly, TCR stimulation of Tfh cells did not induce IL-2Rα expression in contrast to robust upregulation of IL-2Rα on Th1 cells in vitro after TCR stimulation (p = 7.6 × 10^{-11}; Fig. 3E, right panel). We infer that avoidance of IL-2Rα induction is important for Tfh cell maintenance, because upregulation of IL-2Rα on Tfh cells after TCR stimulation was associated with a 10-fold further induction of Blimp1_{YFP} (Fig. 3F). Therefore, proliferating Tfh cells dissociate TCR signaling from IL-2Rα expression.

A series of studies has demonstrated that Ag presentation first by DCs during the CD4 T cell priming stage followed by Ag presentation by B cells is a prerequisite for CD4 T cells to initiate and then complete Tfh differentiation (2, 6, 9, 42–45). The strict Ag dependence of Tfh cell proliferation made us investigate whether Ag presentation in vivo may affect cell fate commitment in Tfh cells. For this, fate-committed Tfh cells were sorted from LCMV-infected mice at day 3 postinfection and transferred into infection-matched B6 and B cell–deficient μMT mice. Within the normal physiological environment (B6 mice), fate-committed Tfh cells (Bc16^nCXCR5^) again maintained their phenotype as Tfh cells (Fig. 3G). However, transferred Tfh cells were lost in the absence of B cells. Indeed, in Tfh cell–recipient μMT mice, Blimp1_{YFP} expressing Th1 cells (SLAM^nCXCR5^) were highly enriched 5 d after cell transfer (15 ± 2% in B6 versus 43 ± 8% in μMT) (Fig. 3G, 3H). Our data indicate that B cells are important APCs for Tfh cells not only for maintenance of Bcl6 expression (Fig. 3I) (9) but also for each round of cell proliferation (Fig. 3D).

Fate-committed Tfh cells share a molecular signature with CD8 T memory precursors

Our data indicate that the fate-committed differentiation of early bifurcated Tfh versus Th1 cells is strongly associated with reciprocal regulation of Bcl6 and Blimp1. Interestingly, antagonistic Bcl6–Blimp1 signaling axis is also observed during the Ag-specific CD8 T cell differentiation; Bcl6^{+} memory precursor CD8 T cells and Blimp1^{+} short-lived effector CD8 T cells are present at the peak response to LCMV infection (46). The gene expression pattern of these two CD8 T cell populations has been characterized (35). Memory precursor CD8 T cells express elevated levels of Bcl6, whereas terminal effector CD8 T cells express elevated levels of Blimp1, which led us to investigate whether Bcl6-expressing Tfh versus Blimp1^{+} Th1 cells may possess similar molecular regulation to memory precursor versus effector precursor CD8 T cells. Given that memory precursor CD4 T cells are recently proposed to be present in a PSLG1^{Hi}Ly6C^{lo} population (47), we examined whether Bcl6- and Blimp1^{+}-based phenotyping is recapitulated by phenotypic analysis of CD4 T cells based on P-selectin glycoprotein ligand 1 (PSGL1) and Ly6C. At day 8 after LCMV infection, Blimp1-YFP reporter SM (Fig. 4A–D) and polyclonal (Fig. 4E, 4F) CD4 T cells were analyzed based on PSGL1 and Ly6C. Our data are consistent with a previous study (47), where PSGL1^{Hi}Ly6C^{lo} and PSGL1^{Hi}Ly6C^{hi} exhibited strong expression of Blimp1_{YFP} and Bcl6, respectively (Fig. 4C, 4D). However, we found that both Blimp1_{YFP}^{CxCR5}^{Bcl6^{+}} Tfh and Blimp1_{YFP}^{CxCR5}^{Bcl6^{+}} Tfh cells were mixed in the PSGL1^{Hi}Ly6C^{lo} gate (Fig. 4A, 4B, 4E, 4F).

Memory precursor CD8 T cells have been distinguished as early as 3.5 d in vivo after LCMV infection, on the basis of IL-2Rα expression (48), and differential IL-2 signaling can preferentially direct activated CD8 T cells to short-lived effector (performααβ Blimp1^{+}) or memory cell precursor (IL-7Rα^{+}Bc16^{+}) fates (49). Given that differential IL-2Rα expression on early-memory precursor CD8 T cells versus terminal effector–biased CD8 T cells parallels differential IL-2Rα expression on early Tfh cells versus Th1 cells (Fig. 2) (9), we took an unbiased approach to ask whether Tfh differentiation pathway may share a molecular program with early-memory precursor CD8 T cells, identifiable as a transcriptional signature. Gene expression data for day 3.5 memory precursor and effector-biased CD8 T cell populations were compared with gene expression data for day 8 Tfh and Th1 CD4 T cell populations. The full data sets were queried for the set of all genes differentially expressed (>2-fold) by Tfh cells compared with Th1 cells and also differentially expressed by early memory precursor CD8 T cells compared with short-lived effector–biased CD8 T cells. This screening was done irrespective of the directionality of the gene expression changes in each data set. A total of 173 gene transcripts satisfied these conditions (Supplemental Table I). Impressively, of the 173 gene expression changes, 95 were upregulated in both Tfh cells and memory precursor CD8 T cells, and 45 genes were downregulated in both Tfh cells and memory precursor CD8 T cells (Fig. 5A, Supplemental Table 1). This gave a cumulative total of 140 of 173 gene expression changes being in a shared direction in Tfh cells and memory precursor CD8 T cells. Only a small number of genes did not exhibit shared directionality. This was a highly nonrandom distribution of shared directionality (p = 1.0 × 10^{-14}), indicating the presence of a shared gene expression program between Tfh cells and memory precursor CD8 T cells. Bcl6 and Blimp1 both appear in this gene set in addition to many other genes with known or potential connections to memory cell development (Fig. 5B).

These "memory type" gene expression patterns were then tested for their ability to predict early gene expression differences in day 3 Tfh versus Th1 cells. RNA was isolated from sorted day 3 Tfh and Th1 cells (Fig. 2A) and analyzed for specific gene expression differences. Bcl6 and Blimp1 were confirmed to be strongly differentially expressed between early Thf and Th1 cells (40-fold Bc16 mRNA difference, p = 1 × 10^{-14}; 51-fold Pdmd1 difference, p = 9.2 × 10^{-5}; Fig. 5C). In addition to Bcl6, the early fate-committed Tfh cells induced strong expression of genes that were also highly upregulated by memory precursors CD8 T cells (48), including Tcf7 (38-fold; p = 1 × 10^{-10}) (50), Tox2 (14-fold; p = 5 × 10^{-9}), and Id3 (96-fold; p = 2 × 10^{-10}) (51) (Fig. 5D). Interestingly, several cell surface receptors strongly associated with Tfh cell functions were unexpectedly predicted to be associated with memory programming (Fig. 5F) and indeed had strong expression differences between early Tfh and Th1 cells, including Cd200 (11-fold; p = 1.61 × 10^{-6}), Btaa (5-fold; p = 5.46 × 10^{-5}), and Ly108 (3-fold; p = 0.008) (Fig. 5E). In contrast, genes that were strongly suppressed by memory precursor CD8 T cells, such as Ikd2, Havcr2, and Il2ra, were substantially downregulated by the early fate-committed Tfh cells compared with Th1 cell counterparts (Fig. 5G) (35, 48, 49, 52). Each predicted gene expression change tested was correct. This is consistent with the presence of an underlying gene expression profile linking part of Tfh cell biology with the generation of T cell memory.

Development of memory CD4 T cells

The findings regarding Tfh cell fate commitment and shared gene expression with memory precursor CD8 T cells led us to examine whether early differentiated Tfh cells may contribute to the CD4 T cell memory compartment after an acute viral infection. We transferred day 3 CD45.1^{+} Tfh and Th1 SM cells into infection-matched CD45.2^{+} recipients, which were then analyzed at immune memory time points (day 30–45 postinfection) (Fig. 6A). Strikingly, at memory time points, we found significantly more SM cells in early Tfh-recipient mice than in mice that received early Th1 cells (p = 0.015 at day 45; Fig. 6B) (p = 0.0007 at day...
30; data not shown). Furthermore, the vast majority of transferred Tfh cells were found as CXCR5+ Tfh cells (85±6 and 78±5% of total transferred cells at day 30 and 45 p.i., respectively; Fig. 6B). In sharp contrast, early Th1 cells failed to maintain their phenotype and were identified as three populations: Blimp1YFP+CXCR5−, Blimp1YFP−CXCR5−, and Blimp1YFP−CXCR5+ (Fig. 6B). Early Tfh cell–recipient mice had a small but significant increase in Bcl6 expression compared with Th1 cell recipient mice (Fig. 6C). Taken together, our data demonstrate that large numbers of memory CD4 T cells are derived from the early Tfh cell population, and long-term survival of these cells is associated with Bcl6 expression.

Long-term survival of Tfh cells is associated with re-expression of IL-7Rα during the late, but not early, Tfh differentiation program

Our data implied that Tfh cells acquired a cell-intrinsic survival program during differentiation and thus could remain at higher frequencies at memory points (Fig. 6). IL-7 signaling through IL-7Rα is critical for long-term survival of memory CD4 T cells. A lack of either IL-7 or IL-7Rα expression leads to defective development and maintenance of memory CD4 T cells (53, 54). Surface IL-7Rα expression is also associated with long-term survival of memory CD8 T cells (46). Therefore, we investigated the expression levels of IL-7Rα on memory Tfh cells (CXCR5+Blimp1YFP−) and Th1 cells (CXCR5−Blimp1YFP+) in respective recipient mice. Both Tfh and Th1 memory cells expressed higher levels of IL-7Rα than naive CD4 T cells (CD44lo) (Fig. 7A). Interestingly, IL-7Rα was statistically higher on memory Tfh cells than Th1 cells (p = 0.02; Fig. 7A). We then examined whether differences in IL-7Rα expression in Tfh cells occur early during the immune responses. At 3 d after LCMV infection, IL-7Rα was strongly downregulated by both Tfh and Th1 cells (Fig. 7B). Strikingly, at day 8, the peak of the CD4 response to LCMV infection, we found that IL-7Rα was selectively re-expressed by a fraction of
CXCR5+ CD4 T cells (20 ± 2% IL7Rα+ Tfh; \(p = 4.4 \times 10^{-5} \) for Tfh versus Th1) (Fig. 7C, 7D). IL-7Rα re-expression on Tfh cells became even more dramatic 11 d postinfection. More than 75% of Tfh cells regained IL-7Rα expression (\(p = 2.8 \times 10^{-6} \) for Tfh versus Th1) (Fig. 7E, 7F). Taken together, our data demonstrate that Tfh cells exhibit superior re-expression of IL-7Rα to Th1 cells during the late stages of an LCMV infection, and it is associated with a survival advantage of Tfh cells at memory time points of the immune response to LCMV infection (Fig. 6A).

Proliferation responsiveness of mature Tfh cells

Abundance of memory cells after early Tfh cell transfers compared with early Th1 cell transfers as well as selective re-expression of
IL-7Rα of mature Tfh cells led us to examine the proliferation capacity of fully differentiated Tfh cells in greater detail. To address this point, we sorted Tfh cells (PD-1hiCXCR5+Blimp1YFP⁺) and Th1 cells (PD-1intCXCR5⁻Blimp1YFP⁺) at day 8 after LCMV infection, the peak of the CD4 T cell response (Fig. 8A, 8B). The cells were then labeled with a proliferation tracking dye and cultured in the presence or absence of anti-CD3/28 mAbs. In the absence of antigenic stimulation signals, neither day 8 Th1 or Tfh

FIGURE 6. Fate determined Tfh cells contribute to CD4 T cell memory. (A) Day 3 Tfh (IL-2Rα<sup>Blimp1^{YFP}</sub>⁻) and Th1 (IL-2Rα<sup>Blimp1^{YFP}</sub>⁺) cells were sorted and transferred into separate groups of infection-matched B6 mice (Fig. 2A). Tfh and Th1 recipients were analyzed 45 d after LCMV infection. Representative FACS plots for SM cells in the spleens of Tfh and Th1 cell recipients. Quantifications determined as percentages of the number of SM cells in total CD4 T cells. (B) Tfh (Blimp1^{YFP}⁻CXCR5⁺) and Th1 (Blimp1^{YFP}⁺CXCR5⁺) cells gated on total SM cells of respective recipient mice. Quantitation made as the numbers of Th1 (white) and Tfh (black) cells in spleen. (C) Bcl6 mean fluorescence intensities of total donor cells in 45-d LCMV-infected recipient mice. Data are representative of two experiments at two different memory time points (days 30 and 45) after LCMV infection. n = 5–6 mice/group. *p < 0.05, **p < 0.01, shown as mean and SEM.

FIGURE 7. Tfh cells regain IL-7Rα expression at the peak of the immune response and maintain higher expression of IL-7Rα in memory phase. (A) Overlaid histograms for IL-7Rα expression by CD44lo CD4 T cells in a naive mouse (gray filled) and Th1 (blue) and Tfh (red) cells of 3-d LCMV-infected mice. (B–F) Naive SM (CD45.1⁺) CD4 T cells were transferred into B6 mice that were subsequently infected with LCMV. Tfh (IL-2Rα<sup>Blimp1^{YFP}</sub>⁻CXCR5⁺) and Th1 (IL-2Rα<sup>Blimp1^{YFP}</sub>⁻CXCR5⁻) cells were obtained from 3-d LCMV-infected spleens. IL-7Rα expression depicted by overlaid histograms (CD44lo CD4 T cells in a naive mouse, shown in gray filled; Th1 (blue) and Tfh (red) of 3-d LCMV-infected mice). (C–F) Naive SM (CD45.1⁺) CD4 T cells were transferred into B6 mice that were subsequently infected with LCMV. SM cells were analyzed at day 8 (C, D) and day 11 (E, F) after LCMV infection. (C) Representative FACS plots of SM cells 8 d after LCMV infection. (D) Overlaid histograms for IL-7Rα expression by CD44lo CD4 T cells in a naive mouse (gray filled) and Th1 (blue) and Tfh (red) cells from LCMV-infected mice at day 8. The bar indicates IL-7Rα^{hi}–expressing cells. Quantitation done as IL-7Rα^{hi} percentage of Th1 (CXCR5⁻) and Tfh (CXCR5⁺) cells. (E) SM cells were gated by CD45.1 expression and were subsequently analyzed by IL-7Rα and CXCR5 expression. Numbers in each quadrant indicate frequencies of populations among total SM cells. (F) Overlaid histograms for IL-7Rα expression by CD44lo naive CD4 (gray filled) of naive mouse and Th1 (blue) and Tfh (red) cells from 11-d LCMV-infected spleens (left panel). The bar indicates IL-7Rα^{hi}–expressing cells. Quantifications made as percentages of IL-7Rα expressing cells within Th1 versus Tfh cells (middle panel) and total IL-7Rα mean fluorescence intensities (right panel). Data are representative of two independent experiments (B–F). n = 4–6 mice/group. *p < 0.05, **p < 0.01, ***p < 0.001, shown as mean and SEM.
cells proliferated in vitro (Fig. 8C, gray-filled histograms). However, once TCR and costimulation signals were provided, Tfh cells proliferated well (Fig. 8C, colored lines), whereas Th1 cells proliferated poorly (bar graph: $p = 4.0 \times 10^{-2}$, 4.3×10^{-2}, and 4.8×10^{-2} for 8, 2, and 0.5 mg/ml anti-CD28, respectively; Fig. 8C).

This was quite different from the early Th1 cells, which proliferated vigorously even in the absence of TCR signals (Fig. 3D). Interestingly, although Tfh cells required TCR stimulation for proliferation at day 8, we found that costimulatory signaling via CD28 was minimally involved (48 ± 6 and $33 \pm 0.8\%$ proliferations by 8 and 0.5 mg/ml anti-CD28, respectively; Fig. 8C).

We speculated that early TCR signaling may be altered in fully differentiated Th1 effector cells such that glycolytic metabolism was limited, preventing proliferation. We therefore examined Th1 cell blasting following TCR stimulation. Th1 cells robustly increased cell size in response to TCR signals ($p = 7.5 \times 10^{-5}$; Fig. 8D), indicating that the block in Th1 proliferation was far downstream of TCR signaling and glycolytic metabolism. We therefore investigated whether different proliferation capacities of Tfh and Th1 cells were associated with Blimp1 expression, a highly antiproliferative molecule (55). Th1 cells expressed Blimp1-YFP at 15-fold higher levels than Tfh cells ($p = 5.3 \times 10^{-8}$, no stimulation; Fig. 8E). After 72 h of restimulation, although only a small fraction of Tfh cells could express Blimp1-YFP, Th1 cells further increased Blimp1-YFP expression (Fig. 8E, 8F). Moreover, in vivo experiments demonstrated that high expression of Blimp1 blocks CD4 T cell proliferation. OTII-specific TCRtg (OTII) CD4 T cells transduced with a Blimp1 expressing retroviral expression vector (Blimp1-GFP) exhibited significantly less proliferation in vivo at day 8 after NP-Ova immunization when the OTII CD4 T cells expressed high levels of Blimp1 versus intermediate levels of Blimp1 (Blimp1int versus Blimp1hi, $p = 0.002$; Fig. 8G, 8H).

In summary, the capacity of mature Tfh cells to respond to TCR-mediated activation signals at the peak of the immune response was associated with more Tfh cells being found at memory time points after LCMV infection (Fig. 6A), possibly because of proliferation induced by Ag presentation by germinal center B cells and the lack of Blimp1 expression by Tfh cells. Taken together,
these data show that Bcl6CXCR5 Tfh cells become fate committed early after an acute viral infection and acquire distinct proliferation and survival capacities compared with Th1 cells.

Discussion

The stability of Tfh cells and the stability of Bcl6 expression in Tfh cells have been questions of great interest (56), accentuated by recent findings of plasticity of many types of differentiated CD4 T cells (12, 21, 57). Recent work has revealed plasticity of Tfh cells (12–14, 58). Conversion of transferred Tfh cells into Th1 cells was observed during a recall response to influenza virus infection in recipient mice (58). However, similar conversions have been reported by both in vitro- and in vivo-activated Th1, Th2, induced regulatory T cells, and Th17 cells for reprogramming to other Th differentiation program (23, 59, 60). There are numerous examples that, if the external forces are strong enough, then differentiated CD4 T cells can change their differentiation programming to respond to new environmental cues, even including extreme events such as Th2 cells acquiring Th1 differentiation in vivo (61). As such, it is unclear whether Tfh cells possess any more plasticity than other CD4 T cell differentiation programs. Therefore, we focused on cell fate commitment within physiological environment. As described in this study, we found that early differentiated Tfh (or Th1) cells maintained their original differentiation pathway in recipient mice during the course of LCMV infection and hence were cell fate committed. Our data are consistent with a recent study, which demonstrates transferred Tfh and Th2 cells remained stable in recipient mice upon Ag challenge (19). Therefore, our data support the concept that Tfh cells primarily develop as an independent differentiation pathway, starting from the earliest stages of DC priming (9, 40). However, this does not rule out the possibility that there are multiple pathways to Tfh cell differentiation and that differentiated cells may convert to Tfh cells under strong environmental cues (20, 62).

Similar to stem cells (63) and a variety of cell types studied in the context of developmental biology where non-cell autonomous positional cues and microanatomical niches are a central attribute of cell fate determination, maintenance of Tfh cell fate commitment differentiation is dependent on external factors. Tfh cells are lost if forced into a nonphysiological environment (Fig. 3). The extrinsic signals provided by B cells include Ag presentation, ICOS ligand, and possibly other Tfh cell maintenance factors. These signals are critical for Tfh cells to maintain a high Bcl6 to T-bet ratio. Lack of those external signals in μMT mice (2, 6, 9, 44) or in mice where ICOS–ICOS ligand interaction is specifically blocked during cognate B:T interaction (9, 40) leads to reduced expression of Bcl6. Bcl6 can repress T-bet (7). Proinflammatory cytokines in LCMV-infected animals may continuously drive T-bet expression. Hence, a concomitant inverted Bcl6 to T-bet ratio (Bcl6 < T-bet) is observed in Tfh cells of μMT mice (data not shown), which putatively leads to the DNA-binding domain of Bcl6 being masked by T-bet (64), causing a loss of Bcl6-mediated Blimp1 repression. As a result, CXCR5 Tfh cells in Tfh-recipient μMT mice expressed Blimp1 at a much higher level compared with Tfh cells in B6 mice (Fig. 2).

The rigid requirement of Ag presentation, initially by DCs and followed by B cells, is one of the unique features for Tfh differentiation (2, 6, 9, 40, 42, 43). Relatively short TCR stimulation is sufficient for CD8 T cells to proliferate and differentiate into effector cells (65, 66). In sharp contrast, CD4 T cells are highly dependent on Ag recognition to continue proliferation and complete their differentiation (67). Our in vitro experiments with ex vivo Tfh versus Th1 cells from day 3 LCMV-infected animals clearly show that Tfh cells require Ag presentation for each round of cell division. Notably, Tfh cells obtained at the peak response to LCMV infection proliferated upon TCR stimulation whereas Th1 cells did not; therefore, Tfh differentiation program could be biased toward development of memory CD4 T cells that maintain TCR-mediated proliferative capacity. Along with previous work that demonstrated generation of memory CD4 T cells by CXCR5 CD4 T cells (18, 19, 33, 58), the current study indicates early Tfh differentiation pathway shares properties with memory CD4 T cells. However, we do not agree with the conclusion that the CXCR5 cells were not Tfh cells (18). That conclusion was based on a lack of short-term colocalization with B cells, but that cell transfer was restricted to only a subfraction of the CXCR5PD1 population that were also highly expressing CCR7 (18). Contrary to that conclusion, the CXCR5PD1 cells were dependent on B cells for their development, indicating the CXCR5 expression was functional for colocalizing with B cells (18). The majority of day 8 CXCR5 CD4 T cells localize to B cell follicle and T/B border in independent studies (33, 68). Our data demonstrate that the vast majority of all CXCR5 CD4 T cells in a viral infection develop from a Bcl6CXCR5 early Tfh cell population.

Bcl6 has been previously implicated in memory T cell development, particularly memory CD8 T cell development (32, 35, 54). By cell transfer experiments, we showed that Ag-experienced CD4 T cells rapidly acquired preferential cell fates associated with differential Bcl6 and Blimp1 expression. Our data in this study indicate that some functions of the Bcl6–Blimp1 regulatory axis are shared in CD4 T cells and CD8 T cells and control a gene expression program regulating memory formation. Preferential re-expression of IL-7Rα by Bcl6-expressing Tfh cells (Fig. 7) was a striking indication that this relationship was deeper than it first appeared. Our data also show that Tfh cells retained an enhanced capacity to respond to TCR stimulation compared with Th1 cells. This parallels observations for memory precursor CD8 T cells (35). These relationships between Tfh cell biology and memory T cell biology appear to repeatedly center on the Bcl6–Blimp1 signaling axis. Notably, Tfh cells were lost in the absence of B cells, in agreement with previous observations of B cell–dependent memory CD4 T cell development (69), providing another connection between Bcl6, Tfh cells, and CD4 T cell memory. Meta-analysis of Tfh cell and memory precursor CD8 T cell gene expression revealed potential genes that may form a transcriptional regulatory network with Bcl6 to facilitate memory T cell formation (Fig. 5). Tcf-7, which encodes Tcf-1, is a downstream effector of the wnt signaling pathway and was shown to be required for CD8 T cell central memory development (50, 70). However, data of Prlic and Bevan argues against the requirement of wnt signaling in memory T cell formation because they observed a normal memory formation in T cell specific β-catenin–deficient mice (71). Further investigation is required to address whether memory formation of T cells could be regulated by β-catenin–independent activation of Tcf-1. Id proteins partner with E proteins to modulate a wide range of lymphocyte differentiation processes (72), and Id proteins appear to have partially overlapping and partially distinct functions. Id2-deficient CD8 T cells failed to differentiate into effector CD8 T cells, whereas Id2-deficient memory precursor CD8 T cell development was relatively intact (52, 73–75). Recent data suggest that Id proteins have important but complex roles in CD4 T cell fates (51). Collectively, our data indicate that CD4 and CD8 T cells share a common molecular signature involving Bcl6 for development of memory precursor cells.

Given these findings, it is of interest to understand how Bcl6 facilitates memory T cell formation. Our data indicate IL-7Rα is somehow involved, and IL-7Rα has an important role in long-term
survival of memory CD4 T cells (46, 53, 76). Selective IL-7Rα expression identifies memory precursor CD8 T cells (46). Even though IL-7Rα expression alone is not sufficient for identifying memory precursor of CD4 T cells (47), in this study, we show that IL-7Rα expression was preferentially regained by Tfh cells. All available data indicate that Bcl6 is an obligatory transcriptional repressor (77, 78), suggesting that preferential upregulation of IL-7Rα is not due to direct activity of Bcl6 at the Iṣ7Rα gene, but it could be due to Bcl6-mediated repression of an intermediary transcriptional repressor, such as Blimp-1 (35). In addition, these different CD4 T cell fates were associated with differential IL-2Rα expression early. A similar process is seen with early differentiating CD8 T cells (48, 49). It is striking that IL-2Rα and IL-7Rα repeatedly could be due to Bcl6-mediated repression of an intermediary transcriptional repressor of Tfh cells. All available data indicate that Bcl6 is an obligatory transcriptional repressor (77, 78), suggesting that preferential upregulation of IL-7Rα is not due to direct activity of Bcl6 at the Iṣ7Rα gene, but it could be due to Bcl6-mediated repression of an intermediary transcriptional repressor, such as Blimp-1 (35). In addition, these different CD4 T cell fates were associated with differential IL-2Rα expression early. A similar process is seen with early differentiating CD8 T cells (48, 49). It is striking that IL-2Rα and IL-7Rα repeatedly could be due to Bcl6-mediated repression of an intermediary transcriptional repressor. 6. Johnston, R. J., A. C. Poholek, D. DiToro, I. Yusuf, D. Eto, B. Barnett, A. L. Dent, J. Craft, and S. Crotty. 2009. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325: 1098–1102.

