Cell-Specific TLR9 Trafficking in Primary APCs of Transgenic TLR9-GFP Mice

Ana M. Avalos, Oktay Kirak, J. Margit Oelkers, Marina C. Pils, You-Me Kim, Matthias Ottinger, Rudolf Jaenisch, Hidde L. Ploegh and Melanie M. Brinkmann

J Immunol published online 12 December 2012
http://www.jimmunol.org/content/early/2012/12/12/jimmunol.1202342

Supplementary Material
http://www.jimmunol.org/content/suppl/2012/12/12/jimmunol.1202342.DC1

Subscription
Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Author Choice
Freely available online through *The Journal of Immunology* Author Choice option

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
Cell-Specific TLR9 Trafficking in Primary APCs of Transgenic TLR9-GFP Mice

Ana M. Avalos,* Oktay Kirak,† J. Margit Oelkers,‡ Marina C. Pils,‡ You-Me Kim,* Matthias Ottinger,*,‡ Rudolf Jaenisch,*, Hidde L. Ploegh,* and Melanie M. Brinkmann*,‡

Recognition of nucleic acids by TLR9 requires its trafficking from the endoplasmic reticulum to endolysosomal compartments and its subsequent proteolytic processing. Both processes depend on interactions of TLR9 with the polytopic endoplasmic reticulum–resident protein UNC93B1. To examine the intracellular behavior of TLR9 in primary APCs, we generated transgenic mice expressing a TLR9-GFP fusion. The TLR9-GFP transgene is functional and is proteolytically processed in resting bone marrow–derived macrophages (BMDMs), dendritic cells, and B cells. Inhibition of cleavage impairs TLR9-dependent responses in all primary APCs analyzed. The kinetics of TLR9-GFP processing in BMDMs and B cells differs: in B cells, proteolysis occurs at a faster rate, consistent with an almost exclusive localization to endolysosomes at the resting state. In contrast to the joint requirement for cathepsins L and S for TLR9 cleavage in macrophages, TLR9-GFP cleavage depends on cathepsin L activity in B cells. As expected, in BMDMs and B cells from UNC93B1 (3d) mutant mice, cleavage of TLR9-GFP is essentially blocked, and the expression level of UNC93B1 appears tightly correlated with TLR9-GFP cleavage. We conclude that proteolysis is a universal requirement for TLR9 activation in the primary cell types tested, however the cathepsin requirement, rate of cleavage, and intracellular behavior of TLR9 varies. The observed differences in trafficking indicate the possibility of distinct modes of endosomal content sampling to facilitate initiation of TLR-driven responses in APCs. The Journal of Immunology, 2013, 190: 000–000.
Materials and Methods

Generation of TLR9-GFP transgenic mice

TLR9-GFP was cloned by restriction digest of the TLR9-GFP pMSCVpuro vector (4) into the pGK-Flag-CAGGS-RGBPoya vector (15) (TLR9-GFP CAGGS). Cherry-KDEL was cloned by restriction digest of the mcherry-KDEL pMSCVneo vector (mcherry-KDEL CAGGS). Both constructs were verified by sequencing. Fifty micrograms of TLR9-GFP CAGGS or mcherry-KDEL CAGGS was mixed with 25 µg of PFP recombine, precipitated, and used for electroporation of V6.5 (C57BL/6 x 129 F1) ES cells. Mice were genotyped with the following primers: col5A 5’-GCACAGCATTGCGGA-G-3’ and col5C 5’-CCCTCCATGTGTGACCAAGG-3’.

Mice and cell lines

TLR9KO mice (16) were obtained from A. Marshall-Rothstein (University of Massachusetts, Worcester, MA). UNC93B1 H412R mutant (3D) mice (17) were obtained from Bruce Beutler (The Scripps Institute, La Jolla, CA). C57BL/6 wild-type (WT) mice were purchased from Jackson Laboratory. All animals were maintained under specific pathogen-free conditions, and experiments were performed in accordance with institutional, state, and federal guidelines. Mice were maintained under specific pathogen-free conditions, and experiments were performed in accordance with institutional, state, and federal guidelines. Mice were maintained under specific pathogen-free conditions, and experiments were performed in accordance with institutional, state, and federal guidelines. Mice were maintained under specific pathogen-free conditions, and experiments were performed in accordance with institutional, state, and federal guidelines.

Preparation of primary cells and cell culture

Untouched B and T cells were isolated from spleens using magnetic beads (Miltenyi) according to the manufacturer’s specifications. FLT3-ligand dendritic cells (FLDCs) were prepared as follows: furin and tibia were flushed with 15 ml 1640 medium, RBCs lysed, and cells plated in RPMI 1640 containing 10% FBS, 1% penicillin/streptomycin, and 1% L-glutamine. Cells were cultured for 7 days, and nonadherent cells were harvested, stained for expression of CD11b and B220 to determine myeloid dendritic cell (mDC) and pDC subsets (mDCs are CD11b+CD123+CD11c+ and pDCs are CD11b+CD123+CD11c-), and plated for stimulation assays.

For BMDMs, furin and tibia were flushed, and cells were cultured in high-glucose DMEM, 10% FBS, and 1% penicillin/streptomycin. Cells were maintained in high-glucose DMEM containing 10% heat-inactivated fetal calf serum (FBS) and penicillin/streptomycin (PS).

Abs and reagents

Histone recognition Abs were diluted and added to HEP-2 cells and IgG detected using anti-IgFITC Ab.

Cell lysate preparation

Organs were homogenized with a tissue disruptor in buffer containing 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 5 mM EDTA, and PMSF. Nonspecifically bound IgG was removed by precipitation with 1.2 mg/ml G418 (BMDMs) or 5 µg/ml puromycin (BMDMs) (Invitrogen) 1 day after transduction.

Intracellular TNF FACS staining

BMDMs were seeded at day 7 of MCSF culture and stimulated with TLR agonists as indicated in the figure legends in the presence of 10 µg/ml brefendin A for 4 h. Cells were trypsinized and fixed with 3.7% formaldehyde in PBS for 10 min at room temperature. Cells were permeabilized with 0.5% saponin in FACS buffer (PBS with 2% FBS) for 20 min at room temperature, stained with Alexa Fluor 647-conjugated anti-mouse TNF-α Ab for 30 min at room temperature (diluted 1:100), washed, and analyzed by FACS.

ELISA

IL-6 secretion was determined in media supernatants using the OptEIA kit (Becton Dickinson) according to the manufacturer’s specifications. IFN-α production was detected by ELISA using Abs specific for IFN-α (PBL).

Pulse-chase, immunoprecipitation, and endoglycosidase HPeptide-N-glycosidase F assays

In brief, cells were starved for methionine and cysteine in Met/Cys-free DMEM (starvation medium) for 30-60 min, pulse for different time periods (see the figure legends) with 35S-labeled methionine/cysteine (Perkin-Elmer) in starvation medium supplemented with dialyzed FCS, and chased with an excess of non-radioactive amino acids in regular DMEM for various time periods (see the figure legends). Cells were lysed in either of the following lysis buffers supplemented with PMSF as indicated in the figure legends: RIPA (20 mM Tris-HCl, pH 7.4, 1 mM EDTA, 100 mM NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS) or buffer containing 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA with 1% digitonin as detergent. Lysates were equalized for incorporation of radioactive material with 35S counts in the trichloroacetic acid precipitate and immunoprecipitated with the indicated Abs. Washes were performed with the same buffers used for lysis except for digitonin lysates/immunoprecipitations, which were washed with 0.1-0.2% digitonin-containing buffer. Immunoprecipitations were carried out as follows: protein–Ab complexes were dissolved by denaturation with 1% SDS and 1% 2-mercaptoethanol for 1 h at 37°C (UNC93B-IPs) or 10 min at 95°C (TLR9-GFP-IPs). Subsequently, SDS and 2-mercaptoethanol were diluted to 0.1% by addition of 1% NP-40 lysis buffer, and immunoprecipitations were carried out with the indicated Abs. Immunoprecipitates were subjected to 10% SDS-PAGE and fluorography. Digested with endoglycosidase H (Endo H) and peptide-N-glycosidase F (PNGase F) were performed, where indicated, in accordance with the manufacturer’s instructions (New England BioLabs).

Confocal microscopy of B cells

For imaging primary B cells, 8-well-chambered coverglasses were coated with poly-l-lysine for 15 min at room temperature followed by a blocking
step with RPMI 1640 supplemented with 20% FBS for 15 min at room temperature. Purified B cells were seeded at 0.75 × 10^6 to 1.5 × 10^6 cells/well and allowed to attach for 15 min at 37°C. During imaging, cells were maintained in RPMI 1640 supplemented with 2% FBS. Images were acquired using a PerkinElmer Ultraview spinning disk confocal microscope.

Quantification of TLR9-GFP localization

BMDMs generated from TLR9-GFP transgenic or immortalized BMDMs stably transduced with TLR9-GFP were seeded into 8-well chambered coverslips (Sarstedt). Cells were maintained in a climate chamber (EMBLEM, Heidelberg, Germany) at 37°C and 7.5% CO2 in phenol red–free DMEM supplemented with 10% FBS. Induction of endosomal TLR9-GFP fluorescence intensities inside these regions were measured. Fluorescence present in a given cell as well as the entire cell were encircled, and fluorescence intensities were measured for each endosome. To determine TLR9-GFP fluorescence values, all endosomes were used for image acquisition and quantification of TLR9-GFP localization to endosomes. To determine TLR9-GFP fluorescence values, all endosomes were used for image acquisition and quantification of TLR9-GFP localization to endosomes.

Results

Cleavage of TLR9-GFP correlates with UNC93B1 expression levels

We had previously shown that retrovirally transduced TLR9-GFP trafficks together with UNC93B1 from the ER to the endolysosomal compartment upon stimulation with the TLR9 agonist CpG (4). Using the same TLR9-GFP DNA construct, we generated TLR9-GFP transgenic mice by FLPe-mediated site-specific integration into the collagen 1A (coll1A) locus (15). Resulting mice express the TLR9-GFP transgene from the chicken β-actin (CAGGS) promoter (15). The collAI locus supports high levels of transgene expression even in cell types that do not normally express the type I collagen gene (19). Both heterozygous and homozygous TLR9-GFP mice were healthy and fertile. Immunostaining of paraffin-embedded tissues with an anti-GFP Ab showed expression of TLR9-GFP in spleen, liver, lymph node, glandular stomach, small intestine, choroid plexus, and kidney (Supplemental Fig. 1). Histopathological evaluation of heterozygous TLR9-GFP mice revealed no alterations compared with WT littersmates (data not shown). Aged mice did not develop high anti-nuclear Ab titers, and lymphocyte development was normal (Supplemental Fig. 2).

To ascertain the protein expression levels and molecular behavior of TLR9-GFP in different tissues, we analyzed homogenates of kidney, liver, spleen, lung, small and large intestine, muscle, thymus, lymph node, and pancreas by immunoblotting with an anti-GFP Ab. As expected, we observed TLR9-GFP expression in all samples, albeit at different levels (Fig. 1A, upper panel). Some tissues expressed TLR9 as a full-length protein (kidney, lung, large intestine, muscle), whereas others showed a band consistent with the C-terminal product of TLR9-GFP proteolysis (spleen and lymph node predominantly).

Because UNC93B1 is required for trafficking to endolysosomes—the site of TLR9 cleavage—we examined UNC93B1 levels in lysates from the same tissue/organs by immunoblot (18) and compared with WT littermates (data not shown). Aged mice did not develop high anti-nuclear Abs, and lymphocyte development was normal (Supplemental Fig. 2).

Because UNC93B1 is required for trafficking to endolysosomes—the site of TLR9 cleavage—we examined UNC93B1 levels in lysates from the same tissue/organs by immunoblot (18) and found that UNC93B1 expression was highest in those samples where the C-terminal TLR9-GFP fragment was well detected (Fig. 1A, bottom panel). These results suggested that not only expression of UNC93B1 but also precise levels of this protein were necessary to promote TLR9 proteolysis. To test whether this was indeed the case, we used MEFs. MEFs express endogenous UNC93B1, but expression levels are apparently insufficient to promote TLR9 cleavage (Ref. 6 and Fig. 1B). To increase the levels of UNC93B1 protein, we retrovirally transduced MEFs generated from TLR9-GFP transgenic mice with WT UNC93B1-HA (4). In UNC93B1-HA transduced cells, cleavage of TLR9-GFP occurs (Fig. 1B). Ectopically expressed HA-tagged UNC93B1 was more abundant than endogenous UNC93B1 as measured by immunoblots using the anti-

FIGURE 1. Sufficient levels of UNC93B1 protein are required for TLR9-GFP cleavage. (A) Organs of TLR9-GFP/WT transgenic mice were lysed and equal protein concentrations analyzed by immunoblots with anti-GFP and anti-UNC93B1 Abs. (B) MEFs prepared from TLR9-GFP/WT mice were retrovirally transduced with either WT UNC93B1-HA (WT), the UNC93B1-HA H412R mutant (H412R), or not transduced (−). Non-transduced MEFs prepared from WT mice were used as negative control. Cells were lysed and equal protein concentrations analyzed by immunoprecipitation with anti-GFP (upper panel), anti-UNC93B1 (middle panel, detecting endogenous and HA-tagged UNC93B1), and anti-β-actin (lower panel) Abs. (C) MEFs prepared from TLR9-GFP/WT transgenic mice were retrovirally transduced with WT UNC93B1-HA or not transduced. Cells were metabolically labeled with [35S]methionine/cysteine for 1 h and chased for 0, 3, and 6 h of chase. Samples were split in half, and immunoprecipitation (IP) and reimmunoprecipitation (Re-IP) were carried out with either anti-GFP (upper panel) or anti-UNC93B1 (lower panel) Abs. The anti-GFP reimmunoprecipitations were digested with PNGase F. Shown are representative results from two independent experiments. Ct, C-terminal fragment of TLR9-GFP; FL, full-length TLR9-GFP.
responses to CpG were exhibited similar CpG responses compared with WT mice, (9KO). Although mDCs and pDCs from TLR9-GFP/9KO mice whether the TLR9-GFP transgene was functional, we placed the between TLR9-GFP/WT and WT mice (Fig. 2A). To determine BMDMs, mDCs, and B cells, cytokine production was comparable pDCs from TLR9-GFP/WT mice compared with WT pDCs. In its agonist CpG. We observed enhanced responses to CpG only in as well as endogenous copies of TLR9. We therefore first examined whether this had an effect on TLR9 responses to stimulation with whether the TLR9-GFP transgene is functional, we placed the transgenic TLR9-GFP mice express the TLR9-GFP transgene as well as endogenous copies of TLR9. We therefore first examined whether this had an effect on TLR9 responses to stimulation with its agonist CpG. We observed enhanced responses to CpG only in pDCs from TLR9-GFP/WT mice compared with WT pDCs. In macrophages, but also is a more general requirement for TLR9 signaling in cells of the immune system, including primary mDCs, pDCs, and B cells.
Proteolytic conversion of TLR9-GFP in BMDMs
Because we found TLR9 was cleaved in unstimulated APCs, we explored the kinetics of TLR9-GFP cleavage in primary BMDMs and B cells by performing pulse-chase analysis on BMDMs and splenocytes from TLR9-GFP/WT mice. To inhibit cleavage of TLR9, z-FA-FMK was included. TLR9-GFP was recovered by immunoprecipitation after 3 h of chase in BMDMs, whereas a C-terminal TLR9 fragment was found as early as 1.5 h of chase in B cells (Fig. 3A). As expected, z-FA-FMK blocked cleavage (Fig. 3A). These results indicate that TLR9-GFP can reach endosomal compartments also in the absence of added CpG in B cells and BMDMs. The conversion of TLR9-GFP to the cleaved form occurred with similar kinetics in BMDMs derived from TLR9-GFP/WT and TLR9-GFP/9KO mice (data not shown).

We then explored the cathepsin requirement for TLR9-GFP cleavage in B cells. In the RAW 264.7 macrophage cell line, TLR9 is cleaved by the combined activity of cathepsins L and S (5). Using selective inhibitors of cathepsin K, L, and S, we recovered TLR9-GFP by anti-GFP immunoprecipitation and reimmunoprecipitation from metabolically labeled splenocytes. We observed that inhibitors of cathepsin L and cathepsin S impaired TLR9-GFP cleavage (Fig. 3B), and both cathepsin L and cathepsin S inhibited responses to CpG (Fig. 3C). Cathepsin K inhibitors did not affect cleavage or activity (Fig. 3B, 3C). Treatment of splenocytes with cathepsin inhibitors did not produce a pre-C-terminal TLR9 (partial proteolysis) product as was observed in macrophages (5) but a fragment of size consistent with the functional C-terminal TLR9 fragment. The observed differences between B cells and macrophages in cathepsin requirement and cleavage products indicate dissimilar mechanisms responsible for TLR9 cleavage and activation in these cells.

Differences in TLR9-GFP maturation and stability in BMDMs and B cells
Because we observed differences in the rate of cleavage of TLR9-GFP in B cells and BMDMs, trafficking and maturation of TLR9-GFP and its accessory molecule UNC93B1 were examined. We metabolically labeled B cells and BMDMs, chased for different periods, and recovered TLR9-GFP and UNC93B1 from lysates by immunoprecipitation and reimmunoprecipitation using anti-GFP and anti-UNC93B1 Abs, respectively. Immunoprecipitates were digested with Endo H and PNGase F. Proteins that undergo complex N-linked glycan modification in the Golgi compartment are refractory to Endo H digestion, whereas ER-resident proteins are Endo H sensitive. Endo H-resistant material (“complex”) corresponding to full-length and cleaved TLR9-GFP was recovered from B cell lysates from TLR9-GFP/WT and TLR9-GFP/9KO mice, demonstrating TLR9-GFP trafficked through the Golgi compartment in these cells (Fig. 4A, “H” lanes). In BMDMs, TLR9-GFP also trafficked through the Golgi compartment, but full-length Endo H-resistant TLR9-GFP was barely detectable (Fig. 4B, upper panel). In contrast, B cells produce an Endo H-resistant full-length polypeptide (Fig. 4A). We were unable to detect Endo H-resistant forms of UNC93B1 in either BMDMs or B cells (Fig. 4A, 4B, lower panels). When cleavage was

FIGURE 3. High rate of TLR9-GFP processing and cathepsin L requirement in B cells. (A) Primary BMDMs (upper panel) and primary splenocytes (lower panel) derived from TLR9-GFP/WT transgenic mice were metabolically labeled with [35S]methionine/cysteine for 1 h (pulse) and lysed after 0, 1.5, 3, 6, and 9 h of incubation in normal medium (chase). z-FA-FMK (10 μM for BMDMs, 3 μM for splenocytes) or DMSO (negative vehicle control) was added during the pulse and chase times. TLR9-GFP was recovered by immunoprecipitation (IP) with an anti-GFP Ab. Immunoprecipitation (Re-IP) was performed after denaturation of the initial immunoprecipitation with an anti-GFP Ab. Precipitates were subjected to digestion with PNGase F and resolved by SDS-PAGE. (B) Total splenocytes from TLR9-GFP/WT mice were metabolically labeled and chased for 4 h in the presence of DMSO (−), inhibitors of cathepsin K (KI), cathepsin L (Li), or cathepsin S (Si), or z-FA-FMK (zFA). Cells were lysed and treated as in (A). (C) Purified B cells from C57BL/6 mice were incubated with 1 μM CpG or 1 μg/ml Pam3CysK in the absence (no inhibitor) or presence of cathepsin K, L, or S inhibitors or z-FA-FMK. IL-6 production was measured by ELISA. Shown are representative results from two (A) and three (B) independent experiments and the mean ± SEM of three independent experiments (C). Ct, C-terminal fragment of TLR9-GFP; FL, full-length TLR9-GFP.
Steady flow of TLR9-GFP from the ER to endolysosomes

The observed cleavage of TLR9 in resting/unstimulated primary APCs is notable, as this result indicates that a major pool of TLR9 already localizes to the endosomal compartment where proteolysis occurs. Earlier reports rather suggested the major pool of TLR9 to localize to the ER (4, 13, 21). In B cells at rest, TLR9 appears to reside in early endosomal compartments (14). To analyze the distribution of TLR9-GFP in resting/unstimulated B cells relative to the ER, we crossed TLR9-GFP mice with mice transgenic for mCherry equipped with a C-terminal KDEL sequence (mCherry-KDEL). This reporter protein is retrieved from the cis-Golgi and redistributed to the ER via the KDEL receptor (22). We found a small portion of TLR9-GFP colocalizing with cherry KDEL in resting B cells (Fig. 5A, upper panel), whereas most TLR9-GFP was found in LysoTracker-positive compartments (Fig. 5B). To determine the distribution of TLR9-GFP in resting and stimulated BMDMs, we quantified TLR9-GFP–positive endolysosomes by confocal microscopy in unstimulated and CpG-stimulated BMDMs using LysoTracker as an endolysosome marker (Fig. 5C). Such quantifications were not possible in earlier studies because retroviral transduction levels were too low. Because all cells express the TLR9-GFP transgene, we were able to quantify the distribution of TLR9-GFP in primary BMDMs and compared it with immortalized BMDMs stably transduced with TLR9-GFP. In the absence of CpG, TLR9-GFP localized to endolysosomes in ∼75% of primary and ∼50% of immortalized cells. After 1 h of CpG stimulation, ∼65% of primary and ∼70% of immortalized cells showed TLR9-GFP colocalization with LysoTracker in endolysosomes (Fig 5C, middle panel). We next compared the distribution of TLR9-GFP in endosomal compartments and the ER in unstimulated and CpG-stimulated immortalized cells. In unstimulated immortalized WT BMDMs, ∼10% of TLR9-GFP localized to endosomes and ∼90% to the ER (Fig. 5C, right panel). After 1 h of CpG stimulation, ∼15% of TLR9-GFP localized to endosomes (Fig. 5C, right panel). These data show that at least in vitro, a significant proportion of TLR9-GFP already localizes to the endolysosomal compartment in unstimulated APCs, and a smaller percentage relocates to endolysosomes upon CpG stimulation.

Trafficking of TLR9 depends on interaction with the ER protein UNC93B1, as a H412R point mutation in UNC93B1 in 3d mutant mice (17) leads to retention of TLR9-GFP in the ER (4). To investigate possible differences in the UNC93B1 requirement for TLR9-GFP trafficking in primary APCs from 3d mice, we crossed TLR9-GFP to 3d mice to obtain TLR9-GFP/3d mice and analyzed TLR9-GFP cleavage and maturation by pulse-chase analysis. The C-terminal cleaved fragment of TLR9-GFP was not detectable in BMDMs or B cells of TLR9-GFP/3d mice compared with TLR9-GFP/WT and TLR9-GFP/9KO cells (Fig. 5D). In B cells from TLR9-GFP/cherry-KDEL mice in the 3d context, TLR9-GFP colocalizes with cherry-KDEL (Fig. 5A, lower panel). Together, these results establish retention of TLR9-GFP in the ER of BMDMs and B cells of TLR9-GFP/3d mice. Importantly, these data demonstrate that cleavage of TLR9-GFP in TLR9-GFP transgenic mice is not due to overexpression of the transgene that could lead to aberrant trafficking.

Discussion

Transgenic mice created by site-specific integration of a TLR9-GFP fusion construct into the collagen locus allow the analysis of TLR9 receptor trafficking and processing in primary cell types previously not readily accessible to this type of analysis. The TLR9-GFP transgene is expressed at levels sufficient for detection and impeded by inclusion of z-FA-FMK, total levels of full-length TLR9-GFP were decreased in B cells (Fig. 4C). These results indicate that trafficking and cleavage lead to the presence of TLR9-GFP forms of different stability in BMDMs and B cells.

FIGURE 4. Maturation of TLR9-GFP and UNC93B1 in primary APCs. Primary splenocytes (A) or BMDMs (B) derived from TLR9-GFP/WT transgenic mice were metabolically labeled with [35S]methionine/cysteine for 1 h and lysed after 0, 3, or 6 h of chase. TLR9-GFP was recovered by immunoprecipitation and reimmunoprecipitation with an anti-GFP Ab ([A, B upper panels]). Endogenous UNC93B1 was recovered by immunoprecipitation and reimmunoprecipitation with an anti-UNC93B1 Ab ([A, B lower panels]. Anti-GFP and anti-UNC93B1 immunoprecipitates were subjected to digestion with Endo H, PNGase F, or not digested (−) and resolved by SDS-PAGE. (C) Primary splenocytes derived from TLR9-GFP/WT transgenic mice were metabolically labeled with [35S]methionine/cysteine for 1 h and chased for 6 h in the presence of z-FA-FMK or DMSO. Cells were lysed and subjected to immunoprecipitation and reimmunoprecipitation with an anti-GFP Ab. Precipitated proteins were subjected to digestion with Endo H, PNGase F, or not digested (−) and resolved by SDS-PAGE. Shown are representative results of three independent experiments. Ct, C-terminal fragment of TLR9-GFP; degly, deglycosylated; F, PNGase F; FL, full-length TLR9-GFP; H, Endo H; IP, immunoprecipitation; Re-IP, reimmunoprecipitation.
by immunoprecipitation and immunoblotting with an anti-GFP Ab, as well as by live cell imaging. We demonstrate a steady flow of TLR9-GFP from the ER to the endolysosomes in BMDMs and B cells. This flow occurred more rapidly in B cells than in BMDMs, with the C-terminal TLR9 fragment appearing as early as 1.5 h of chase in B cells and only after 3 h in BMDMs. On the time frame usually observed for glycoprotein maturation, these differences are substantial. Moreover, cathepsin requirement varied between macrophages and B cells. It is likely that other endosomal TLRs traffic in a similar fashion, as cleavage has been demonstrated for TLR7 and TLR3 (7–9), with TLR3 cleavage dependent on activity of cathepsins H and B (7–9). Whether cell-specific differences exist for TLR3 and TLR7 cleavage remains to be established.

Only a small proportion of TLR9-GFP trafficks to the endolysosome upon CpG stimulation in BMDMs, and this result contrasts with findings previously reported, where the majority of TLR9 resided in the ER at rest and only traveled to endolysosome upon CpG stimulation (4, 13, 21). In B cells, no increase of cleavage upon stimulation with anti-IgM or CpG was found, even though TLR9 was reported to traffic to autophagosome-like compartments in anti-IgM–stimulated cells (14). We do not think TLR9-GFP trafficking properties derive from unphysiologically high levels of transgene expression, as UNC93B1 was required to execute cleavage (Fig. 5D). Our results show that a sizeable pool of cleaved TLR9 is localized to endolysosomes in resting primary APCs. Because CpG reaches endosomes rapidly (11), a ready source of cleaved TLR9-GFP would ensure rapid responses to ligand, with subsequent further recruitment from the ER. We also found differences in protein stability of full-length and cleaved TLR9-GFP in BMDMs and B cells. The lower stability of the full-length Endo H–resistant form of TLR9-GFP in BMDMs may explain why early reports suggested that TLR9 trafficking might bypass the Golgi compartment, an admittedly unlikely route for membrane proteins to reach the endocytic pathway (4, 13, 18, 21). Our inability to detect Endo H–resistant UNC93B1 indicates that the mature form may be rapidly degraded, as it seems unlikely.

FIGURE 5. Functional UNC93B1 is required for TLR9-GFP cleavage, trafficking, and maturation in BMDMs and B cells. (A) Purified resting B cells of TLR9-GFP/cherry-KDEL/WT or TLR9-GFP/cherry-KDEL/3d mice were isolated and imaged by confocal microscopy. (B) Purified resting B cells of TLR9-GFP/WT mice were incubated with LysoTracker and imaged by confocal microscopy. (C) BMDMs derived from TLR9-GFP/WT transgenic mice or immortalized BMDMs stably transduced with TLR9-GFP were incubated with LysoTracker and either left unstimulated (–) or stimulated for 1 h with 1 μM of CpG and analyzed by confocal microscopy. *Left panel,* Representative image of the quantifications in the *middle* and *right panels.* TLR9-GFP–positive endolysosomes are marked with white circles. *Middle panel,* Shown is the percentage of primary and immortalized cells expressing TLR9-GFP in the endolysosome with or without CpG stimulation, with cells considered positive expressing TLR9-GFP in at least one endosome. *Right panel,* Shown is the percentage of TLR9-GFP fluorescence in endolysosomes versus the entire cell with or without CpG stimulation in immortalized BMDMs. Quantification of TLR9-GFP expression in endolysosomes was accomplished by measuring the fluorescence intensities of all TLR9-GFP–positive endosomes (encircled regions in *left panel*) and dividing the values by the fluorescence intensity of the entire cell. (D) BMDMs (*upper panel*) and total splenocytes (*lower panel*) from TLR9-GFP/WT, TLR9-GFP/9KO, or TLR9-GFP/3d mice were metabolically labeled with [35S]methionine/cysteine for 1 h and chased for six (BMDMs) or three (splenocytes) hours. TLR9-GFP was immunoprecipitated and reimmunoprecipitated with an anti-GFP Ab. Immunoprecipitates were left untreated (–) or digested with Endo H or PNGase F and separated by SDS-PAGE. *IP,* Immunoprecipitation; *Re-IP,* reimmunoprecipitation; *H,* Endo H; *F,* PNGase F; *FL,* full-length TLR9-GFP; *Ct,* C-terminal fragment of TLR9-GFP; *degly,* deglycosylated. Scale bar, 1.5 μm (*A, B*) and 10 μm (*C*). For (C), a minimum of 68 cells was analyzed for each condition (unstimulated and CpG stimulated). Shown are representative results from two (A) and three (B, D) independent experiments, and a representative image and mean ± SEM of two (primary BMDMs) and three (immortalized BMDMs) independent experiments (C).
given the tight interaction between them, that UNC93B1 would separate from TLR9. As TLR pathways are examined toward the design of prophylactics and therapeutics, our results highlight the importance of studying molecular trafficking in cell-specific manner as TLRs may behave differently depending on the target cell. It is thus important to be cautious when generalizing TLR trafficking patterns based on effects observed in cells amenable to transduction. How trafficking occurs in response to more physiological TLR9 ligands, which require phagocytosis and processing in the endolysosome, remains to be established. These studies should be approachable with the TLR9-GFP mouse in hand.

Acknowledgments
We thank Brigitte Denker and Anna Rinkel (Helmholtz Centre for Infection Research) for excellent technical assistance and the Flow Cytometry and Keck Microscopy Facility at the Whitehead Institute for Biomedical Research.

Disclosures
The authors have no financial conflicts of interest.

References
Suppl. FIGURE 1. TLR9-GFP is expressed in different tissues of TLR9-GFP transgenic mice. Organs and tissue of 12-week-old mice heterozygous for transgenic TLR9-GFP (TLR9-GFP$^{-/+}$/WT) were formalin fixed, paraffin embedded and stained with an anti-GFP antibody. Data is representative of two TLR9-GFP$^{-/+}$/WT mice and two WT littermates. Scale bar = 25 µm for lung and kidney and 50 µm for all other organs.
Suppl. FIGURE 2. TLR9-GFP mice do not develop antinuclear antibodies and have normal lymphocyte development. (A) Sera from four of each 10-12 month old WT, TLR9-GFP mice with one (+/-) or two (+/+) copies of the TLR9-GFP transgene were extracted from the mouse, and serial dilutions of sera added to slides containing Hep-2 cells. Slides were washed and incubated with FITC-conjugated anti-Ig antibody and cells visualized with a fluorescence microscope. Serum dilution factor as quantification of levels of ANA was calculated at the dilution factor at which no signal could be detected. (B) T and B cell subsets were determined in spleen, bone marrow and thymus based on expression of surface markers.