Blocking A2B Adenosine Receptor Alleviates Pathogenesis of Experimental Autoimmune Encephalomyelitis via Inhibition of IL-6 Production and Th17 Differentiation

Wei Wei, Changsheng Du, Jie Lv, Guixian Zhao, Zhenxin Li, Zhiying Wu, György Haskó and Xin Xie

J Immunol published online 5 December 2012
http://www.jimmunol.org/content/early/2012/12/05/jimmunol.1103721

Supplementary Material

http://www.jimmunol.org/content/suppl/2012/12/07/jimmunol.1103721.DC1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Author Choice

Freely available online through *The Journal of Immunology*
Author Choice option

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Blocking A2B Adenosine Receptor Alleviates Pathogenesis of Experimental Autoimmune Encephalomyelitis via Inhibition of IL-6 Production and Th17 Differentiation

Wei Wei,*,†1 Changsheng Du,*† Jie Lv,*† Guixian Zhao,‡§ Zhenxin Li,‡§ Zhiying Wu,‡§ György Haskó,* and Xin Xie*†

Adenosine is a key endogenous signaling molecule that regulates immune responses. A2B adenosine receptor (AR) is a relatively low-affinity receptor for adenosine, and the activation of A2BAR is believed to require pathological level of adenosine that is associated with ischemia, inflammation, trauma, or other types of stress. The role of A2B AR in the pathogenesis of multiple sclerosis (MS) is still unclear. In this study, we discovered that A2B AR was upregulated both in the peripheral blood leukocytes of MS patients and the peripheral lymphoid tissues of experimental autoimmune encephalomyelitis (EAE) mice. A2BAR-specific antagonists, CVT-6883 and MRS-1754, alleviated the clinical symptoms of EAE and protected the CNS from immune damage. Our findings not only revealed the pathological role of A2BAR in EAE, but also suggested that this receptor might be a new therapeutic target for the development of anti-MS drugs.

Received for publication December 22, 2011. Accepted for publication November 1, 2012.

This work was supported by National Natural Science Foundation of China Grants 31000399, 31171348, and 81202341; Ministry of Science and Technology of China Grants 2012CB910404 and 2009CB940900; Chinese Academy of Sciences Grant XDA01040301; and Shanghai Commission of Science and Technology Grant 2012XD1402100.

Address correspondence and reprint requests to Prof. Xin Xie, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; †CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China; ‡Department of Neurology, Fudan University, Shanghai 200040, China; and †Department of Surgery, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103

*W.W. and C.D. contributed equally to this work.

The online version of this article contains supplemental material.

Abbreviations used in this article: AR, adenosine receptor; COPD, chronic obstructive pulmonary disease; DC, dendritic cell; EAE, experimental autoimmune encephalomyelitis; GPCR, G protein–coupled receptor; KO, knockout; MOG, myelin oligodendrocyte glycoprotein; MS, multiple sclerosis; NECA, 5′-N-ethylcarboxamido-adenosine; PI, postimmunization; PKA, protein kinase A; PKC, protein kinase C; PLC, phospholipase C; qPCR, quantitative PCR; RRMS, relapsing remitting MS; WT, wild-type.

This article is distributed under The American Association of Immunologists, Inc., Reuse Terms and Conditions for Author Choice articles.

Copyright © 2012 by The American Association of Immunologists, Inc. 0022-1767/12S16/00.

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1103721
ulated in the PBLs of patients with relapsing remitting MS (RRMS) and the peripheral lymphoid tissues of EAE mice. Inhibition of A2B AR with two selective antagonists, CVT-6883 and MRS-1754, or genetic deletion of A2B AR attenuated the CNS infiltration of inflammatory cells and the clinical symptoms of EAE. We found adenosine might promote pathogenic Th17 differentiation by stimulating IL-6 production from dendritic cells (DCs). Blocking or deleting A2B AR largely eliminated adenosine-mediated IL-6 production. To our knowledge, our results demonstrated for the first time that A2B AR plays pathogenic roles in EAE, and blocking A2B AR might provide a new way to treat MS.

Materials and Methods

Study subjects

Subjects were patients from the outpatient clinic of Huashan Hospital (Shanghai, China) with clinically defined RRMS or age- and sex-matched healthy volunteers from personnel of Tongji University and Shanghai Institute of Biochemistry and Cell Biology. Informed consent was provided, and the sampling was in accordance with the guidelines of local institutional review boards.

Mice

C57BL/6 mice were purchased from Shanghai Laboratory Animal Center (Shanghai, China). A2B AR–KO mice on a C57BL/6 background were described in a previous report (13). All mice were maintained in pathogen-free condition with standard laboratory chow and water ad libitum. All experiments were approved and conducted in accordance with the guidelines of the Animal Care Committee of Tongji University.

EAE induction, drug treatment, and histopathological analysis

Female mice at 8–9 wk of age were immunized with 200 μg MOG35–55 in CFA containing 5 mg/ml heat-killed Mycobacterium tuberculosis H37RA. Pertussis toxin (200 ng/mouse) was injected i.p. on days 0 and 2. Mice were assessed daily for clinical signs by researchers blinded to experimental conditions and were assigned scores as follows: 0, no clinical signs; 1, paralysed tail; 2, paraparesis; 3, paraplegia; 4, paraplegia with forelimb weakness or paralysis; and 5, moribund or death. CDV-6883 and MRS-1754 dissolved in saline were injected via i.p. once daily from day 3 till the end of the study. Saline was given as vehicle control (100 μl/mouse). For histological staining, mice were anesthetized and perfused with PBS (pH 7.4), followed by 4% (w/v) paraformaldehyde. Spinal cord and the peripheral lymphoid tissues of EAE mice. Inhibition of A2B AR in spleen and lymph node (Fig. 1A, 1B), and the CNS (in the brain) is required for efficient EAE development, whereas A2AAR expression on nonimmune cells (most likely immune cells) covered that A2AAR expression on nonimmune cells (most likely immune cells) contributes to the onset of EAE. No significant change was found in the brain (Fig. 1C). However, in the spinal cord, A2AAR was upregulated from day 5, the preclinical stage of the disease, and the upregulation was maintained for the duration of the study. A2AAR was also upregulated in the lymph node, but due to the low expression level, it was not detected in the spleen. Interestingly, A2AR was downregulated in the spleen of EAE mice. Mills et al. (14) reported that A2AR−/− mice developed a more severe acute EAE phenotype. They discovered that A2AR expression on nonimmune cells (most likely in the CNS) is required for efficient EAE development, whereas A2AR expression on lymphocytes is essential for limiting the severity of the inflammatory response. So the downregulation of A2AR in spleen may partially contribute to the onset of EAE. No significant change was found in the brain (Fig. 1C). However, in the spinal cord, A2AR was upregulated from day 12, the onset stage of EAE (Fig. 1D). Taken together, the upregulation of A2B AR and A2AR after MOG 35–55 immunization indicates that these receptors may play a role in EAE pathogenesis.

Inhibition of A2B AR protects against EAE

We then used CVT-6883 and MRS-1754, two selective A2B AR antagonists (15), to treat MOG-immunized EAE mice. The drugs
were given once daily via i.p. injection from day 3 PI till the end of the experiment, and the control mice were injected with saline. When given at 1 or 3 mg/kg, CVT-6883 significantly reduced the peak severity and cumulative clinical score of EAE (Fig. 2A–C). MRS-1754 also significantly ameliorated the severity of EAE when given at 1 mg/kg (Fig. 2D). When given after the onset of EAE (day 13 PI), CVT-6883 still significantly reduced the clinical scores, although much less effectively compared with the prophylactic administration (Supplemental Fig. 1A). In contrast, A2B AR selective agonist BAY 60-6583 (16, 17) (Supplemental Fig. 1B) did not promote the development of EAE when given at 2 mg/kg (Supplemental Fig. 1C). However, at this dosage, BAY 60-6583 has been reported to elicit A2B AR-mediated biological responses (18, 19). The high level of endogenous adenosine in inflammatory conditions (20) might have masked the effect of the exogenous agonist. So knocking out the receptor (see below) or blocking the receptor with antagonists might be better ways to illustrate the function of A2B AR in EAE.

Histological examination of the spinal cords was performed at day 17. Compared with vehicle control, CVT-6883 (3 mg/kg) caused a dramatic reduction of leukocyte infiltration in spinal cord (Fig. 2E, 2G). Luxol fast blue staining also revealed less extensive demyelination in CVT-6883–treated mice than in controls (Fig. 2F, 2H). Leukocytes infiltrated into the CNS were further quantified by flow cytometry at day 17 PI. Results again confirmed that both the total CNS infiltrates and the CD4+ T cells were decreased after CVT-6883 treatment (Fig. 2I). We also found that Th17 and Th1 cells, the main pathogenic CD4+ T effector cells in EAE, were also significantly decreased in the CNS of CVT-6883–treated mice (Fig. 2J). These data indicate that blocking A2B AR inhibits in vivo differentiation of Th17 cells, and to a lesser extent the differentiation of Th1 cells. And such effect is not likely mediated by the ARs on T cells.

Inhibition of A2B AR reduces IL-6 production from DCs

The development of Th cells is controlled largely by factors derived from APCs, such as DCs. Our data showed that CVT-6883 reduces Th17 differentiation in vivo, but not in vitro, indicating A2B AR might affect Th17 differentiation indirectly by modulating upstream cytokine production from APCs. IL-6 is a proinflammatory cytokine critical for Th17 development (23). The concentration of IL-6 was significantly higher in EAE mice (day 10 PI), but CVT-6883 reduced serum IL-6 level almost to the same as naive mice (Fig. 4A). The mRNA of IL-6 gene in both the spleen and circulating blood (Supplemental Fig. 1D, 1E). However, the percentage of Th17 and Th1 cells in the CD4+ population was significantly lower in the spleen of CVT-6883–treated mice (Fig. 3A), which was close to the level of naive mice. Genes specific for the Th17 lineage, including Il17a, Il17f, Il22, and Il23r, which were upregulated in EAE, were reduced in CVT-6883–treated mice; and Ifn-γ, a Th1-related gene, was also reduced (Fig. 3B). Ag-specific Th17 response in CVT-6883–treated EAE mice was also significantly lowered, as shown by the measurement of IL-17a production from splenocytes after in vitro MOG restimulation (Fig. 3C). IFN-γ production was modestly reduced by CVT-6883 (Fig. 3D), but IL-4 and TGF-β were not altered (Fig. 3E, 3F).

ARs are expressed on the CD4+ T cells (21, 22). So we tested whether adenosine signaling directly affects T cell differentiation with the in vitro differentiation assay. NECA, a stable nonspecific analog of adenosine, did not affect Th1 differentiation, but very slightly reduced Th17 differentiation. However, CVT-6883 did not affect Th1 and Th17 differentiation, either alone or in combination with NECA (Fig. 3G), indicating the small effect of NECA on Th17 differentiation is not mediated by A2B AR. Taken together, these data indicate that blocking A2B AR inhibits in vivo differentiation of Th17 cells, and to a lesser extent the differentiation of Th1 cells. And such effect is not likely mediated by the ARs on T cells.

Blocking A2B AR inhibits in vivo but not in vitro Th17 differentiation

The upregulation of A2B AR occurred at the preclinical stage of EAE, so we speculated that A2B AR might play a role in T cell differentiation. In EAE mice, CVT-6883 did not significantly change the percentage of total leukocytes (CD45+), CD4+ T, CD8+ T, and B cells in both spleen and circulating blood (Supplemental Fig. 1D, 1E). However, the percentage of Th17 and Th1 cells in the CD4+ population was significantly lower in the spleen of CVT-6883–treated mice (Fig. 3A), which was close to the level of naive mice. Genes specific for the Th17 lineage, including Il17a, Il17f, Il22, and Il23r, which were upregulated in EAE, were reduced in CVT-6883–treated mice; and Ifn-γ, a Th1-related gene, was also reduced (Fig. 3B). Ag-specific Th17 response in CVT-6883–treated EAE mice was also significantly lowered, as shown by the measurement of IL-17a production from splenocytes after in vitro MOG restimulation (Fig. 3C). IFN-γ production was modestly reduced by CVT-6883 (Fig. 3D), but IL-4 and TGF-β were not altered (Fig. 3E, 3F).
clinical stage of the disease (Fig. 4D). In contrast, A2AAR was significantly downregulated after the induction of EAE (Fig. 4D). It has been reported that A2AAR activation in mature DCs shifts their cytokine profile from a proinflammatory to an anti-inflammatory one, with reduced IL-12, IL-6, and IFN-α production and augmented IL-10 production (8, 25, 26), which suggests an immunosuppressive role of A2AAR. So A2AAR downregulation in DCs may partially contribute to EAE pathogenesis.

In the in vitro IL-6 production assay, DCs isolated from lymph nodes of naive mice were stimulated with anti-CD40 (10 μg/ml) alone, or in combination with NECA (10 μM) and CVT-6883 at various concentrations (30, 100, or 300 nM). NECA dramatically enhanced IL-6 production from DCs on top of the anti-CD40 Ab, and CVT-6883 at 100 and 300 nM significantly blocked the NECA-stimulated IL-6 production (Fig. 4E). In vitro Th17 differentiation can be achieved by stimulating naive T cells with anti-CD3/CD28

FIGURE 2. A2BAR antagonists alleviate clinical symptoms of EAE. EAE mice were treated with CVT-6883 (0.3, 1, or 3 mg/kg/day) (A–C) or MRS-1754 (1 mg/kg/day) (D) once daily via i.p. injection from days 3 PI and were maintained on drug for the duration of the study. Control groups were given saline injection. Data are mean ± SEM (n = 10). ###p < 0.001 (two-way ANOVA test). (E) H&E staining and (F) Luxol fast blue staining of paraffin sections of spinal cords isolated from naive, vehicle, or CVT-6883 (3 mg/kg)-treated EAE mice on day 17. Scale bar, 100 μm. (G and H) Quantification of CNS infiltrates and the amount of demyelination presented in (E) and (F). Data are mean ± SEM. Three mice from each group were sacrificed, and 15 sections from each mouse were analyzed. **p < 0.01, ***p < 0.001 versus naive, ###p < 0.001 versus vehicle. (I and J) CNS infiltrates were isolated with 37–70% Percoll from EAE mice on day 17 PI, and the number of total infiltrates and CD4+ T (I), Th1, and Th17 cells (J) were analyzed by flow cytometry. Data are mean ± SEM (n = 6). *p < 0.05 versus vehicle.
Abs in the presence of IL-6 and TGF-β (Fig. 4F, second bar). Then we tried to mimic in vivo T cell differentiation by coculturing DCs with naive T cells. Resting DCs did not induce Th17 differentiation even in the presence of TGF-β, but when stimulated with anti-CD40, the percentage of IL-17+ cells dramatically increased (Fig. 4F, third and fourth bars). NECA further enhanced Th17 differentiation in the coculture (Fig. 4F, fifth bar). CVT-6883 did not block anti-CD40–induced Th17 differentiation, but almost completely blocked the effect of NECA (Fig. 4F, sixth and seventh bars).

FIGURE 3. CVT-6883 inhibits in vivo, but not in vitro Th17 differentiation. Splenocytes were isolated from EAE mice treated with CVT-6883 (3 mg/kg) or vehicle on day 10 PI and analyzed with flow cytometry. (A) Th1 and Th17 cells were analyzed by intracellular staining of IFN-γ and IL-17a, respectively, in the CD4+ gate. Data are mean ± SEM (n = 6), *p < 0.05 versus naive, **p < 0.01 versus vehicle. (B) qPCR analysis of Th1- and Th17-related gene expression in spleen. Data are mean ± SEM (n = 6), *p < 0.05 versus naive, **p < 0.01 versus vehicle. (C–F) Splenocytes from naive and EAE mice treated with CVT-6883 (3 mg/kg) were restimulated in vitro with MOG 35–55 for 48 h, and IL-17a (C), IFN-γ (D), IL-4 (E), and TGF-β (F) in supernatants were detected with ELISA. Data are mean ± SEM (n = 10), *p < 0.05 versus naive, **p < 0.05 versus vehicle. (G) Naive CD4+ T cells were induced to differentiate into Th1 or Th17 cells in vitro, in the presence of NECA (10 μM), CVT-6883 (100 nM), or the combination of the two. Data are mean ± SEM (n = 3), *p < 0.05 versus vehicle.

FIGURE 4. CVT-6883 reduces IL-6 production both in vivo and in vitro. (A) Serum was collected from naive or EAE mice treated with CVT-6883 (3 mg/kg) on day 10 PI, and IL-6 level was measured. (B and C) qPCR analysis of IL-6 gene expression in leukocytes from spleen (B) and lymph node (C). Data are mean ± SEM (n = 6), *p < 0.05, ***p < 0.001 versus naive, **p < 0.05, ****p < 0.001 versus vehicle. (D) DCs were isolated from lymph node of EAE mice at day 3, 6, and 9 PI, and the expression change of ARs was monitored with qPCR. Data are mean ± SEM (n = 5), *p < 0.05, **p < 0.01 versus naive. (E) CD11c+ DCs were stimulated with anti-CD40 (10 μg/ml) for 36 h alone, or in combination with NECA (10 μM) in the presence of CVT-6883 (30, 100, or 300 nM) or not, and IL-6 production was measured. Data represent mean ± SEM (n = 6), *p < 0.05, **p < 0.01, ***p < 0.001. (F) Th17 differentiation (IL-17+) was monitored with FACS analysis in the in vitro DC–T cell coculture system in the presence of NECA (10 μM), CVT-6883 (100 nM), or the combination of the two. Data are mean ± SEM (n = 3), *p < 0.01, ***p < 0.001.
The Gq–phospholipase Cβ–protein kinase C and P38 MAPK pathways mediate A2βAR-stimulated IL-6 production in DCs

The A2βAR has been reported to couple to various signaling pathways, including the Gs–cAMP–kinase A (PKA), the Gq–phospholipase C (PLC)–protein kinase C (PKC), and the MAPK pathways (27). To investigate which of these pathways might be involved in NECA-induced IL-6 production in DCs, DCs were pretreated with a number of inhibitors before the stimulation with NECA and anti-CD40 Ab. Adenylate cyclase inhibitor SQ22536 and PKA inhibitors H-89 did not reduce the accumulation of IL-6 in the supernatant induced by NECA (Fig. 5A), indicating that the Gs pathway was not involved. In contrast, both the PLCβ inhibitor U73122 and the PKC inhibitor Ro 31–8220 dose dependently inhibited NECA-induced IL-6 production (Fig. 5B). Among the three MAPK inhibitors, only the p38 inhibitor SB203580 displayed significant and dose-dependent inhibition of the effect of NECA; the ERK inhibitor U0126 and JNK inhibitor SP600125 showed no effect at concentrations up to 10 μM (Fig. 5C).

A2βAR-KO mice develop less severe EAE

To avoid the possible off-target effects of CVT-6883, and to further investigate the importance of A2βAR signaling during EAE development, EAE was induced with MOG35–55 immunization in A2βAR-KO mice and their wild-type (WT) littermate controls. The A2βAR-KO mice exhibited significantly reduced peak severity and cumulative disease score of EAE (Fig. 6A). Histological examination of the spinal cords at day 17 PI revealed a dramatic reduction of leukocyte infiltration (Fig. 6B, 6D) and less extensive demyelination (Fig. 6C, 6E) in the A2βAR-KO mice. In vivo T cell differentiation was assessed at day 10 PI. The percentage of Th17 and Th1 cells in the CD4+ population was significantly lower in the spleen of A2βAR-KO mice (Fig. 6F). Ag-specific Th17 and Th1 responses in A2βAR-KO EAE mice were also significantly reduced, as shown by the measurement of IL-17a and IFN-γ production from the splenocytes after in vitro MOG restimulation (Fig. 6G, 6H).

As demonstrated earlier that blockade of A2AR with CVT-6883 reduced NECA-stimulated IL-6 production from DCs, we tested whether A2βAR gene ablation affects IL-6 production from DCs. As shown in Fig. 6I, deletion of A2βAR almost completely abrogated NECA-induced IL-6 production from DCs, indicating that A2βAR is the main receptor on DCs that mediates adenosine-stimulated IL-6 production in vivo. The results generated from A2βAR-KO EAE mice were very similar to those from WT EAE mice treated with A2AR antagonist CVT-6883, indicating that A2βAR plays an important role in controlling DC functions and subsequent T cell differentiation and EAE development.

A2βAR is upregulated in MS patients, and CVT-6883 blocks NECA-induced IL-6 production from human DCs

By using clinical samples (Table I), we found that A2βAR expression was significantly increased in the PBLs of patients with RRMS than in those of age-matched controls (Fig. 7A). In contrast, the expression of A1AR and A2AR showed no substantial changes. Interestingly, A1AR, which was found to be upregulated in EAE mice, showed no significant change in RRMS patients (Fig. 7A), indicating a possible difference between the animal model and real disease. Next, we isolated DCs from PBMCs of healthy donors to see whether A2βAR signaling affects IL-6 production in human DCs. Similar to the results obtained with mouse DCs, we observed that NECA increased IL-6 production from human DCs, and this effect could be blocked by CVT-6883 (Fig. 7B). The production of IL-6 from human DCs also seems to be dependent on the PLCβ/PKC pathway, because PLCβ or PKC-specific inhibitors (U73122 or Ro 31–8220) completely abolished NECA-induced IL-6 release (Fig. 7C).

Discussion

The understanding of the pathogenesis of MS is still very limited, and MS remains a devastating disorder. Drugs currently used in MS patients include those treating attacks, such as corticosteroids, and those modifying the disease course, such as IFN-β and glatiramer acetate (28). With the approval of fingolimod, a S1P1 receptor agonist, the function of GPCRs in MS and their potential role as therapeutic targets for MS are being reappraised. In fact, many GPCRs are believed to participate in the pathogenesis of MS (3). In this study, we report that targeting A2βAR might provide a new way to treat MS.

![FIGURE 5.](http://www.jimmunol.org/)

The pathways participate in A2βAR-mediated IL-6 production in DCs. CD11c+ DCs were isolated and stimulated with anti-CD40 (10 μg/ml) and NECA (10 μM) for 36 h in the presence of various pathway inhibitors, and IL-6 production was measured. (A–C) The effect of adenylate cyclase inhibitor SQ 22536 and PKA inhibitor H89 (A); PLCβ inhibitor U73122 and PKC inhibitor Ro 31–8220 (B); or three MAPK inhibitors, SB 203580, U0126, and SP 600125 (C) on NECA-induced IL-6 production from activated DCs. Data are mean ± SEM (n = 3). **p < 0.01, ***p < 0.001 versus anti-CD40 alone, #p < 0.05, ##p < 0.01 versus NECA treatment.
Adenosine is an endogenous signaling molecule involved in ischemia, hypoxia, inflammation, and trauma (8). A1AR is believed to mediate the immunosuppressive roles of adenosine. A1AR-KO mice developed a severe form of EAE with extensive damage in CNS, and activation of A1AR with agonist adenosine amine congener attenuated demyelination in EAE mice (6). Recently, mice with a genetic deficiency of CD73, an enzyme critical for the generation of extracellular adenosine, were unexpectedly found to be highly resistant to EAE (9). The authors also found A2AAR antagonist SCH58261 protected mice from CNS injury in EAE. These results are quite controversial because A2AAR receptor is also recognized as a major mediator of anti-inflammatory responses (8, 29). And A2AAR agonists have already been clinically tested to treat inflammatory diseases such as COPD and diabetic foot ulcer (8). A recent paper indicated that although A2AAR expressed on the lymphocytes plays an anti-inflammatory role, the A2AAR in the CNS plays a proinflammatory role and is essential for EAE development (14), and this might explain the beneficial effect of A2AAR antagonist in EAE. The function of A3AR in MS or EAE is still not clear, although this receptor has been implicated to mediate the inhibition of TNF-α production by adenosine (30).

Activation of A2BAR generally requires adenosine levels exceed 10 μM, which is believed to occur in pathological conditions, including inflammation (20). Although its functions in MS or EAE are not clear, the proinflammatory role of A2BAR has been documented in asthma, COPD, and inflammatory bowel diseases (8, 11, 12). A2BAR selective antagonist CVT-6883 is under clinical investigation to treat COPD (8). Apart from ligand concentration, receptor density is also a key determinant in signaling. We found that A2BAR was significantly upregulated in the spleen and lymph node of EAE mice and the PBL samples from RRMS patients. These results suggested that A2BAR might mediate the peripheral immune cell development in EAE and MS. An interesting difference between A2BAR and A3AR was that A3AR was not upregulated in RRMS PBL samples like in EAE samples, suggesting a difference between human RRMS and MOG-EAE model, which has also been reported elsewhere (31). Focused on A2BAR, we found blocking the receptor with specific antagonists or knocking out the receptor effectively alleviated EAE severity.

Table I. Characteristics of patients and controls

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>RRMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Age (years)</td>
<td>40 ± 11.8</td>
<td>39.6 ± 12.5</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>10 (50%)</td>
<td>6 (60%)</td>
</tr>
<tr>
<td>Male</td>
<td>10 (50%)</td>
<td>4 (40%)</td>
</tr>
<tr>
<td>EDSS score</td>
<td>4.6 ± 2.4</td>
<td></td>
</tr>
<tr>
<td>Drug treatment</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Relevant information about human subjects recruited for this study. Sample size is total number of subjects; age is presented in years ± SEM; sex is presented in total number (with percentage of group in parentheses); expanded disability status scale (EDSS) score is presented in mean ± SEM. —, Not applicable.
production was measured. Data are mean ± SEM (n = 3). **p < 0.01 versus naive control, ***p < 0.001 versus NECA treatment.

Our in vivo and in vitro analysis of Th1 and Th17 percentage and cytokine production indicated that blocking or deleting A2BAR can block the development of Th17 cells in vivo, but such effect is not directly mediated by receptors on the T cells. So we hypothesized that A2BAR might be influencing the upstream factors that mediate Th17 differentiation. It is well established that TGF-β and IL-6 induce the differentiation of mouse naive T cells into Th17 by up-regulating RORγt (32). Recent study revealed that IL-6 blockade inhibited the induction of Th17 and thus the development of EAE (33). Because we found no change of TGF-β production from MOG-specific cells after CVT-6883 treatment, we focused our effort on IL-6. Serum level of IL-6 was reduced by CVT-6883 treatment; so was the mRNA level in spleen and lymph node. In periphery, IL-6 is mainly produced by APCs such as macrophages and DCs. We evaluated the expression change of ARs on DCs after EAE induction, and A2BAR was significantly upregulated in DCs at the early phase of EAE pathogenesis (day 6), which is the time critical for T cell priming by APCs. In the in vitro DC culture, CVT-6883 or A2BAR-KO was found to reduce NECA-induced IL-6 production. DC–T cell coculture experiment also revealed that NECA enhances Th17 differentiation by enhancing IL-6 production from DCs, and CVT-6883 treatment could inhibit such effect by blocking A2BAR on DCs. By using various chemical inhibitors, we found that the Gq–PLC–PKC and the p38 MAPK pathways are critically involved in A2BAR-mediated IL-6 production from DCs in both mice and humans. Very recently, Wilson et al. (34) also reported that A2BAR mediated DC IL-6 production and promoted Th17 differentiation in vitro.

In summary, to our knowledge, our results demonstrated for the first time that A2BAR plays pathogenic roles in EAE and MS mainly by stimulating IL-6 production from DCs and enhancing Th17 differentiation. Genetic deletion of A2BAR or blocking A2BAR with specific inhibitors, such as CVT-6883, an anti-COPD drug currently under clinical evaluation, could block IL-6 production, Th17 differentiation, and thus the clinical symptoms of EAE. Because relocation of known drugs or compounds is now considered as a main source of new drug discovery, our results not only revealed part of the mechanisms underlying the onset of MS, but also provided new therapeutic targets for the clinical intervention.

Acknowledgments

We thank Drs. Ben Li and Li Chen from GinkgoPharma for providing BAY 60-6583.

Disclosures

The authors have no financial conflicts of interest.

References

(A) CVT-6883 (3 mg/kg) was given once daily via i.p. injection after the onset of EAE (Day 13 PI) till the end of the experiment (Day 48 PI) and clinical scores were collected every day. Data are mean ± SEM (n=5). ### p < 0.001 (two-way ANOVA test). (B) Calcium mobilization assay. Chinese hamster ovary (CHO) cells overexpressing Ga16 and four indicated adenosine receptors were loaded with fluo4-AM and stimulated with BAY 60-6583. Calcium responses were recorded. Data are mean ± SEM (n=3). (C) BAY 60-6583 (2 mg/kg) was given once daily via i.p. injection from Day 3 PI and clinical scores were collected every day. Data are mean ± SEM (Vehicle, n=12; BAY 60-6583, n=9). (D and E) Surface staining of CD45+ cells (leukocytes), CD4+ T cells, CD8+ T cells and B220+ cells (B cells) isolated from spleen (D) and blood (E) of EAE mice treated with vehicle or CVT-6883. Data represent mean ± SEM (n=6).
Supplementary Table S1

Real-time PCR primers.

<table>
<thead>
<tr>
<th>Human</th>
<th>Sense (5’-3’)</th>
<th>Anti-sense (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adora1</td>
<td>TGCGAGTTCGAGAAGGTAC</td>
<td>GAGCTGCTTGCGGATTAGGA</td>
</tr>
<tr>
<td>Adora2a</td>
<td>GCTGGGATCAAGGACAGG</td>
<td>TCCCTTTAGAAGGAAGGCA</td>
</tr>
<tr>
<td>Adora2b</td>
<td>TCTTCTCGCCTGCTTGT</td>
<td>TTATACCTGAGCGGGACAG</td>
</tr>
<tr>
<td>Adora3</td>
<td>TCTTTACCACGCCTCC</td>
<td>CAATCCCACCAGGAATGAC</td>
</tr>
<tr>
<td>β-actin</td>
<td>CATGTACGTGTGCTATC</td>
<td>CTCCTTAATGTCACGCAG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mouse</th>
<th>Sense (5’-3’)</th>
<th>Anti-sense (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adora1</td>
<td>TCCTGGCTCTGCTTGTATTG</td>
<td>GGCTATCCAGGCTTGTCAC</td>
</tr>
<tr>
<td>Adora2a</td>
<td>GTCTTCACGCAGAGTTCCATC</td>
<td>GAATGCAGAACCCAGGCA</td>
</tr>
<tr>
<td>Adora2b</td>
<td>CCTTCTCTCGCCTGCTTC</td>
<td>AACGGAGTCAATCCAG</td>
</tr>
<tr>
<td>Adora3</td>
<td>CCGATACCTGCGGCTCAAG</td>
<td>GGAACGGAAGTG GCCAC</td>
</tr>
<tr>
<td>Il17a</td>
<td>TTAACTCCCTTGGCCGCAAA</td>
<td>CTTTCCCTCCGCATGAC</td>
</tr>
<tr>
<td>Il17f</td>
<td>TGCTACTGTTGATGTTGGGA</td>
<td>ATGCCTGCTCTGGACC</td>
</tr>
<tr>
<td>Il22</td>
<td>GTGAGAAGCTAACCCTCCATC</td>
<td>GTCTACCTCTGGTCATG</td>
</tr>
<tr>
<td>Il23r</td>
<td>ACACGTGGGAGCTACCTACA</td>
<td>AGCCTGGACCACATAAC</td>
</tr>
<tr>
<td>Il10</td>
<td>ATGAAACGCTACACACTGAC</td>
<td>CCATCTTTTGCCAGGTC</td>
</tr>
<tr>
<td>Il10</td>
<td>GCTCTTACTGACTGGCAG</td>
<td>GCAGCTCTAGGAGCAT</td>
</tr>
<tr>
<td>Il6</td>
<td>ACCACGGGCCTCCCTCATC</td>
<td>GAATGGCCATGCAAAAC</td>
</tr>
<tr>
<td>β-actin</td>
<td>GGCTGATTCCCTCCCATC</td>
<td>CCAAGGCTAAACATGCG</td>
</tr>
</tbody>
</table>