Exosome-like Nanoparticles from Intestinal Mucosal Cells Carry Prostaglandin E2 and Suppress Activation of Liver NKT Cells

Zhong-Bin Deng, Xiaoying Zhuang, Songwen Ju, Xiaoyu Xiang, Jingyao Mu, Yuelong Liu, Hong Jiang, Lifeng Zhang, James Mobley, Craig McClain, Wenke Feng, William Grizzle, Jun Yan, Donald Miller, Mitchell Kronenberg and Huang-Ge Zhang

J Immunol published online 6 March 2013
http://www.jimmunol.org/content/early/2013/03/06/jimmunol.1203170

Supplementary Material

http://www.jimmunol.org/content/suppl/2013/03/07/jimmunol.1203170.DC1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts

Errata

An erratum has been published regarding this article. Please see next page or:
/content/196/11/4832.full.pdf
Exosome-like Nanoparticles from Intestinal Mucosal Cells Carry Prostaglandin E2 and Suppress Activation of Liver NKT Cells

Zhong-Bin Deng,* Xiaoying Zhuang, * Songwen Ju,* Xiaoyu Xiang, * Jingyao Mu,* Yuelong Liu, † Hong Jiang, ‡ Lifeng Zhang, † James Mobley, ‡ Craig McClain, ‡ Wenke Feng, ‡ William Grizzle, † Jun Yan,* Donald Miller,* Mitchell Kronenberg, † and Huang-Ge Zhang* †, ‡

Regulation and induction of anergy in NKT cells of the liver can inhibit autoimmune and antitumor responses by mechanisms that are poorly understood. We investigated the effects of PGE$_2$, delivered by intestinal, mucus-derived, exosome-like nanoparticles (IDENs), on NKT cells in mice. In this study, we demonstrate that IDENs migrate to the liver where they induce NKT cell anergy. These effects were mediated by an IDENs’ PGE$_2$. Blocking PGE$_2$ synthesis attenuated IDENs induction of inhibition of IFN-γ and IL-4 by α-galactosylceramide (α-GalCer)–stimulated liver NKT cells in a PGE$_2$ E-type prostaglandin 2/E-type prostaglandin 4 receptor–mediated manner. Proinflammatory conditions enhanced the migration of IDENs to the liver where α-GalCer and PGE$_2$ induced NKT anergy in response to subsequent α-GalCer stimulation. These findings demonstrate that IDENs carrying PGE$_2$ can be transferred from the intestine to the liver, where they act as immune modulators, inducing an anergic-like state of NKT cells. These reagents might be developed as therapeutics for autoimmune liver diseases. *The Journal of Immunology, 2013, 190: 000–000.*

The gut-associated immune system is complex and involves extensive communication with the liver (1, 2). Glycolipids derived from dietary metabolic products and lipids derived from some intestinal bacteria (3, 4) migrate constantly into the liver, and these lipids can activate liver NKT cells through TCR engagement in vitro (5, 6). Liver NKT cells can also be activated in a TCR-independent manner (7, 8). It is remarkable that liver NKT cells are normally quiescent, even though they are constantly exposed to intestinal-derived products and are also

*Department of Microbiology and Immunology, Brown Cancer Center, University of Louisville, Louisville, KY 40202; †Department of Pathology, University of Alabama, Birmingham, AL 35294; ‡Department of Radiology, University of Alabama, Birmingham, AL 35294; ‡Division of Gastroenterology, Department of Medicine, University of Louisville, Louisville, KY 40202; ‡La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and ‡Louisville Veterans Administration Medical Center, Louisville, KY 40206

Received for publication November 20, 2012. Accepted for publication January 23, 2013.

This work was supported by National Institutes of Health Grants RO1CA137037, RO1CA107181, RO1AT004294, and RO1CA116092; Louisville Veterans Administration Medical Center merit review grants (to H.-G.Z.); and a grant from the Susan G. Komen Breast Cancer Foundation.

Z.-B.D. and H.-G.Z. designed the research, analyzed and interpreted data, and drafted the manuscript; D.M., M.K., C.M., and W.G. interpreted findings and drafted the manuscript; and X.Z., S.J., X.X., Y.L., J. Mu, H.J., L.Z., J. Mobley, W.F., and J.Y. performed experiments and interpreted data.

Address correspondence and reprint requests to Dr. Huang-Ge Zhang and Dr. Zhong-Bin Deng, Brown Cancer Center, University of Louisville, Clinical and Translational Research Building 309, 505 Hancock Street, Louisville, KY 40202. E-mail addresses: HZhan17@louisville.edu (H.-G.Z.) and zdeng901@louisville.edu (Z.-B.D.)

The online version of this article contains supplemental material.

Abbreviations used in this article: ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMDC, bone marrow–derived dendritic cell; COX, cyclooxygenase; DC, dendritic cell; DiR, dioctadecyl-tetramethylindotricarbocyanine iodide; DDS, dextran sodium sulfate; EP, E-type prostanoid; IFN-γ, interferon-γ; PGE$_2$, prostaglandin E2; PKA, protein kinase A.

Copyright © 2013 by The American Association of Immunologists, Inc. 0022-1767/13/S16.00

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1203170

The Journal of Immunology
ally removed tissue. Specimens were prepared for electron microscopy using a conventional procedure (18), stained with 1% uranyl acetate for 15 s, and observed in an FEI Tecnai Spirit T12 electron microscope operated at 200 kV at a magnification of ×38,000 and defocus of 2.5 μm. Photomicrographs were taken using a Gatan Ultrascan 4000 charge-coupled device camera. Protein concentration was determined using the Bio-Rad Protein Quantitation Assay kit with BSA as a standard. The levels of PGE2 in IDENs were determined using an ELISA kit (Cayman Chemical).

Mice

C57BL/6 mice 6–12 wk of age were obtained from The Jackson Laboratory. All animal procedures were approved by the University of Louisville Institutional Animal Care and Use Committee.

Mice were administered by gavage or i.v. injection IDENs resuspended in PBS as described previously (19).

Autoimmune hepatitis was induced as previously described (20) using Con A from Vector Laboratories administered i.v. at 25 or 37.5 mg/kg body weight. For survival studies, mice were injected with 37.5 mg/kg Con A. Colitis was induced using 3% solution of dextran sodium sulfate (DSS) with a molecular mass of 36,000–50,000 Da (MP Biomicals) that was provided as drinking water to mice (18–25 g, 6 wk old, male) for 5 d. In some experiments, mice were administered indomethacin (4 mg/kg/day) (Sigma-Aldrich, St. Louis, MO) in the drinking water.

Clinical specimens. Human intestinal specimens were collected at the time of gastric bypass surgery. All samples were collected with the informed consent of the patients, and the experiments and the experimental patients were approved by the Institutional Review Board Committee of the University of Alabama (Birmingham, AL).

Cytokine detection

IFN-γ and IL-4 in culture supernatants and liver homogenates were quantified using ELISA kits (eBioscience).

Preparation of mononuclear cells from the liver and flow cytometry analysis

Mononuclear cells were prepared from perfused livers (21) that were homogenized with a 70-μm pore filter. After washing extensively, the homogenates were resuspended in a 5% Percoll gradient at 22˚C (25 ml/liver) and centrifuged at 2300 rpm for 20 min. The cell pellet was collected, and RBCs were removed using red cell lysis buffer.

For flow cytometry analysis, the cells were labeled using standard procedures (22). The following mAbs reactive with murine cells were purchased from BioLegend: CD69 (H1.2F3), CD40L (MR1), TCRβ (H57-597), and IFN-γ (XMG1.2); these were used as direct conjugates to FITC, PE, PerCP, PE Cy7, or allophycocyanin. Mouse CD1d tetramer loaded with the α-galactosylceramide–α-GalCer (Invitrogen; provided by the National Institute of Allergy and Infectious Diseases Tetramer Facility, National Institutes of Health). For proliferation assays, NKT cells were also enriched from liver by negative magnetic bead sorting (Miltenyi Biotec) using anti-CD11b, B220, CD8α, Gr-1, L-selectin, and CD11c Abs using a standard protocol (24). Although CD4 is not depleted in this case, the specificity of NKT cell proliferation was determined by stimulation of α-GalCer, which specifically activates NKT cells but not CD4 T cells.

The purity of NKT and CD11c cells was determined by FACS analysis as described previously (24).

Cell proliferation and CFSE dilution analysis

NKT cells enriched by negative selection (4 × 10^5) were cultured with liver dendritic cells (DCs) (1 × 10^5) isolated by CD11c magnetic bead sorting (Miltenyi Biotec). In vitro cultures were incubated for 72 h under the indicated culture conditions, and [^3H]thymidine was added for the last 16 h. Incorporation of radioactivity was determined using a Betaplate liquid scintillation counter (Packard Bioscience). Results are expressed as mean cpm of triplicate wells ± SEM. For CFSE (Invitrogen) dilution analysis, splenocytes were labeled with 5 μM CFSE for 10 min at 37˚C in PBS containing 0.1% BSA and washed twice with complete RPMI 1640 medium. Labeled NKT cells (4 × 10^5 cells/well) were cultured with liver DCs (5 × 10^5) under the indicated culture conditions for 96 h in complete RPMI 1640 medium and stained with TCR-β and α-GalCer/CD1d. CFSE dilution was examined on gated α-GalCer/CD1d tetramer^+^ NKT cells.

Western blot analysis

Western blots were carried out as described previously (19). In brief, cells or exosomes were lysed in protein lysis buffer containing 1% Triton X-100, 0.1% SDS, 150 mM NaCl, 50 mM Tris-HCl, 1 mM EDTA, 1 mM EGTA, 5 mM sodium molybdate, and 20 mM phenylphosphate with protease and phosphatase inhibitors (1 mM PMSF, 10 μg/ml aprotinin, 20 μg/ml leupeptin, 20 μg/ml pepstatin A, 50 mM NaF, and 1 mM sodium orthovanadate). Proteins of lysed cells were separated on 10% polyacrylamide gels using SDS-PAGE and transferred to nitrocellulose membranes. The membranes were stained with Poncbe Red to validate that all samples contained similar amounts of protein.

RNA extraction and PCR

Total RNA was isolated from livers or NKT hybridomas with TRIzol, according to the manufacturer’s specifications (Invitrogen), and the RNA was purified with an RNaseasy mini kit (Qiagen). RNA (1 μg) was reverse transcribed with Superscript III and random primers (Invitrogen). For quantification of genes of interest, cDNA samples were amplified in a CFX96 Real-time System (Bio-Rad Laboratories, Hercules, CA) and SsoFast Evagreen supermix (Bio-Rad Laboratories), according to the manufacturer’s instructions. Fold changes in mRNA expression between treatments and controls were determined by the 2^−ΔΔCt method as described previously (25). Differences between groups were determined using a two-sided Student t test and one-way ANOVA. Error bars on plots represent ± SE, unless otherwise noted. The data were normalized to a GAPDH reference. All primers were listed in the Supplemental Table I.

Agonists, antagonists, and inhibitors

IDEN lipids were extracted according to Bligh and Dyer (26) in chloroform/methanol/water (2:5:2.5:2:1, v/v/v). Lipids for treatment of cells were

Assessment of liver damage

The quantity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the sera of the mice was measured using the Infinity Enzymatic Assay Kit (Thermo Scientific). For histopathology, H&E-staining was performed on paraffin-embedded liver sections. For immunofluorescence analysis, OCT (Sakura Finetek)-embedded tissue cryosections (9-μm-thick) were fixed at −20˚C in methanol/aceton (3:1). Slides were hydrated in PBS and blocked for 30 min at 25˚C with Fc block (10 μg/ml) and 5% (v/v) normal horse serum in PBS. After blockade, slides were incubated for 30 min at 25˚C with “mixtures” containing the following primary Abs in PBS: anti-A33 (Santa Cruz Biotechnology), anti-CD31 (MEC 13.3, BD Biosciences), and anti-Lyve-1 (R&D Systems). Primary Abs were detected with Alexa Fluor 647–donkey anti-goat, rabbit Ab to FITC–Alexa Fluor 488 (A11090) (S21381; all from Invitrogen Life Sciences), or streptavidin–allophycocyanin (BD Biosciences). Slides were mounted with Slow Fade Gold Antifade plus DAPI (S36938; Molecular Probes and Invitrogen Life Sciences). Tissues were assessed using a Zeiss LSM 510 confocal microscope equipped with a digital image analysis system (Fisher). Apoptosis was evaluated using the TUNEL assay performed on frozen liver sections using the in situ cell death detection kit (Roche).
dried under nitrogen and sonicated in PBS at pH 7.4 and 0.05% (v/v) Tween-20 before use. Polyclonal anti-A33 Ab was purchased from Santa Cruz Biotechnology (Santa Cruz, CA), and cAMP analogs (dibutyryl cAMP and N6-Bnz-cAMP) and protein kinase A (PKA) inhibitors (H-89, Rp-8-CPT-cAMPS, and Rp-8-Br-cAMPS) were purchased from Sigma-Aldrich. PGE2, Butaprost, misoprostol, sulfoprostone, and PGE2 ELISA kits were obtained from Cayman Chemical. E-type prostaglandin (EP) 4 agonists (ONO-AE1-329), EP1 antagonist (ONO-8713), EP3 antagonist (ONO-AE3-240), and EP4 antagonist (ONO-AE3-208) were gifts from Ono Pharmaceutical (Chuo-ku, Osaka, Japan).

Cell cultures
Bone marrow-derived dendritic cells (BMDCs) were cultured as described previously (27). To study the activity of IDENs or IDEN lipid, total liver mononuclear (4 x 10^7/well) or BMDCs cultured with FACS-sorted NKT cells (1 x 10^6 BMDCs + 4 x 10^4 NKT cells) or in the presence of IDENs (30 μg/ml) for 3 h and then stimulated by α-GalCer (100 ng/ml) for 24–48 h in round bottom 96-well plates containing RPMI 1640 medium supplemented with 10% FCS. In some experiments, sorted NKT cells pretreated with IDENs were stimulated by α-GalCer-tetramer. In some cases, 100 μM PGE2, 10 μM Butaprost (EP2 agonist), 40 μM misoprostol (EP4 agonist), 10 μM sulfoprostone (EP1/EP3 agonist), or 100 μM dibutyryl cAMP. 100 μM N6-Bnz-cAMP, 3 mM H-89, 100 mM Rp-8-Br-cAMPS, or 100 mM Rp-8-CPT-cAMPS were added to cocultures. Cells were assessed by flow cytometry, or supernatants were used for cytokine measurement by ELISA.

Liposomes assembled from IDENs
Liposomes were assembled from IDENs used the protocol as previously described (28) with minor modification as described below: 1 ml IDENs in PBS were mixed together with 3.75 ml chlorform/methanol at a 1:2 ratio (v/v) in borosilicate glass test tubes, before adding 1.25 ml chlorform to the mixed sample and vortexing the mixture. Subsequently, 1.25 ml deionized water was added, and the mixture was vortexed again. The sample was centrifuged at 1000 rpm in a tabletop microcentrifuge for 5 min at 22°C. The bottom-phased liquid that contained lipids was collected using a Pasteur pipette. Solvent in the collected sample was completely removed via a constant flow of nitrogen gas at 60°C. Extracted IDEN lipids were hydrated with 800 μl Milli-Q water prior to bath sonication for 3 min and then sonicated for an additional 2 min after addition of HEPES-buffered saline (final concentration, 10 mM HEPES and 50 mM NaCl). This resulted in a clear dispersion being produced that was stored at 4°C for 48 h prior to further experimentation or examination for nanoparticle formation using a conventional procedure (29).

Coupling of IDENs or microparticles to latex beads and immunofluorescence analysis
IDENs or microparticle-coated beads were prepared using a conventional procedure (29) and washed twice in PBS containing 10% FCS, stained with Ab directed against Annexin V, and analyzed using a BD Biosciences FACS Calibur. A “dead-only” control and an isotype-matched Ab control were prepared and fluorescence intensity was normalized based on these controls.

Statistical analysis
Survival data were analyzed using the log-rank test. A Student’s t test was used for comparison of two samples with unequal variances. One-way ANOVA with Holm’s post hoc test was used for comparing means of three or more variables.

Results
IDENs migrate into the liver and inflammation promotes this migration
Using standard techniques (30), we isolated nanoparticles from the mucus of the small intestines of naïve C57BL/6 mice that were identifiable as exosome-like nanoparticles based on electron microscopic examination and their expression of exosomal markers (Fig. 1A). Western blot analysis for A33, a marker of intestinal epithelial cells (31), further demonstrated that the preparation contained a high proportion of intestinal epithelial cell–derived IDENs. These results were further validated by Western blot analysis (Fig. 1A, 1B, right panel) of exosome makers including RAB5 and TSG101 or the microparticle marker, Annexin V (32, 33). Annexin V predominantly detected in microparticles was demonstrated by FACS analysis of Annexin V (Fig. 1B, left panel). Electron micrographs (Fig. 1C, left panel) show that IDENs were also present in the small intestines of human and shared a number of exosomal protein markers identified on mouse IDENs (Fig. 1C, right panel).

Intestinal mucus is a physically cross-linked hydrogel with mesh sizes on the order of 10–100 nm (34, 35). Penetration of this barrier is largely dependent on the size of the particles (34, 35). The size of the IDENs is ~30–100 nm, and we used gavage administration of IDENs labeled with an infrared fluorescent membrane dye (DiR) to track their migration patterns in vivo (17). Imaging revealed an accumulation of fluorescent signals in the gut over the first 24 h (Fig. 1D). At 48 h, signals were detectable in dissected liver and mesenteric lymph nodes but not the lung, spleen (Fig. 1E), or other organs (data not shown). The presence of IDENs in the liver was confirmed by immunohistology and containing for A33 (Fig. 1F). The colocalization of the DiR and A33 signals with CD31, a marker of endothelial cells (Fig. 1G), and LYVE1, a marker of lymphatic capillaries (Fig. 1H), along the length of the intestinal endothelial and lymphatic vessels within 6 h of administration of IDENs suggests that the IDENs migrate into the liver from the gut primarily through the vascular and lymphatic vessels. The migration of A33-positive IDENs to the liver (Fig. 1I) was enhanced in mice treated with either Con A, a lectin that induces inflammatory liver injury in mice and is a model of autoimmune liver disease (36), or DSS, which induces colonic inflammation with characteristics of acute ulcerative colitis. Thus, IDENs can gain access and traffic within the vascular or lymphatic system of the liver. Inflammation in the liver or colon enhances this migration.

IDENs protect against inflammation-mediated liver damage
To explore the biological effects of the accumulation of IDENs in the liver, we tested the effects of pretreatment of mice with purified IDENs on Con A–induced liver injury (36). Mice that were pretreated with vehicle only succumbed rapidly (Fig. 2A) and exhibited symptoms characteristic of Con A–induced liver injury, including elevated levels of serum ALT and AST (Fig. 2B). In addition, there were histopathological changes in the liver (Fig. 2C) with extensive areas of confluent hepatocellular necrosis, marked sinusoidal hyperemia associated with hemorrhage, and mononuclear cell infiltrates scattered diffusely throughout the viable parenchyma. Pretreatment with IDENs markedly enhanced the survival of the mice (Fig. 2A), dampened the Con A–induced elevation in the levels of serum ALT and AST (Fig. 2B), and limited the liver histopathology to minor inflammatory infiltrates and small necrotic patches (Fig. 2C). Alleviation of liver injury appeared to be associated with a reduction in inflammatory responses because mice pretreated with IDENs had serum levels of the proinflammatory cytokines IFN-γ and TNF-α that were significantly lower than in the mice that were pretreated with vehicle only (Fig. 2D). Furthermore, the administration of IDENs reduced apoptosis of liver cells, as assessed by TUNEL staining (Fig. 2E).

IDENs induce hyporesponsiveness of liver NKT cells to α-GalCer
Con A–induced hepatitis is also dependent on NKT cell activity (37). Unlike CD4/CD8 T cells, NKT cells respond to glycolipid ligands. The glycolipid α-GalCer is a potent stimulator of NKT cell expansion when first administered but loses its effectiveness on repeated administration (9). To determine the effects of accumulation of IDENs in the liver on α-GalCer–driven NKT cell expansion, mice were injected i.v. with IDENs every 2 d for 2 wk and 3 h after the last injection the mice were injected i.v. with α-GalCer.
FIGURE 1. Characterization of IDENs isolated from intestinal mucus. Intestine from B6 mice (A) or human (C) was used for isolation of nanoparticles or microparticles (B) by differential centrifugation as described previously (27). Sucrose-purified nanoparticles were examined by electron microscopy [(A) and (C), left panel] (bar, 100 nm). FACS analysis was performed to determine expression of Annexin V (Figure legend continues).
(5 μg/mouse). The rationale for choosing a 2-wk treatment schedule was based on data published by others (24). In naive mice, a single injection of α-GalCer caused TCR downregulation of NKT cells within 24 h and a decrease in the percentages of TCRα NKT cells recovered 3 d after the injection. This result is also consistent with what has been reported by others (24). In contrast, pretreatment with IDENs dampened the recovery of TCRα NKT cells after injection (Fig. 3A) and reduced the α-GalCer–induced expression of the markers of early activation of NKT cells (i.e., CD69 and its costimulator CD40L (Fig. 3B). Moreover, the α-GalCer–induced elevation of ALT and AST serum levels (Fig. 3C), and production of IFN-γ and IL-4 (Fig. 3D) by liver NKT cells was reduced substantially in mice that had been pretreated with IDENs, indicating that IDENs can induce an anergic-like state in NKT cells exposed to inflammatory signals in vivo.

To directly test whether IDENs can induce an anergic-like state in NKT cells to glycolipids, we purified NKT cells from the livers of mice that had been administered IDENs or vehicle i.v. and cocultured NKT cells in vitro with DCs from the livers of untreated mice in the presence of α-GalCer. The results confirmed that the NKT cells purified from the mice that had been administered IDENs were hyporesponsive to α-GalCer stimulation (Fig. 4A). Consistent with this, the addition of IDENs to liver NKT cells in culture suppressed the ex vivo–proliferative response of the NKT cells to α-GalCer (Fig. 4B). We also analyzed the responses of FACS-sorted cells in vitro. BMDCs were cocultured with naive liver NKT cells treated with IDENs or PBS for 3 h and then stimulated with α-GalCer for an additional 24 h (Fig. 4C), or FACS-sorted liver NKT cells were treated with IDENs or PBS for 3 h and subsequently stimulated with α-GalCer tetramer (Fig. 4D). Analysis of the supernatants indicated that the α-GalCer–induced production of IFN-γ and IL-4 by the NKT cells was significantly reduced when IDENs were added to either NKT cells cocultured with DCs pulsed with α-GalCer (Fig. 4C) or purified NKT cells stimulated with tetramer (Fig. 4D).

IDEN-associated PGE2 inhibits α-GalCer induction of NKT cell activation

We found that liver NKT cells stimulated in vitro with αGalCer in the presence of lipids extracted from IDENs produced much less IFN-γ and IL-4 (Fig. 5A), suggesting that the lipid content of the IDENs plays a role in the IDEN-induced effects on NKT cells. Liposomes assembled from IDENs also have a similar effect as IDENs and IDEN lipids (Supplemental Fig. 1), suggesting that the structure of liposomes assembled from IDEN lipids may not be essential for IDEN-mediated inhibition of activation of NKT cells on the surface of IDENs or microparticles derived from mouse intestinal mucus (B, left panel). The presence of intestinal epithelial–specific marker (A33 and villin-1) and/or exosome markers (CD63, CD9, CD81, RAB5, RAB11, and HSP70) in the sucrose gradient–purified exosomes from the supernatants indicated that the lipid content of the IDENs plays a role in the IDEN-induced effects on NKT cells. Liposomes assembled from IDENs also have a similar effect as IDENs and IDEN lipids (Supplemental Fig. 1), suggesting that the structure of liposomes assembled from IDEN lipids may not be essential for IDEN-mediated inhibition of activation of NKT cells.
stimulated by α-GalCer. Our data (38) and that of others (39) indicate that PGE₂ from various sources is enriched on exosomes, and we found that the IDENs carried significant amounts (>80 ng/mg) of PGE₂ (Fig. 5B). PGE₂ is known to regulate T cell activation through the modulation of expression of PGE₂ receptors on T cells (40). Whether the expression of PGE₂ receptors on NKT cells are regulated by α-GalCer stimulation is not known. RT-PCR analysis of the expression of the four known PGE₂ receptor subtypes indicated selective upregulation of the EP2 and EP4 receptors on α-GalCer–stimulated liver NKT cells (Supplemental Fig. 2). This suggested the possibility that the IDEN-associated PGE₂ could play a role in the induction of the NKT cell anergic-like state. Next, we tested the effects the amount indomethacin (a cyclooxygenase [COX] 2 inhibitor that blocks the generation of PGE₂) would have on the association of PGE₂ with IDENs. ELISA results indicated that indomethacin treatment reduced the amount of PGE₂ associated with the IDENs (Fig. 5B). When comparing the IDENs isolated from the intestines of naive mice pretreated with vehicle only to the IDENs isolated from the intestines of indomethacin-treated mice, the IDENs from indomethacin-treated mice were less potent at inducing the anergic-like state of NKT cells exposed to α-GalCer stimulation (Fig. 5C). Indomethacin treatment resulted in promoting Con A–induced mouse mortality (Fig. 5D), more severe hepatocellular necrosis (Fig. 5E), and higher sera levels of IFN-γ and ALT (Fig. 5F). Our data (Fig. 6A) and the data published by others suggest that there was a selective decrease in liver NKT cells in DSS-induced colitis (41). Whether IDENs isolated from DSS-induced colitis have less capacity to inhibit live NKT cell activation is unknown. We found that in comparison with IDENs isolated from the intestines of naive mice, the IDENs isolated from the intestines of mice pretreated with 3% DSS in drinking water are less potent in inducing the IDEN-mediated anergic-like state of NKT cells to α-GalCer stimulation (Fig. 6B). This reduction appears to be associated with a decreased amount of IDEN PGE₂ (Fig. 6C). PGE₂ is also known to modulate CD4 T cell activation, and our data indicated that IDENs or PGE₂ treatment leads to a significant reduction of both IFN-γ and IL-2 produced by Con A–induced CD4 T cells activation (Fig. 6D), suggesting that IDEN PGE₂ may play a role in the inhibition of CD4 T cell activation, as well as in the Con A–induced mouse liver inflammation model.

Although the immunomodulatory effects of PGE₂ are well known (42, 43), PGE₂ has not been implicated previously in modulation of NKT cell activity. We found that addition of exogenous PGE₂ to monocytes isolated from the livers of naive mice (Fig. 7A) or to cocultures of mature BMDCs with NKT cells purified from the livers of naive mice (Fig. 7B) led to inhibition...
of α-GalCer–induced production of both IFN-γ and IL-4 in a PGE2 dose-dependent manner. Similar results were obtained using the NKT1.2 NKT hybridoma (Supplemental Fig. 3). Addition of either EP2- or EP4-selective agonists to cocultures of FACS-purified liver NKT cells with BMDCs in the presence of α-GalCer suppressed the secretion of IFN-γ and IL-4 (Fig. 7B), whereas agonists selective for EP1 and EP3 had no effect (data not shown). Furthermore, the addition of either the EP4 antagonist, ONO-AE3-208 (Fig. 7C), or the EP2 antagonist, AH6809 (Fig. 7E), partially reversed the PGE2 or IDEN-mediated inhibition of IFN-γ and IL-4 production, whereas EP1 and EP3 antagonists had no effect (data not shown). These findings lead to the novel conclusion that PGE2 can inhibit the production of IFN-γ and IL-4 in α-GalCer–stimulated NKT cells and that these effects are mediated by the EP2 and EP4 receptors.

The cAMP–PKA pathway plays an essential role in the IDEN-associated PGE2-dependent induction of NKT cell anergy

Both EP2 and EP4 are G protein–coupled receptors, which upon binding PGE2 act to increase the levels of intracellular cAMP (44). We found that addition of a dibutyryl cAMP analog (dB-cAMP), a PKA-specific agonist (N6-Bnz-cAMP), or forskolin, a downstream activator of the cAMP-mediated pathway, suppressed the in vitro production of IFN-γ and IL-4 by NKT cells (Fig. 8A). Furthermore, both the IDEN (Fig. 8B), and PGE2 (Fig. 8C)–mediated suppression of IFN-γ and IL-4 production was inhibited by H-89, a PKA inhibitor, or Rp-8-Br-Camps and Rp-8-CPT-cAMPS, type I and type II PKA inhibitors, respectively, confirming that the IDEN-mediated inhibition of IFN-γ and IL-4 production by NKT cells requires PGE2-EP2/EP4 signaling and is dependent on the cAMP/PKA pathway.
Discussion
In this study, we demonstrate that IDENs migrate to the liver where they induce a NKT cell anergy-like state. We also establish for the first time, to our knowledge, that a PGE\(_2\)-mediated pathway plays a role in the induction of the anergic-like state in NKT cells, which can occur through a cAMP/PKA activity-dependent mechanism. The rapid enhancement of the activity occurs through a traditional positive feedback mechanism in which the PGE\(_2\)-induced enhancement of expression of the EP2 and EP4 receptors can amplify PGE\(_2\) signaling in NKT cells. Notably, the activation of the PGE\(_2\) pathway also appears to create in the liver a microenvironment in which naive NKT cells are resistant to activation by \(\alpha\)-GalCer stimulation, which is one of the major obstacles in the use of \(\alpha\)-GalCer for the treatment of certain types of cancer.

It is a reasonable assumption that control of the balance between the anergic-like state and activation of NKT cells is a complex process involving the integration of numerous signals. The current studies pinpoint a regulatory mechanism by which IDENs can influence this balance through mechanisms that involve considerable cross-talk between intestinal IDENs, PGE\(_2\), and NKT cells. For example, in the current studies we found that inflammation induced by either Con A injection or drinking DSS water can alter the amount of PGE\(_2\) carried by the IDENs. Specifically, our data suggest that although inflammation induced by Con A– or DSS-induced colitis resulted in increasing amounts of IDENs accumulating in the liver and significant reduction of PGE\(_2\) carried by IDENs, which made them less potent for inhibiting \(\alpha\)-GalCer stimulated liver NKT cell activation. This suggests that different microenvironmental conditions may tailor the ability of the IDENs to either promote or suppress NKT cell activation. Although two acute inflammatory mouse models were used in this study, IDENs derived from chronic inflammatory driven disease models such as colon

![FIGURE 6.](http://example.com/figure6)

FIGURE 6. IDENs derived from DSS-induced colitis mouse model have significantly less suppression of liver NKT cell activation. (A) Frequency of TCR-\(\beta\)\(^+\)NK1.1\(^+\) cells (NKT cells) in mononuclear cell preparations from the liver at day 8 after mice were treated with 3% DSS in drinking water. (B) Levels of IFN-\(\gamma\) and IL-4 in supernatants of sorted liver NKT cells cultured with BMDCs in the presence of IDENs isolated from naive C57BL/6 mice or DSS-treated mice for 3 h, and then stimulated with \(\alpha\)-GalCer (100 ng/ml) for 24 h. (C) ELISA analysis of PGE\(_2\) levels in IDENs from naive or DSS-treated C57BL/6 mice. Data are representative of three experiments (A) or are the mean ± SEM of five experiments (B) and (C). **p < 0.01 (Student \(t\) test). (D) Levels of IFN-\(\gamma\) and IL-2 in supernatants of sorted naive CD4 T cells in the presence of IDENs or PGE\(_2\) for 3 h and then stimulated by Con A (20 \(\mu\)g/ml) for 24 h. Data are the mean ± SEM of five experiments. **p < 0.01 (Student \(t\) test).
The mean without H-89 (3 μM) for 24 h. The agents were db-cAMP (100 μM), N6-Bnz-cAMP (100 μM), forskolin (10 μM) (A), or in combination with IDENs (B) or PGE2 (C) with/without H-89 (3 μM), Rp-8-Br-cAMPS (100 μM), or Rp-8-CPT-cAMPS (100 μM). ELISA of IFN-γ and IL-4 in the cultured supernatants. Data (A–C) are the mean ± SEM of four experiments (n = 5). *p < 0.05, **p < 0.01 (one-tailed unpaired Student’s t test).

A large number of glycolipids that can activate NKT cells have been studied, whereas only a few of the NKT inhibitory lipids have been studied. Earlier studies demonstrated that neutral glycolipid, Gg3Cer shed from a tumor cell line can inhibit CD1d1-mediated Ag presentation to NKT cells (47). Di-palmitoyl-phosphatidyl-ethanolamine (48) covalently attached to polyethylene glycol acts as an antagonist to inhibit the α-GalCer–induced phosphorylation of ERK tyrosine kinase in NKT cells, thus blocking NKT TCR signaling and activation of NKT cells. However, under physiological conditions these lipid complex are not detected in vivo, and mechanism(s) underlying how the anergic-like state in liver NKT cells is maintained is not known. Data presented in this study suggest that intestinal mucus derived PGE2 carried by exosome-like nanoparticle-mediated can induce the NKT cell anergy-like state in mouse models. This finding opens up a new avenue to further study whether other intestinal-related Ags carried by intestinal mucus derived exosome-like nanoparticles play a role in induction of immune tolerance.

Although the role of IDEN associated PGE2 in the induction of the NKT cell anergic-like state is addressed in this study, we speculate that this finding may also be applied to other types of cells that express PGE2 receptors. A large body of evidence suggests that PGE2 receptors are expressed on not only NKT, but also CD4+ T cells (49) and other types of cells (50) as well. However, if those cells do not have the in vivo capacity of taking up IDENs, PGE2 carried by IDENs may not have an effect on these cells even if these cells are PGE2 receptor positive.

In summary, to our knowledge, this is the first study to demonstrate a PGE2 role in inducing NKT cell anergy. Our data support a model in which the PGE2 carried by IDENs is taken up by Ag presenting cells or NKT cells of the liver and then initiates a unique suppressive mechanism. This mechanism does not require recognition of lipid Ags. In addition, the IDENs work as a functional bridge between the intestinal and liver immune systems. We propose that this mechanism of suppression is a major pathway that counterbalances intestinal lipid-mediated activation of NKT cells in the liver.

Acknowledgments

We thank the National Institutes of Health Tetramer Facility for providing PBS-57 ligand complexed to CD1d monomers or tetramers; Ono Pharmaceutical for providing EP4 (ONO-AE1-329), EP1 antagonist ONO-8713, EP3 antagonist ONO-AE3-240, and EP4 antagonist (ONO-AE3-208); and Dr. Mitchell Kronenberg, who provided the NKT1.2 hybridoma. We also thank Drs. Fiona Hunter and Jerald Ainsworth for editorial assistance.

Corrections

A source of funding was omitted in this article. The funding information footnote should read “This work was supported by National Institutes of Health Grants RO1CA137037, RO1CA107181, RO1AT004294, and RO1CA116092; Robley Rex VA Medical Center merit review grants (to H.-G.Z.); and a grant from the Susan G. Komen Breast Cancer Foundation. H.-G.Z. is supported by a Veterans Affairs Research Career Scientist Award.”