Novel Humanized and Highly Efficient Bispecific Antibodies Mediate Killing of Prostate Stem Cell Antigen-Expressing Tumor Cells by CD8$^+$ and CD4$^+$ T Cells

Anja Feldmann, Claudia Arndt, Katrin Töpfer, Slava Stamova, Franziska Krone, Marc Cartellieri, Stefanie Koristka, Irene Michalk, Dirk Lindemann, Marc Schmitz, Achim Temme, Martin Bornhäuser, Gerhard Ehninger and Michael Bachmann

J Immunol published online 8 August 2012
http://www.jimmunol.org/content/early/2012/08/08/jimmunol.1200341

Supplementary Material

http://www.jimmunol.org/content/suppl/2012/08/08/jimmunol.1200341.1.DC1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Novel Humanized and Highly Efficient Bispecific Antibodies Mediate Killing of Prostate Stem Cell Antigen-Expressing Tumor Cells by CD8+ and CD4+ T Cells

Anja Feldmann,*1 Claudia Arndt,*1 Katrin Töpfer,† Slava Stamova,* Franziska Krone,* Marc Cartellieri,* Stefanie Koristka,* Irene Michalk,* Dirk Lindemann,‡§ Marc Schmitz,‡ Achim Temme,† Martin Bornhäuser,§ Gerhard Ehninger,§ and Michael Bachmann*‡§

Prostate cancer is the most common noncutaneous malignancy in men. The prostate stem cell Ag (PSCA) is a promising target for immunotherapy of advanced disease. Based on a novel mAb directed to PSCA, we established and compared a series of murine and humanized anti-CD3–anti-PSCA single-chain bispecific Abs. Their capability to redirect T cells for killing of tumor cells was analyzed. During these studies, we identified a novel bispecific humanized Ab that efficiently retargets T cells to tumor cells in a strictly Ag-dependent manner and at femtomolar concentrations. T cell activation, cytokine release, and lysis of target cells depend on a cross-linkage of redirected T cells with tumor cells, whereas binding of the anti-CD3 domain alone does not lead to an activation or cytokine release. Interestingly, both CD8+ and CD4+ T cells are activated in parallel and can efficiently mediate the lysis of tumor cells. However, the onset of killing via CD4+ T cells is delayed. Furthermore, redirecting T cells via the novel humanized bispecific Abs results in a delay of tumor growth in xenografted nude mice. The Journal of Immunology, 2012, 189: 000–000.

Prostate cancer (PCa) is the most frequently diagnosed noncutaneous cancer among American men. In 2010, >200,000 new cases and 32,000 deaths of PCa patients were estimated in the United States (1). Whereas patients with localized PCa are often successfully treated with radical prostatectomy and radiotherapy, effective therapeutic options for patients with metastatic hormone-refractory PCa are limited (2–5). Chemotherapy of patients with hormone-refractory PCa has only palliative effects (6). Thus, new therapeutic options are urgently needed, especially for the treatment of patients with advanced PCa.

Immunotherapy is an attractive approach for the treatment of minimal residual disease and micrometastases. For immunotherapy of human PCa, the prostate stem cell Ag (PSCA) is a promising target (7). PSCA is a GPI-anchored cell-surface protein that is overexpressed in human prostate tumors, including metastatic and hormone-refractory PCa (8). PSCA expression is detected in ∼90% of primary PCa, as well as in bone, lymph node, and liver metastases (9, 10). Furthermore, the PSCA expression level positively correlates with advanced clinical stage of PCa (9, 11). In addition to PCa, PSCA is also upregulated in bladder and pancreatic cancers (12, 13).

The clinical application of murine Abs commonly leads to a human anti-mouse Ab response. Such human anti-mouse Abs can mediate the elimination of the administered Abs and cause un-
wanted adverse effects in patients (26, 27). Murine Abs can be humanized to overcome this side effect, for example, by grafting of the murine CDRs into the best fitting human framework regions (FWRs) (28, 29).

In this article, we describe, to our knowledge, the first humanized single-chain bispecific anti-PSA–anti-CD3 Ab: The Ab was selected from a series of novel murine and humanized single-chain bispecific Abs that all derived from the novel murine monoclonal anti-PSA Ab MB1. The selected novel humanized bispecific Ab is functional even at femtomolar concentrations, and thus at an almost 1000-fold lower concentration than previously described murine bispecific anti-CD3–anti-PSA Abs based on the PSCA mAb 7F5 (30–33). We show that the novel single-chain bispecific anti-CD3–anti-PSA Ab is capable of redirecting both CD8+ and CD4+ T cells to PSCA+ tumor cells in vitro and in experimental mice. Both redirected CD8+ and CD4+ T cells efficiently mediate the killing of target cells. However, the onset of killing via CD4+ T cells is delayed, although both CD8+ and CD4+ T cells are activated simultaneously.

Materials and Methods

Isolation of human PBMCs and T cell subpopulations

Human PBMCs were isolated either from buffy coats supplied by the German Red Cross (Dresden, Germany) or from fresh blood of healthy donors after obtaining oral and written consent by gradient centrifugation over BioCult (Biochrom, Berlin, Germany). Using the CD8+ or CD4+ T Cell Isolation Kit (Miltenyi Biotec, Bergisch Gladbach, Germany), we isolated CD8+ or CD4+ T cells, respectively, from human PBMCs. The Pan T Cell Isolation Kit (Miltenyi Biotec) was used to isolate untouched T cells from PBMCs. Untouched CD8+, CD4+, or pan (1 × 10^6/ml) T cells were cultured overnight in complete RPMI 1640 medium (30 supplemented with 50 U/ml IL-2 (ImmunoTools, Friesoythe, Germany). Preactivated T cells, which permanently express PSCA after transduction (30), were cultured in complete RPMI 1640 containing 100 U/ml IL-2 and 50 mg/ml anti-CD3 mAb OKT3 (eBioscience, San Diego, CA) for 5 d. Afterward, the cells were kept in fresh complete RPMI 1640 medium supplemented with 50 U/ml IL-2 for an additional 3 d.

Cell lines

The PSCA+ PCa cell line PC3 wild type (wt) and the PC3-PSA cells, which permanently express PSA after transduction (30), were cultured in complete RPMI 1640 medium. The bladder cancer cell line RT4 and HT-1376 that naturally express PSA were grown in complete RPMI 1640.

Construction and analysis of single-chain bispecific Abs

The construction of the murine single-chain bispecific Abs scBsDb CD3xPSCA(7F5) and scBsTaFv CD3-PSCA(7F5) derived from the anti-CD3 mAb MT-301 and anti-PSA mAb 7F5 were previously described (30). The novel anti-PSA mAb MB1 was established from hyperimmunized mice using the hybridoma technique (30, 33). The mice were immunized with murine cells that were transduced with the human PSA reading frame. For amplification of the H and L chain sequences of the anti-PSA mAb MB1, cDNA was prepared from the hybridoma line as described previously (30). Based on the novel anti-PSA mAb MB1, the anti-CD3 mAb MT-301 (30–32), and the anti-La mAb 5B9 (M. Bachmann, unpublished observations), we cloned a series of bispecific Abs of which we selected the murine scBsTaFv PSA(C司马(1)-CD3, humanized scBsTaFv CD3-PSCA(7F5), and humanized scBsTaFv CD3-PSA(7F5) for this report. The latter one serves as negative control. The structure of these single-chain bispecific Abs is shown schematically in Supplemental Fig. 1A.

These constructs were cloned as follows: The V_H and V_L domains of the anti-PSA mAb MB1 were amplified from the cDNA using the primer pair #1 (5′-GGGCCGGCAGCTGGCACTACAAGAAGTGAGCTCGAGCGTG-3′) and the V_H domain with the primer pair #3 (5′-GGGCCGGCAGCTGGCACTACAAGAAGTGAGCTCGAGCGTG-3′) and the V_L domain with the primer pair #5 (5′-GGGCCGGCAGCTGGCACTACAAGAAGTGAGCTCGAGCGTG-3′). The scFv PSA(C司马(1)) was fused by PCR in the order V_H-GS-V_L and cloned into the vector pSecTag2B and pSuperTag2B, respectively, and afterward cloned via Apal into the vector pScetag2B to construct murine scBsTaFv PSA(C司马(1)-CD3) Cram1.

The humanization of the Abs was achieved by CDR grafting as schematically shown in Supplemental Fig. 1B. Furthermore, the Ab sequences were optimized for protein expression. The in silico developed sequences were synthesized by PCR. Alternatively, the whole sequence was synthesized. Overlapping oligonucleotides or whole gene sequences were obtained by Eurofins MWG Operon (Ebersberg, Germany). The sequences encoding the humanized scFv CD3, PSA(C司马(1)), or 5B9 were synthesized. Afterward, scFv CD3 was cloned via NotI/SfiI into the vector pScetag2B, and secondly, scFv PSA(C司马(1)) or scFv 5B9 was cloned via Xhol/Apal into the same vector. The resulting vectors encode the humanized scBsTaFv CD3-PSCA(C司马(1)) or the humanized control scBsTaFv CD3-PSA(7F5).

For permanent production of murine scBsTaFv PSA(C司马(1)-CD3), humanized scBsTaFv CD3-PSCA(C司马(1)), or humanized scBsTaFv CD3-PSA(7F5), 3T3 cells were transduced using a lentiviral packaging system. Therefore, the sequence of the recombinant Ab including the N-terminal Ig leader and the C-terminal myc and histidine (his)-tag were cut out of pScetag2B with Nhel and MsiI, and cloned into the lentiviral vector p6NST50, which was digested with Xbal and KsgAI. All the restriction enzymes were purchased from Fermentas (St. Leon-Rot, Germany).

The purification and analysis of the isolated his-tagged recombinant Abs from cell culture supernatants were performed as described previously (30). Protein analysis was performed by SDS-PAGE and immunoblotting. After transfer of proteins to nitrocellulose membrane, isolated Abs were detected by a mouse anti-penta-his mAb (Qiagen, Hilden, Germany) and an anti-mouse IgG conjugated with alkaline phosphatase (Dianova, Hamburg, Germany) using BCIP/NBT (Roche Diagnostics, Mannheim, Germany) as substrate. To analyze the Ab binding properties, we stained the recombinant Abs and detected them using anti-myFtC mAb (Miltenyi Biotec) in a FACS caliber flow cytometer (BD Biosciences, Heidelberg, Germany) as described previously (30). Kp values were determined as described previously (30).

Size exclusion fast protein liquid chromatography

Size exclusion fast protein liquid chromatography was performed at a flow rate of 0.5 ml/min by using Superose 200 (Sigma-Alrich Chemie, Steinheim, Germany) as gel filtration medium. The column was connected to a BioLogic DuoFlow Chromatography System (Bio-Rad Laboratories, München, Germany) and equilibrated with PBS. To estimate the size of recombinant proteins, we calibrated the column using a filtration marker kit (Sigma Aldrich Chemie, catalog no. MWGF200) that contains marker proteins with molecular masses ranging from 12 to 200 kDa.

Cytotoxicity assay

The assay was performed as described previously (30). Statistical significance of differences in specific tumor cell lysis was analyzed by one-way ANOVA and Bonferroni multiple-comparison test using GraphPad Prism software. The p values <0.05 were considered significant.

Degranulation assay

In one well of a round-bottom 96-well plate, 1 × 10^5 freshly isolated CD8+ or CD4+ T cells in the presence or absence of 30 pmol/ml recombinant Abs. In addition, 5 μl anti-CD107a/PE mAb (BD Biosciences) and complete RPMI 1640 were pipetted to each well (final volume of 200 μl). After 1 h of incubation at 37 °C, cells were harvested and the cultures were analyzed using a MACSQuant Analyzer (Miltenyi Biotec). Beforehand, the cells were stained with anti-CD4/VioBlue (Miltenyi Biotec), anti-CD8/PE-Cy5, and anti-CD3/FITC mAbs (BD Biosciences).

T cell activation assay and cytokine ELISA

After a 5- and/or 20-h incubation of 5 × 10^5 freshly isolated CD4+ or CD8+ T cells in the presence or absence of...
30 or 90 pmol/ml recombinant Abs, the cells were spun down and the supernatants were separated. T cells of one triplet were pooled, stained with anti-CD25/PE, anti-CD69/PE-Cy5, and anti-CD4/FITC, anti-CD8/FITC, or anti-CD3/FITC mAb (BD Biosciences) and measured in the flow cytometer. The release of IFN-γ or TNF by T cells was analyzed by ELISA using the OptEIA Human IFN-γ or TNF ELISA Kits (BD Biosciences).

Statistical significance of differences in amounts of secreted cytokines was analyzed by one-way ANOVA and Bonferroni multiple-comparison test using GraphPad Prism software. The p values <0.05 were considered significant.

Intracellular TNF staining

CD4+ and CD8+ T cells were cultured with PSCA+ PC3 wt or PC3-PSCA cells in absence or presence of 30 pmol/ml humanized CD3-PSCA(MB1) or humanized control CD3-5B9. As positive control, T cells were additionally activated with anti-CD3/anti-CD28 (aCD3/aCD28)-coated Dynabeads (Invitrogen, Karlsruhe, Germany) at a bead-to-cell ratio of 1:10. After 4 h of incubation at 37°C, brefeldin A (Sigma-Aldrich Chemie) was added to each well to a final concentration of 1 µg/ml. After additional 20 h of cocultivation, cells of triplicates were pooled and stained extracellularly with anti-CD4/FITC or anti-CD8/FITC (BD Biosciences), respectively. For intracellular TNF staining, cells were subsequently fixed with 4% paraformaldehyde (Sigma-Aldrich Chemie) for 15 min on ice and thereafter incubated with anti-TNF/PE mAb (BD Biosciences). Cells incubated with respective isotype control mAb served as control. Flow cytometry analysis was performed on a FACSCalibur (BD Biosciences).

NMRI (nu/nu) mice xenograft tumor model

Eight-week-old NMRI (nu/nu) mice were kept under standardized environmental conditions and received autoclaved food, water, and bedding. All experiments were performed according to the German animal protection law with permission from the responsible local authorities (Sächsische Landesdirektion). Three groups of eight mice were distinguished. PC3-PSCA tumor cells (3×10^6) only were injected s.c. at the right flank of each mouse in the first group. A mix of PC3-PSCA tumor cells (3×10^6) and human PBMCs (6×10^6) in PBS was injected s.c. at the right flank of each mouse of the other groups. In addition, each mouse of the second group received 10 µg humanized scBsTaFv CD3-PSCA(MB1) (day 0). At days 1, 2, and 3, 30 µg humanized scBsTaFv CD3-5B9 and humanized scBsTaFv CD3-PSCA(MB1) were injected into the tail vein of each mouse of groups 2 and 3, respectively. The tumor growth was measured continuously with a caliper in two perpendicular dimensions. Mice were sacrificed by CO₂ gas overdose when tumor size exceeded 18 mm in one direction or when the animals showed pathological symptoms. The tumor area was calculated according to the formula, a×b×π/4. Statistical analysis of all groups was performed by one-way ANOVA and a post hoc Tukey’s multiple-comparison test (significance p < 0.05).

Results

Development and functional comparison of murine and humanized anti-CD3–anti-PSCA Ab fragments based on the novel anti-PSCA mAb MB1

Based on the novel anti-PSCA mAb MB1, a series of murine and humanized versions of single-chain bispecific anti-CD3–anti-PSCA Abs were established and characterized. These various bispecific Abs differed with respect to the order of their Ab domains, the order of the respective V₃₄ or V₅₃ chains within the Ab domains, the linker sequences, and size (data not shown). The structure of the murine and humanized single-chain bispecific anti-CD3–anti-PSCA Abs, which we selected and present in more detail later, is schematically summarized in Supplemental Fig. 1A. They were selected because of their improved expression, stability, and/or functionality. The chosen murine and humanized anti-CD3–anti-PSCA(MB1) Abs were both constructed in the scBsTaFv format, but differ with regard to orientation of CD3 and PSCA domains, V₃₄/V₅₃ arrangement, and linker length in the PSCA domain. In addition, a humanized single-chain bispecific control Ab was established in the scBsTaFv format that targets the intracellular protein La/SS-B (34). This control Ab is based on the anti-La mAb 5B9 (M. Bachmann, unpublished observations).

Humanization was achieved by CDR grafting as schematically summarized in Supplemental Fig. 1B. Sequence alignments revealed that the newly generated V₅₃ and V₃₄ domains have a 100% homology in the FWRs to the most similar human V genes in germline configuration at amino acid level (Table I). Regarding the CDRs, the grade of homology ranged between 35 and 60% (Table I). The humanized anti-CD3 V₃₄ and anti-CD3 V₅₃, anti-PSCA(MB1) V₅₃, and anti-PSCA(MB1) V₃₄ domains have an 80, 74, 84, and 81% identity to the corresponding murine counterparts at amino acid level, respectively. The novel single-chain bispecific Abs were termed as murine scBsTaFv PSCA(MB1)-CD3, humanized scBsTaFv CD3-PSCA(MB1), and humanized scBsTaFv CD3-5B9.

After cloning, permanent cell lines were established for expression of the Abs. Affinity-purified Abs were analyzed by SDS-PAGE and staining with Coomassie brilliant blue (Supplemental Fig. 2AII) or immunoblotting (Supplemental Fig. 2AIII). All three scBsTaFv Abs were expressed and purified as full-length proteins with the expected molecular mass of ~60 kDa (Supplemental Fig. 2AII). As expected, all novel single-chain bispecific Abs bound to CD3 on T cells (Supplemental Fig. 2B, upper panel). Furthermore, the murine scBsTaFv PSCA(MB1)-CD3 and the humanized scBsTaFv CD3-PSCA(MB1) also bound to PSCA on PSCA+ tumor cells, whereas the control humanized scBsTaFv CD3-5B9 failed to bind to PSCA-expressing tumor cells (Supplemental Fig. 2B, lower panel).

The Kᵩ values for the CD3 domain of the murine scBsTaFv PSCA(MB1)-CD3 and the humanized scBsTaFv CD3-PSCA (MB1) were estimated with 4×10⁻⁷ mol/l and 5×10⁻⁷ mol/l, respectively. For the PSCA domain, we estimated Kᵩ values of 6×10⁻⁷ mol/l and 9×10⁻⁷ mol/l for the murine scBsTaFv PSCA(MB1)-CD3 and the humanized scBsTaFv CD3-PSCA (MB1), respectively.

It has been described that bispecific Abs tend to form dimers. Therefore, size exclusion chromatographies were performed (Supplementary Fig. 2CII).

<table>
<thead>
<tr>
<th>Humanized scFv</th>
<th>Human V gene</th>
<th>FWR1</th>
<th>CDRI</th>
<th>FWR2</th>
<th>CDRII</th>
<th>FWR3</th>
<th>CDRIII</th>
<th>Murine scFv</th>
<th>Homology (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>huPSCAMB1 V₃₄</td>
<td>IGHV3-11*04</td>
<td>100</td>
<td>60</td>
<td>100</td>
<td>53</td>
<td>100</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>huPSCAMB1 V₅₃</td>
<td>IGKV1-27*01</td>
<td>100</td>
<td>55</td>
<td>100</td>
<td>43</td>
<td>100</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>huCD3MT-301 V₃₄</td>
<td>IGHV1-18*01</td>
<td>100</td>
<td>40</td>
<td>100</td>
<td>35</td>
<td>100</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>huCD3MT-301 V₅₃</td>
<td>IGKV3-11*04</td>
<td>100</td>
<td>55</td>
<td>100</td>
<td>43</td>
<td>100</td>
<td>74</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The murine scFvs were aligned to the NCBI human V genes database using IgBlast (http://www.ncbi.nlm.nih.gov/igblast). The best fitting human V gene was identified and the FWR of the human V gene grafted onto the murine scFvs. Homology (%) between the resulting humanized scFvs and the best fitting human V genes in germline configuration for the different regions is given. In the last column, the homology (%) at amino acid level between the humanized and the original murine scFv is indicated.
plemental Fig. 3) to estimate the amount of dimers present in purified Ab fractions of the humanized scBsTaFv CD3-PSCA(MB1). In freshly isolated Abs, we did not detect protein dimers (data not shown). An Ab sample that was stored for 6 mo at 4˚C contained a small fraction (~7%) with an apparent m.w. of a dimer of the humanized scBsTaFv CD3-PSCA(MB1).

The capability of the novel murine and humanized anti-CD3–anti-PSCA(MB1) bispecific Abs to lyse PSCA⁺ tumor cells was compared with previously described murine anti-CD3–anti-PSCA(7F5) bispecific Abs, which were cloned from the anti-PSCA mAb 7F5 (30). For this purpose, preactivated T cells were cocultured with chromium-labeled PSCA⁺ PC3-PSCA tumor cells (E:T ratio of 20:1) in the presence of humanized scBsTaFv CD3-PSCA(MB1), murine scBsTaFv PSCA(MB1)-CD3, murine scBsDb CD3xPSCA(7F5), or murine scBsTaFv CD3-PSCA(7F5) in different concentrations. The average of specific lysis and the SEM are shown (x, data not determined). Data represent one donor out of three.

![Graph](http://example.com/graph1.png)

FIGURE 1. Functional comparison of murine and humanized anti-CD3-anti-PSCA bispecific Abs. Functional efficacy of murine and humanized anti-CD3-anti-PSCA Abs was analyzed in a standard chromium release assay. Pre-activated T cells were cocultured with PSCA⁺ PC3-PSCA tumor cells (E:T ratio of 20:1) in the presence of humanized scBsTaFv CD3-PSCA(MB1), murine scBsTaFv PSCA(MB1)-CD3, murine scBsDb CD3xPSCA(7F5), or murine scBsTaFv CD3-PSCA(7F5) in different concentrations. As shown in Fig. 1, all bispecific Ab constructs were able to redirect T cells to kill PC3-PSCA tumor cells. Of most interest, tumor cell lysis was already detectable at 900 fmol/l of the humanized scBsTaFv CD3-PSCA(MB1) and at 4 pmol/l of the murine scBsTaFv PSCA(MB1)-CD3. In contrast, for redirection of T cells with the murine scBsDb CD3xPSCA(7F5) or the murine scBsTaFv CD3-PSCA(7F5), at least 400 and 900 pmol/l, respectively, were required. At maximum concentrations, the humanized scBsTaFv CD3-PSCA(MB1) mediated a specific tumor cell lysis of 94% and the murine scBsTaFv PSCA(MB1)-CD3 of 82%, whereas in the presence of the murine anti-CD3-anti-PSCA(7F5) bispecific Abs, only ~60% of PSCA⁺ tumor cells were eliminated.

According to Fig. 2A, the humanized scBsTaFv CD3-PSCA (MB1) mediated a significant specific tumor cell lysis at E:T ra-
tios between 1:1 and 20:1. Tumor cell lysis is strictly dependent on T cell cross-linkage to the target cell as: 1) the humanized scBsTaFv CD3-5B9 was not able to redirect preactivated T cells to PC3-PSCA tumor cells (Fig. 2A), and 2) the humanized scBsTaFv CD3-PSCA(MB1) was not able to mediate the killing of PSCA⁺ PC3wt cells (Fig. 2B). These data show that the expression of the target Ag is necessary for the induction of target cell lysis.

FIGURE 3. Activation of CD4⁺ and CD8⁺ T cells dependent upon their cross-linkage with PSCA⁺ tumor cells via humanized scBsTaFv CD3-PSCA (MB1). Unstimulated CD4⁺ or CD8⁺ T cells were cocultured with PSCA⁺ PC3-PSCA tumor cells (PSCA⁺) without any Ab (transparent graph with dashed line), in the presence of the negative control humanized scBsTaFv CD3-5B9 (transparent graph with gray line) or the humanized scBsTaFv CD3-PSCA (MB1) (transparent graph with black line). In addition, PSCA⁺ PC3 wt cells were incubated in the presence of T cells with or without humanized scBsTaFv CD3-PSCA(MB1) as control. After 5 and 20 h of incubation, the cells were stained with anti-CD25/PE, anti-CD69/PE-Cy5, and anti-CD4/FITC, or anti-CD8/FITC mAbs. The expression of the activation markers CD69 (A) and CD25 (B) on CD4⁺ or CD8⁺ T cells was analyzed by flow cytometry. IgG isotype controls were used to define gates. In case of CD4⁺ T cells, marker M1 was set to CD25⁺ cells. The mean fluorescence intensity and the percentage of the CD4⁺ or CD8⁺ T cells stained positive for CD69 or CD25 on their cell surface are shown in the M1 region in the histograms. Data shown were obtained from one donor and are representative of data from four donors.
Furthermore, we could demonstrate that humanized scBsTaFv CD3-PSCA(MB1) can specifically recruit T cells for efficient killing of various bladder carcinoma cell lines that naturally express PSCA on their cell surface (Fig. 2B).

Taken together, we developed novel murine and humanized bispecific anti-PSCA–anti-CD3 Abs. Both the murine scBsTaFv PSCA(MB1)-CD3 and the humanized scBsTaFv CD3-PSCA (MB1) efficiently redirect T cells to kill PSCA-expressing tumor cells in an Ag-specific manner. Interestingly, the humanized version of the murine scBsTaFv PSCA(MB1)-CD3 had slightly improved killing capabilities. The humanized scBsTaFv CD3-PSCA (MB1) efficiently redirected T cells to tumor cells even at a fem-

FIGURE 4. Inflammatory cytokine production of CD4+ or CD8+ T cells after their cross-linkage with PSCA+ tumor cells via humanized scBsTaFv CD3-PSCA(MB1). (A) CD4+ or CD8+ T cells from three different donors were cultured with the PSCA+ PC3-PSCA cells in the absence or presence of the control humanized scBsTaFv CD3-5B9 or the humanized scBsTaFv CD3-PSCA(MB1). In addition, PSCA− PC3 wt cells were incubated with or without the humanized scBsTaFv CD3-PSCA(MB1) in the presence of T cells from donor 3 as a control. After 20 h of incubation, the concentration of TNF (A I) and IFN-γ (A II) in the supernatants was measured by ELISA. The average of the cytokine concentrations and the SEM of triplets are shown (x, not detectable). (B) Intracellular TNF staining of CD4+ and CD8+ T cells after cocultivation with PC3-PSCA cells (B I) or PSCA− PC3 wt cells (B II) (E:T ratio of 10:1) in the absence or presence of humanized scBsTaFv CD3-PSCA(MB1) or humanized control CD3-5B9. As positive control, T cells were stimulated with aCD3/aCD28 beads. Percentages in dot plots indicate number of TNF+ CD4+ or CD8+ T cells. Quadrant was adjusted to appropriate isotype control. Data from one representative donor are shown.
tomolar concentration and, thus, at an almost thousand-fold lower concentration than the previously described bispecific Abs based on the anti-PSCA mAb 7F5.

Activation and cytokine release of CD4+ and CD8+ T cells dependent upon their cross-linkage with PSCA+ tumor cells by humanized scBsTafv CD3-PSCA(MB1)

In addition, the ability of humanized scBsTaFv CD3-PSCA(MB1) to activate CD4+ or CD8+ T cells in a target-dependent manner was analyzed in a T cell activation assay. Unstimulated CD4+ or CD8+ T cells from healthy donors were cocultured with PSCA-expressing PC3-PSCA tumor cells either in the absence of any Ab or in the presence of the humanized scBsTaFv CD3-PSCA(MB1). As a negative control, the humanized scBsTaFv CD3-5B9 was used. In addition, PC3 wt cells that do not express PSCA on the cell surface were incubated with or without the humanized scBsTaFv CD3-PSCA(MB1) in the presence of CD4+ or CD8+ T cells. After 5 and 20 h of incubation, the surface expression of the activation markers CD69 and CD25 was measured by FACS analysis. A significant portion of CD4+ T cells isolated from human donors was found to have a low-to-intermediate expression of CD25 per se. For analysis of the CD25 upregulation on CD4+ T cells, we therefore defined only the CD4+CD25high T cell population as CD25+ T cells. CD4+CD25mid T cells were considered as CD25+ cells. According to the results shown in Fig. 3, the humanized scBsTaFv CD3-PSCA(MB1) induced an upregulation of both activation markers on CD4+ as well as on CD8+ T cells after 20 h. The expression of the early activation marker CD69, but not of the late activation marker CD25, was already increased after 5 h (Fig. 3A, 5 h). In contrast, CD69 and CD25 were not upregulated on T cells in the presence of the humanized control scBsTaFv CD3-5B9 or in case PSCA+ PC3 tumor cells were used as target cells (Fig. 3). The representative data for one of four donors are shown in Fig. 3.

To analyze whether the cross-linkage of CD4+ or CD8+ T cells with PSCA+ tumor cells via the humanized scBsTaFv CD3-PSCA(MB1) leads to the production of proinflammatory cytokines, the concentration of TNF and IFN-γ was determined in the supernatants of the T cell activation assay by ELISA. In general, the humanized scBsTaFv CD3-PSCA(MB1) mediated the release of TNF and IFN-γ from CD4+ and CD8+ T cells in the presence of PSCA+ tumor cells, but the estimated amounts of released TNF or IFN-γ substantially differed between different donors (Fig. 4A, donors 1–3). Furthermore, it is shown (Fig. 4A) that CD8+ T cells from donors 1 and 2 released more TNF and IFN-γ than the corresponding CD4+ T cells, whereas CD4+ T cells dominated the cytokine release in donor 3.

To analyze whether secreted TNF originates from T cells or tumor cells, we additionally measured intracellular TNF production (Fig. 4B). As shown by intracellular cytokine staining, TNF was only detectable in CD4+ and CD8+ T cells after cultivation with PC3-PSCA cells in the presence of humanized scBsTaFv CD3-PSCA(MB1) (Fig. 4B). Moreover, we could demonstrate that Ab-mediated induction of TNF expression is less pronounced compared with TNF production after unspecific stimulation of T cells with aCD3/aCD28 beads. In any case, there was no cytokine production in the presence of the control humanized scBsTaFv CD3-5B9 (Fig. 4A, donors 1–3; Fig. 4BI, PC3-PSCA) or PSCA− tumor cells representatively shown for one donor (Fig. 4A, donor 3, wt; Fig. 4BII, PC3wt).

According to these results, the humanized scBsTaFv CD3-PSCA(MB1) induced the activation of CD4+ and CD8+ T cells in the presence of PSCA-expressing tumor cells as shown by the upregulation of CD4+ and CD8+ T cells after cultivation with PC3-PSCA cells in the presence of humanized scBsTaFv CD3-PSCA(MB1) (Fig. 5). T cell activation and cytokine release strictly depend on the presence of PSCA on the surface of the target cells and cross-linkage of effector and tumor cells.
cells via the humanized scBsTaFv CD3-PSCA(MB1). Thus, an Ag-unspecific T cell activation or cytokine release was not observed in the in vitro assays.

Ag-specific killing of PSCA+ tumor cells by CD4+ and CD8+ T cells via humanized scBsTaFv CD3-PSCA(MB1)

By performing a chromium release assay, we investigated whether the humanized scBsTaFv CD3-PSCA(MB1) can also trigger unstimulated CD4+ or CD8+ T cells to lyse PSCA+ tumor cells. The average of specific tumor cell lysis of three different donors is shown in Fig. 5. According to the obtained data, CD8+ and CD4+ T cells were able to kill PC3-PSCA tumor cells via humanized scBsTaFv CD3-PSCA(MB1) with similar efficiency. After 20 h of incubation at an E:T ratio of 10:1, both CD4+ and CD8+ T cells mediated a significant tumor cell lysis of 67 and 65%, respectively (Fig. 5B), but obviously CD8+ T cells reacted earlier than CD4+ T cells (Fig. 5A). After 5 h of incubation, killing effects of CD4+ and CD8+ T cells differed significantly in presence of humanized scBsTaFv CD3-PSCA(MB1). CD8+ T cells already killed, on average, 19% of the tumor cells, whereas almost no specific lysis was determined in the presence of CD4+ T cells (Fig. 5A). Upon incubation of T cells with PC3-PSCA tumor cells in the presence of the humanized scBsTaFv CD3-5B9, no specific tumor cell lysis was observed. Furthermore, PSCA− PC3 wt cells were not eliminated by both T cell subpopulations in the presence of the humanized scBsTaFv CD3-PSCA(MB1).

To analyze whether the killing mechanism correlates with the degranulation of T cells, we measured the exposure of the granular membrane protein CD107a on the surface of CD4+ and CD8+ T cells by flow cytometry. After 20-h incubation of T cells and PC3-PSCA tumor cells with humanized scBsTaFv CD3-PSCA(MB1), an increase of CD107a+ T cells was detected in comparison with incubation in the absence of any Ab or the presence of the humanized scBsTaFv CD3-5B9 control Ab (Fig. 6B). Under these conditions, no striking differences between CD4+ and CD8+ T cells were observed (Fig. 6B, scBsTaFv CD3-PSCA[MB1]). At an earlier time point (5-h cocultivation), however, more CD8+ T cells presented the degranulation marker on their cell surface than CD4+ T cells (Fig. 6A, scBsTaFv CD3-PSCA[MB1]). In contrast, upon the incubation of T cells and PC3-PSCA tumor cells with the humanized scBsTaFv CD3-5B9 control Ab, the CD107a signal did not increase in comparison with the control without any Ab (Fig. 6).

Thus, both redirected CD8+ and CD4+ T cells are activated by cross-linkage with target cells via the bispecific Ab, and both types of redirected T cells can mediate the lysis of the tumor cells.

FIGURE 6. Degranulation of CD4+ and CD8+ T cells after their cross-linkage with PSCA+ tumor cells via humanized scBsTaFv CD3-PSCA(MB1). Unstimulated CD4+ or CD8+ T cells were cultured with PSCA+ PC3-PSCA tumor cells in the presence or absence of the control humanized scBsTaFv CD3-5B9 or the humanized scBsTaFv CD3-PSCA(MB1). After 5 (A) or 20 h (B) of incubation, the degranulation marker CD107a was analyzed on the cell surface of T cells. All samples contained anti-CD107a/PE mAbs. Before measurement of the cells in the MACSQuant Analyzer, the cells were stained with anti-CD4/VioBlue, anti-CD8/PE-Cy5, and anti-CD3/FITC mAbs. The dot plots and the percentage of CD4+ or CD8+ T cells expressing CD107a on their cell surface are shown. One representative donor out of three is shown.
However, the onset of killing mediated by CD4+ T cells is significantly delayed. For both CD8+ and CD4+ T cells, the killing capability correlates with the occurrence of the degranulation marker CD107a on their cell surface as shown for one representative donor (Fig. 6).

Antitumor effect of humanized scBsTaFv CD3-PSCA(MB1) in vivo

The antitumor effect of humanized scBsTaFv CD3-PSCA(MB1) in vivo was analyzed in a xenotransplant mouse model. Therefore, a mix of 3×10^6 PC3-PSCA tumor cells, 6×10^6 human PBMCs, and $10 \mu g$ humanized scBsTaFv CD3-PSCA(MB1) was injected s.c. at the right flank of eight mice (group 3 at day 0). Afterward (at days 1, 2, and 3), $10 \mu g$ humanized scBsTaFv CD3-PSCA(MB1) was injected into the tail vein of each mouse. As one negative control, an additional eight mice of group 2 were treated in the same way using the humanized scBsTaFv CD3-5B9 control Ab instead of the humanized scBsTaFv CD3-PSCA(MB1). Furthermore, at day 0, only 3×10^6 PC3-PSCA tumor cells were injected s.c. at the right flank of each mouse in group 1 to observe the tumor cell growth per se. The tumor growth was constantly measured and the tumor area was calculated. As shown in Fig. 7, the mice of group 3 that received PC3-PSCA cells, PBMCs, and humanized scBsTaFv CD3-PSCA(MB1) showed a significant reduction of tumor growth. In contrast, the tumors of the control mice treated with PBMCs and the humanized scBsTaFv CD3-5B9 control Ab (group 2) grew as well as the untreated ones (group 1).

Discussion

Although some patients with primary local prostate tumor can be successfully treated, half of the patients experience recurrence after local treatment. Especially for those 10–20% of patients with primarily advanced metastatic disease, no effective therapy options are available (35, 36). Therefore, novel strategies for PCA therapy are needed. One promising approach is the retargeting of T cells to PCA cells by bispecific Ab fragments.

For retargeting of T cells to PCA+ PCa, we established novel bispecific anti-CD3–anti-PSCA Abs that were derived from the novel mouse anti-human PSCA mAb MB1 and the previously described mouse anti-human CD3 mAb MT-301. With regard to clinical application, the murine anti-CD3(MT-301) and the novel murine anti-PSCA(MB1) domain were successfully humanized. According to size exclusion, chromatography-purified Ab fractions mainly comprise the monomeric form of the humanized scBsTaFv CD3-PSCA(MB1). Even after storage of 6 mo at 4°C, only a small portion of the bispecific Ab had aggregated. Interestingly, the humanized scBsTaFv CD3-PSCA(MB1) is even slightly superior over the murine scBsTaFv PSCA(MB1)-CD3 counterpart and able to efficiently redirect T cells for killing of PSCA-expressing tumor cells at femtomolar concentrations. It remains currently open whether this improvement of efficacy is a result of the humanized sequence or caused by the minor differences in the Ab format of the humanized and murine versions.

T cell activation and redirected tumor cell lysis is strictly Ag dependent: the cross-linkage of T cells and PCA+ tumor cells by humanized scBsTaFv CD3-PSCA(MB1) is a prerequisite for T cell activation as shown by the upregulation of CD69 and CD25, the release of TNF and IFN-γ, and the killing of tumor cells. As shown previously, PSCA expression varies and is downregulated in cultured PCA cell lines. To have cells with a standardized level of PSCA expression, we, therefore, used in some of our experiments PSCA-overexpressing cell lines. However, we could also demonstrate that T cells redirected by the humanized scBsTaFv CD3-PSCA(MB1) were capable of killing naturally PSCA-expressing tumor cells.

In contrast with our previous data (30), in this study, we observed that not only CD8+ T cells but also CD4+ T cells were redirected by bispecific Abs. It is, however, important to mention that the onset of killing mediated by CD4+ T cells is delayed. After a 5-h incubation with Ag-expressing target cells, redirected CD8+ T cells showed expression of the degranulation marker CD107a on the surface and substantial cytotoxic activity, whereas no CD107a was detected on redirected CD4+ T cells nor any killing observed after this time period. After a longer incubation time (20 h), however, both redirected T cell subpopulations efficiently lysed PCA+ target cells. According to our data, there is no obvious correlation between the killing efficiency of redirected T cells and the amount of cytokines released after their cross-linkage with tumor cells: 1) after an activation period of 5 h, the expression level of the activation marker CD69 is even higher on CD4+ than on CD8+ T cells. In contrast, their contribution to redirected tumor cell lysis is marginal. 2) Furthermore, the amounts of cytokines released differed dramatically between different donors; however, T cells from all donors efficiently lysed the target cells. 3) In addition, the humanization process slightly improved the killing efficiency of the bispecific Ab, whereas the amounts of cytokines released tend to decrease in comparison with its murine counterpart.

It is known that also tumor cells are able to produce and secrete soluble TNF. However, it is highly unlikely that TNF measured in supernatants after culturing tumor and T cells in the presence of humanized scBsTaFv CD3-PSCA(MB1) originates from PC3-PSCA cells. First, the intracellular staining of CD4+ and CD8+ T cells revealed that only the Ab-mediated cross-linkage with PSCA+ tumor cells specifically induces the TNF production in both T cell subpopulations. Second, no TNF was detectable in culture supernatants after incubation of T cells and PC3-PSCA cells without any Ab or with the humanized control Ab. Finally, the cross-linkage of T cells and tumor cells via a bispecific Ab that simultaneously targets PSCA and another cell surface marker on T cells (instead of CD3) did not result in any cytokine production (data not shown).

According to our FACS data, the cytotoxic activity of both types of redirected T cells correlates with their degranulation. For these reasons, we assume that the underlying killing mechanism.
is related to the perforin-granzyme pathway. A delayed onset of tumor cell lysis by redirected CD4+ T cells and a similar killing mechanism was also proposed for the single-chain EpCAM/CD3-bispecific Ab construct MT110 and the CD19xCD3 bispecific Ab. It was shown that tumor cell lysis is mediated by the perforin-dependent, granule-exocytosis pathway but not by death ligands FasL, TRAIL, or TNF-α (37–41). In addition, we and others could visualize that cross-linkage of T cells and TAA-expressing tumor cells via anti-CD3–anti-TAA bispecific Abs results in the formation of cytolytic synapses before tumor cell lysis occurs (16, 42, 43). Taken together, our data indicate that both redirected CD8+ and CD4+ T cells are able to kill target cells most likely by the perforin/granzyme pathway. Although CD8+, but not CD4+, T cells contain preformed perforin/granzyme granules, CD4+ T cells have to produce them after activation and cross-linkage, which could explain their delay in killing.

One critical prerequisite for a clinical application of a bispecific Ab is that binding of the anti-CD3 domain to the CD3 complex of T cells alone does not lead to the activation of T cells and the release of cytokines. According to our data, the binding of the humanized anti-CD3 domain used in our bispecific Abs does not lead to an activation of T cells or a significant release of cytokines. This finding holds also true for experiments performed in the presence of high Ab concentrations of 5000 ng/ml (Supplemental Fig. 4). Significant amounts of cytokines were only released after cross-linkage of T cells to Ag-presenting target cells. Thus, in a clinical setting, cytokines should only be released locally and may not lead to a life-threatening systemic cytokine storm, but rather help to overcome the immunosuppressive environment in a tumor.

The high potential of the novel humanized anti-CD3–anti-PSCA (MB1) bispecific Ab as a novel immunotherapeutic drug for PCa therapy was also underlined by our in vivo data in a first mouse model, although these results have to be confirmed by future studies using improved orthotopic autologous animal models.

Mainly regulatory T cells (Tregs) promote the tumor progression by suppressing the antitumor immune response (44, 45). In fact, the accumulation of Tregs in tumor-bearing patients correlates with poor survival prognosis (46–48). According to our recently published data, anti-CD3–anti-TAA bispecific Abs are also able to activate Tregs in a target-dependent manner resulting in the suppression of proliferation and cytokine production of autologous CD4+ T effector cells (49). Thus, a systemic application of a bispecific Ab could lead to an activation of Tregs that could limit its antitumor effect. However, an antitumor effect of bispecific Abs mediated by whole WBC preparations was not only shown in animal models (including in our study) but was also impressively demonstrated after a systemic application of bispecific Abs in first clinical trials (23, 24). Thus, an activation of Tregs in tumor tissues must not necessarily be critical for a systemic application of bispecific Abs. As also supported by our data, CD8+ T cells are faster activated than CD4+ T cells. Consequently, Ab-redirected CD8+ T cells have a time slot to eliminate tumor cells before Tregs are activated and can suppress the antitumor immune response. Nonetheless, the impact of Tregs in the context of an immunotherapy based on T cells redirected via bispecific Abs needs further investigation, for example, whether an adoptive transfer of effector T cells that are preloaded with bispecific Abs ex vivo is superior over a systemic application of the bispecific Abs.

In summary, in this article, we provide experimental evidence including a xenograft mouse model that the humanized scBsTaFv CD3-PSCA(MB1) is capable of redirecting T cells to PSCA+ tumor cells in a strictly Ag-dependent manner. Both CD8+ and CD4+ T cells contribute to the tumor eradication most likely via the perforin/granzyme pathway. The onset of killing mediated by CD4+ T cells is delayed compared with CD8+ T cells. Because of its high efficacy, its target specificity, and its little, if any, risk for inducing systemic cytokine storms, the humanized scBsTaFv CD3-PSCA(MB1) is a promising candidate for the treatment of PCa or other PSCA-expressing tumors.

Acknowledgments
We thank Livia Schulze, Barbara Uteß, and Christine Gräfe for excellent technical assistance.

Disclosures
M.B. and G.E. hold patents related to the bispecific Ab. The other authors have no financial conflicts of interest.

References

Supplementary Figure Legends

FIGURE S1. Development of novel anti-CD3-anti-PSCA bispecific antibodies for retargeting of T cells to PSCA-positive tumor cells, design of a control ab redirected to an irrelevant intracellular antigen, and humanization of murine variable ab domains. (A) Schematic gene structure of murine (mu) scBsTaFv PSCA(MB1)-CD3, humanized (hu) scBsTaFv CD3-PSCA(MB1), and hu scBsTaFv CD3-5B9. To allow secretion of recombinant proteins the Igk leader sequence was fused to the N-terminus as signal peptide (SP). Recombinant abs were detected and purified via their myc-tag and 6xhistidine (his)-tag. The mu scBsTaFv PSCA(MB1)-CD3 consists of the variable domain of the heavy (V_H) and light (V_L) chain of the mouse anti-CD3 mab MT-301 and the mouse anti-PSCA mab MB1. These murine anti-CD3 and anti-PSCA(MB1) V_H and V_L sequences were humanized and used to clone the hu scBsTaFv CD3-PSCA(MB1). The control ab hu scBsTaFv CD3-5B9 contains the same humanized anti-CD3 domain and the humanized mouse anti-5B9 V_H and V_L sequences. (B) Schematic construction of humanized V_H or V_L sequences.

FIGURE S2. Expression and antigen binding of murine and humanized anti-CD3-anti-PSCA(MB1) bispecific antibodies. (A) The his-tagged ab fragments were permanently expressed by 3T3 cells and purified from cell culture supernatants via Ni-NTA affinity chromatography. After SDS-PAGE the purified proteins were stained with Coomassie-Brilliant-Blue (AI) or transferred onto a Western blot membrane and detected by an anti-his mab (AII). M, protein marker; 1, murine scBsTaFv PSCA(MB1)-CD3; 2, humanized scBsTaFv CD3-PSCA(MB1); 3, humanized scBsTaFv CD3-5B9. (B) For flow cytometry analysis pre-activated T cells (upper panel) or PC3-PSCA cells (lower panel) were stained with murine scBsTaFv
Humanized bispecific abs for treatment of prostate cancer

PSCA(MB1)-CD3, humanized scBsTaFv CD3-PSCA(MB1), or humanized scBsTaFv CD3-5B9 and the bound scBsTaFvs were detected via a FITC-conjugated anti-myc mab (black graphs). As negative control the cells were incubated with the secondary anti-myc/FITC mab alone (transparent graphs). The mean fluorescence intensity (MFI) and percentage of stained cells are shown in the M1 region of the histograms.

FIGURE S3. Size exclusion chromatography of the humanized scBsTaFv CD3-PSCA(MB1). To determine the amount of dimers and oligomers in purified ab fractions we performed size exclusion FPLC using a Superose 200 column. (A) Size exclusion profile of an ab fraction of the humanized scBsTaFv CD3-PSCA(MB1) that was stored for 6 months at 4 °C. (B) Calibration of gel filtration column was performed using the gel filtration marker kit for protein molecular weights 12,000-200,000 Da (Sigma-Aldrich Chemie GmbH). V0 (void volume) value was determined by dextran blue and Ve (elution volume) values of standard proteins were used to construct standard curve for estimation of protein sizes in the analyzed ab fraction. P1/2, protein 1/2.

FIGURE S4. Target cell dependent activation and cytokine release from T cells using high concentrations of humanized scBsTaFv CD3-PSCA(MB1). Non-stimulated T cells and PC3-PSCA cells were incubated alone (transparent graph with dashed line or white bars, respectively), with the control humanized scBsTaFv CD3-5B9 (transparent graph with grey line or grey bars, respectively) or the humanized scBsTaFv CD3-PSCA(MB1) (transparent graph with black line or black bars, respectively). Additionally, PSCA-negative PC3 wild type (wt) cells were cultured with T cells in the absence or presence of the humanized scBsTaFv CD3-PSCA(MB1). Co-cultivation of effector and target cells with 5000 ng/ml of recombinant antibody
was performed at an e:t ratio of 10:1 over a period of 24 hours. (A) T cells were analyzed by flow cytometry for expression of the activation markers CD25 and CD69. Mean fluorescence intensity (MFI) of total cells and percentage of CD25+ or CD69+ T cells in M1 region are shown. Marker was adjusted to appropriate IgG isotype control (grey graphs). Results of one representative donor of three are shown. (B) Release of pro-inflammatory cytokines by T cells was determined by ELISA of culture supernatants (x, not detectable). Data represent mean ± SD of three independent donors (n.s., not significant; ***p < 0.001 with respect to no ab and humanized control scBsTaFv CD3-5B9, one-way ANOVA with Bonferroni multiple comparison test).
Supplemental Figure S4

A

<table>
<thead>
<tr>
<th></th>
<th>cell number</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt</td>
<td></td>
</tr>
<tr>
<td>PSCA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>CD25</td>
</tr>
<tr>
<td></td>
<td>CD69</td>
</tr>
</tbody>
</table>

B

TNF release

<table>
<thead>
<tr>
<th></th>
<th>TNF [pg/ml]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC3-PSCA</td>
<td>X</td>
</tr>
<tr>
<td>PC3wt</td>
<td>X</td>
</tr>
</tbody>
</table>

IFNγ release

<table>
<thead>
<tr>
<th></th>
<th>IFNγ [pg/ml]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC3-PSCA</td>
<td>X</td>
</tr>
<tr>
<td>PC3wt</td>
<td>X</td>
</tr>
</tbody>
</table>

- no ab
- scBsTaFv CD3-5B9
- scBsTaFv CD3-PSCA(MB1)

*** n.s.