Cutting Edge: Lymphoid Tissue Inducer Cells Maintain Memory CD4 T Cells within Secondary Lymphoid Tissue

David R. Withers, Fabrina M. Gaspal, Emma C. Mackley, Clare L. Marriott, Ewan A. Ross, Guillaume E. Desanti, Natalie A. Roberts, Andrea J. White, Adriana Flores-Langarica, Fiona M. McConnell, Graham Anderson and Peter J. L. Lane

J Immunol published online 1 August 2012
http://www.jimmunol.org/content/early/2012/08/01/jimmunol.1201639

Supplementary Material
http://www.jimmunol.org/content/suppl/2012/08/01/jimmunol.1201639.DC1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Cutting Edge: Lymphoid Tissue Inducer Cells Maintain Memory CD4 T Cells within Secondary Lymphoid Tissue

David R. Withers, Fabrina M. Gaspal, Emma C. Mackley, Clare L. Marriott, Ewan A. Ross, Guillaume E. Desanti, Natalie A. Roberts, Andrea J. White, Adriana Flores-Langarica, Fiona M. McConnell, Graham Anderson, and Peter J. L. Lane

Phylogeny shows that CD4 T cell memory and lymph nodes coevolved in placental mammals. In ontogeny, retinoic acid orphan receptor (ROR)γ-dependent lymphoid tissue inducer (LTi) cells program the development of mammalian lymph nodes. In this study, we show that although primary CD4 T cell expansion is normal in RORγ-deficient mice, the persistence of memory CD4 T cells is RORγ-dependent. Furthermore, using bone marrow chimeric mice we demonstrate that LTi cells are the key RORγ-expressing cell type sufficient for memory CD4 T cell survival in the absence of persistent Ag. This effect was specific for CD4 T cells, as memory CD8 T cells survived equally well in the presence or absence of LTi cells. These data demonstrate a novel role for LTi cells, archetypal members of the innate lymphoid cell family, in supporting memory CD4 T cell survival in vivo. The Journal of Immunology, 2012, 189: 000–000.

The hallmark of mammalian immunity is the capacity to make CD4 T cell-dependent memory immune responses, and this underpins the success of vaccination strategies. Phylogeny shows that both lymph nodes (LNs) and CD4 T cell memory Ab responses evolved in placental animals, as marsupials have evidence of memory (1) and LNs (2, 3), whereas monotremes have neither (4, 5). The formation of LNs is dependent on retinoic acid orphan receptor (ROR)γ-expressing lymphoid tissue inducer (LTi) cells, key members of the recently described innate lymphoid cell family (6). Although the function of LTi cells in the developing embryo is clear, their potential roles within mature secondary lymphoid tissue are currently being elucidated.

Recent studies have found them to be important in the repair of lymphoid tissues after pathogen-related injury (7), the production of IL-22 (8), and T cell-independent production of IgA in the gut (9). We previously found that in mature mice, but not in embryonic mice, LTi cells express high levels of the TNF family members OX40-ligand (L) and CD30L (10, 11), and we have linked signaling through the receptors for these molecules with the capacity to mount CD4 memory Ab responses (12, 13). Unlike APCs such as dendritic cells and B cells that can also express OX40L and CD30L, LTi cells completely lack expression of CD80 and CD86 and do not present Ag (13). Because LNs and CD4 memory Ab responses arose in the same evolutionary window, we speculated that LTi cells might provide survival signals required for the maintenance of memory CD4 T cells in the absence of antigenic stimulation. To test this we have now analyzed CD4 memory responses in mice lacking LTi cells. In this study, we provide direct evidence that LTi cells maintain memory CD4 T cells in vivo, demonstrating a further crucial role for these innate lymphoid cells in supporting adaptive immune responses.

Materials and Methods

Mice

Animals were bred in accordance with Home Office guidelines at the University of Birmingham, Biomedical Services Unit. Mice used were BoyJ, CD3ε−/−, CD3ε−/−RORγ−/−, RORγ−/−, Rag2−/−, Rag2−/−× OTII, and Rag2−/−× SM1. The following mouse was obtained through the National Institute of Allergy and Infectious Diseases Exchange Program, National Institutes of Health: C57BL/6-Tg(OTI-L)RAG1<tm1Mom> (14, 15). Experimental and control CD3ε−/−RORγ−/− mice were sub lethally irradiated (1 × 450 rads), given bone marrow (BM) from CD3ε−/− or CD3ε−/−RORγ−/− mice i.v., and used 4–5 wk after reconstitution.

Immunization and cell transfer

To track Ag-specific CD4 T cells, mice were infected i.v. with 10⁷ ActA mutant Listeria monocytogenes expressing 2W1S peptide, as described (16). To generate memory T cells, ∼5 × 10⁶ SM1, OTII, or OTI T cells were transferred into Rag2−/− mice, which were then immunized and memory cells harvested 3–4 wk later. To stimulate SM1 cells, recipient mice were immunized i.v. with 10⁸ attenuated L. monocytogenes-expressing Flc peptide (target Ag of SM1 T cells), a gift from Dr. Sing Sing Way. To stimulate OTII and OTI cells, recipient mice were immunized i.p. with 100 μg aluminum hydroxide-precipitated OVA.

Flow cytometry

For tetramer staining, cells from secondary lymphoid tissue were pooled and stained for 1 h at room temperature with 2W1S-∆A². All cell surface staining was performed according to manufacturer’s instructions.

Received for publication June 14, 2012. Accepted for publication July 6, 2012.

This work was supported by a program grant from the Wellcome Trust (to P.J.L.L. and G.A.).

Address correspondence and reprint requests to Dr. David R. Withers and Dr. Peter J.L. Lane, Medical Research Council Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TJ, United Kingdom.

Address correspondence and reprint requests to Dr. David R. Withers and Dr. Peter J.L. Lane, Medical Research Council Centre for Immune Regulation, College of Medical and Dental Research Council Centre for Immune Regulation, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TJ, United Kingdom.

The online version of this article contains supplemental material.

Abbreviations used in this article: BM, bone marrow; dpi, days postinfection; L, ligand; LN, lymph node; LTi, lymphoid tissue inducer; ROR, retinoic acid orphan receptor; WT, wild-type.

Copyright © 2012 by The American Association of Immunologists, Inc. 0022-1767/12/S16.00

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1201639
was done at 4°C for 30 min. Samples were run using a Fortessa (BD Biosciences) and analyzed using FlowJo software (Tree Star).

Immunofluorescence and image analysis

Frozen tissue sections were cut and stained as described previously (11).

Statistics

Statistical significance was tested using the Mann–Whitney U test, and a two-tailed p value was calculated.

Results and Discussion

Memory CD4 T cells fail to survive in RORγ^{−/−} mice

To investigate whether CD4 T cell survival was dependent on LTi cells, we first immunized RORγ^{−/−} and RORγ^{−/+} littermate mice with nitrophenylated chicken γ-globulin. We assessed the primary anti-(4-hydroxy-3-nitrophenyl)acetyl IgM and IgG responses in the serum 7 d after immunization and found no significant difference (Supplemental Fig. 1). To assess a memory response, we analyzed splenic (4-hydroxy-3-nitrophenyl)acetyl–specific IgG plasma cells at 4 d after challenge (Supplemental Fig. 1). Although RORγ^{−/−} mice mounted a characteristic memory response, this was absent in RORγ^{−/+} littermates (Supplemental Fig. 1, p = 0.004). Although consistent with defective memory CD4 T cell survival, these experiments did not discriminate between B or T cell defects in the Ab response. To specifically test memory CD4 T cell survival in RORγ^{−/−} mice, we analyzed endogenous 2W1S⁺ CD4 T cells recovered from WT and RORγ^{−/−} mice at 7 and 70 dpi with *L. monocytogenes*–2W1S. Plots are representative of five mice per time point. (B) Quantitation of total numbers of CD4⁺ *L. monocytogenes*-2W1S⁺ CD4 T cells isolated from WT (∆) and RORγ^{−/−} (∗) mice at 7, 28, and 70 dpi. Each triangle represents an individual mouse. Results are representative of two independent experiments. Bars show medians.

RORγ⁺-expressing LTi cells mediate memory CD4 T cell survival

Although these data demonstrated that polyclonal Ag-specific CD4 memory T cells were not maintained in RORγ^{−/−} mice, they did not show directly that LTi cells were responsible. Differences between WT and RORγ^{−/−} mice could have been attributed to the absence of LNs in the latter, and other complexities arising from chimeric mice, a similar experiment was performed using Rag^{−/−} RORγ^{−/−} and Rag^{−/−} RORγ^{−/+} mice, with similar results (Fig. 2D). We also confirmed these findings with a second TCR transgenic T cell, OTII cells, which again persisted only in LTi⁺ mice (Fig. 2E).

Finally, we have found that numbers of LTi cells are dependent on RORγ expression, as Rag^{−/−} RORγ^{−/−} mice have fewer LTi cells than do Rag^{−/−} RORγ^{−/+} mice (Supplemental Fig. 2C). CD4⁺ RORγ^{−/+} mice expressed high levels of OX40L, whereas expression of OX40L by dendritic cells was comparable in CD3ε^{−/−} and CD3εRORγ^{−/−} mice (Supplemental Fig. 2). Therefore, we had generated mice with the same secondary lymphoid tissue but sufficient or deficient in LTi cells to test the role of LTi cells in memory T cell survival.

Transfer of premade memory cells into LTi[−] or LTi⁺ mice would exclude possible effects of LTi cell deficiency on the generation of these cells. A pure cohort of memory CD4 SM1 TCR transgenic T cells was generated (see Materials and Methods) and then transferred (~2.5 × 10⁵) into LTi[−] and LTi⁺ hosts. Four weeks after transfer of memory SM1 T cells and without further exposure to Ag, a clear population persisted principally in the spleen of LTi⁺ mice, and to a lesser extent in the BM and other nonlymphoid tissues such as the lung and liver (Fig. 2A–C). In contrast, this population was almost entirely absent in LTi[−] mice. To control for complexities arising from chimeric mice, a similar experiment was performed using Rag^{−/−} RORγ^{−/−} and Rag^{−/−} RORγ^{−/+} mice, with similar results (Fig. 2D). We also confirmed these findings with a second TCR transgenic T cell, OTII cells, which again persisted only in LTi⁺ mice (Fig. 2E).
Fig. 2). In these mice, survival of CD4 T cells is highly correlated with LTi cell number, consistent with CD4 T cell survival influenced by LTi cells. It is presently unclear how LTi cells maintain memory CD4 T cells. Agonistic anti-OX40 Abs did maintain memory OTII cells in LTi mice (Fig. 2F), indicating that provision of this signal could keep memory CD4 T cells alive in vivo. Our previous observations that LTi cells express high levels of OX40L and CD30L, and that signals by these molecules are essential for the survival of memory CD4 T cells (12, 13), would suggest this may be how LTi cells provide survival signals. We have previously identified that memory OTII cells associate with LTi cells much more frequently than do naive OTII cells within the spleen (23), supporting a model where cellular interactions mediate survival.

LTi cells are not required for memory CD8 T cell survival

To investigate whether memory CD8 T cell survival was also LTi cell-dependent, memory OTI cells were generated in Rag-/- mice and transferred into Rag-/-RORg-/- and Rag-/-RORg-/- mice, which were then immunized with OVA. Three weeks after immunization the survival of OTI cells in either the spleen or BM was comparable between LTi cell-sufficient and LTi cell-deficient hosts (Fig. 3A, 3B). When memory OTI and SM1 cells were cotransferred into LTi- and LTi+ chimeric mice, memory OTI cells could be recovered from both LTi- and LTi+ mice, but memory SM1 cells were absent specifically in LTi+ mice (Fig. 3C).

LTi cells reside at sites of memory cell recirculation

To investigate where LTi cells and memory CD4 T cells might interact in vivo, we analyzed RORg expression in secondary lymphoid tissue to determine the location of these cells. Within the spleen, LTi cells (defined as RORg+/IL-7Rα+CD3ε+) were located at the marginal sinus and within the bridging channels (Fig. 4A), coinciding closely with the sites of lymphocyte entry and trafficking into the white pulp (24). Similarly, within the LN, LTi cells were found clustered at the marginal sinus and interfollicular spaces (Fig. 4B), the site where recirculating T cells enter from the afferent lymph (25). Thus, LTi cells are ideally placed to encounter recirculating memory CD4 T cells. Additionally, these locations are known to be rich in IL-7 expression (26), and the IL-7 signal is recognized as an essential part of CD4 memory survival (27). We have previously shown that in vitro, culture with IL-7 will increase OX40 expression on memory but not naive CD4 T cells (12). Culture with IL-7 also increased CD30L expression by LTi cells in vitro (10). Based on these data and our previous findings, we propose a simple model whereby memory CD4 T cells upregulate OX40 in response to IL-7 signals received as they re-enter lymphoid tissues, enabling them to engage OX40L expressed by LTi cells in the immediate vicinity.
No SM1 cells were detected in LTi symbols) chimeric mice. Mice were analyzed 4 wk after transfer; memory cell low), CD3 (blue), counterstained with DAPI (gray). Scale bars, 50 μm. F, Follicle. Arbitrary value of 1. Bars show medians. LNs from WT mice stained for expression of ROR γt and commensal microflora are required for the differentiation program of proinflammatory IL-17+ T helper cells. Science 288: 2369–2373.

Acknowledgments

We thank Dr. Dan Littman for permission to use RORγt−/− mice. We are grateful to Dr. Marc Jenkins and the National Institutes of Health Tetramer Facility for provision of 2W1S:I-Ab tetramers and to Antonio Pagan for technical advice.

Disclosures

The authors have no financial conflicts of interest.

References

16. Serres, S. L., V. L. Bui, A. Mortka, K. Oberle, C. Henes, C. Johner, and A. Diefenbach. 2009. RORγt and commensal microflora are required for the dif-