Lipocalin 2 Deficiency Dysregulates Iron Homeostasis and Exacerbates Endotoxin-Induced Sepsis

Gayathri Srinivasan, Jesse D. Aitken, Benyue Zhang, Frederic A. Carvalho, Benoit Chassaing, Rangaiah Shashidharamurthy, Niels Borregaard, Dean P. Jones, Andrew T. Gewirtz and Matam Vijay-Kumar

J Immunol published online 11 July 2012
http://www.jimmunol.org/content/early/2012/07/11/jimmunol.1200892

Supplementary Material
http://www.jimmunol.org/content/suppl/2012/07/11/jimmunol.1200892.DC1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Lipocalin 2 Deficiency Dysregulates Iron Homeostasis and Exacerbates Endotoxin-Induced Sepsis

Gayathri Srinivasan,*† Jesse D. Aitken,*† Benyue Zhang,* Frederic A. Carvalho,‡ Benoit Chassaing,* Rangaiah Shashidharamurthy,§ Niels Borregaard,‖ Dean P. Jones,¶ Andrew T. Gewirtz,*‖ and Matam Vijay-Kumar*

Various states of inflammation, including sepsis, are associated with hypoferremia, which limits availability to pathogens and reduces iron-mediated oxidative stress. Lipocalin 2 (Lcn2; siderocalin, 24p3) plays a central role in iron transport. Accordingly, Lcn2-deficient (Lcn2KO) mice exhibit elevated intracellular labile iron. In this study, we report that LPS induced systemic Lcn2 by 150-fold in wild-type mice at 24 h. Relative to wild-type littermates, Lcn2KO mice were markedly more sensitive to endotoxemia, exhibiting elevated indices of organ damage (transaminasemia, lactate dehydrogenase) and increased mortality. Such exacerbated endotoxemia was associated with substantially increased caspase-3 cleavage and concomitantly elevated immune cell apoptosis. Furthermore, cells from Lcn2KO mice were hyperresponsive to LPS ex vivo, exhibiting elevated cytokine secretion. Additionally, Lcn2KO mice exhibited delayed LPS-induced hypoferremia despite normal hepatic hepcidin expression and displayed decreased levels of the tissue redox state indicators cysteine and glutathione in liver and plasma. Desferroxamine, an iron chelator, significantly protects Lcn2KO mice from LPS-induced toxicity, including mortality, suggesting that Lcn2 may act as an antioxidant in vivo by regulating iron homeostasis. Thus, Lcn2-mediated regulation of labile iron protects the host against sepsis. Its small size and simple structure may make Lcn2 a deployable treatment for sepsis. The Journal of Immunology, 2012, 189: 000-000.

Sepsis is not only associated with an extreme proinflammatory response but is also accompanied by hypoferremia of inflammation, a primitive defensive mechanism to drastically reduce the concentration of circulating iron, limiting its availability to pathogens (6, 7) and also ameliorating iron-dependent oxidative stress generated via a Fenton reaction (8). Lipocalin 2 (Lcn2; human ortholog neutrophil gelatinase-associated lipocalin [NGAL]) has been shown to be dramatically upregulated in various inflammatory conditions and is considered as an acute phase protein in mice (9–12). Several in vitro studies have demonstrated that Lcn2 protects against cellular stress and exposure to H2O2 and that overexpression of Lcn2 allows cells to tolerate superphysiological iron concentrations (13–15). Under physiologic conditions Lcn2 can transport iron, perhaps with the aid of mammalian siderophores (16, 17). It has also been suggested that Lcn2 stabilizes the labile iron/siderophore complex (18, 19). Additionally, by chelating bacterial siderophores, Lcn2 exerts direct antibacterial activity and, accordingly, Lcn2-deficient (Lcn2KO) mice are sensitive to bacterial sepsis (11, 20, 21). Although such correlation could be consistent with a role for Lcn2 in driving or dampening an inflammatory response, the known bioactivities of Lcn2 led us to hypothesize that it might play a role in hypoferremia of inflammation and, thereby, the resolution of severe inflammation.

In this study, we tested the hypothesis that Lcn2 protects against severe inflammation using a murine model of LPS-induced sepsis. We observed that LPS dramatically induced Lcn2 and that Lcn2KO mice were highly sensitive to LPS-induced mortality, correlating with greater immune cell apoptosis and upregulation of proinflammatory gene expression. Such increased pathology to LPS in Lcn2KO mice is associated with both delayed hypoferremia and increased oxidative stress. Desferroxamine (DFO), an iron chelator,
offers significant protection against LPS-induced toxicity and mor-
tality in Lcn2KO mice. Thus, our study demonstrates that Lcn2 not
only protects against bacterial sepsis but also regulates host proin-
flammatory cytokine expression by limiting iron-mediated oxidative
stress.

Materials and Methods

Abs used were cyclooxygenase (COX)-2 (Cayman Chemical, Ann Arbor,
MI), inducible NO synthase (iNOS; Upstate Biotechnology, Bedford, MA),
and cleaved caspase-3 (Cell Signaling Technology, Danvers, MA), as well as
anti–β-actin, LPS, and desferoxamine mesylate (Sigma-Aldrich, St. Louis,
MO). Anti-mouse Lcn2 and all cytokine ELISA kits were from R&D Systems
(Minneapolis, MN).

LPS-induced sepsis

Eight-week-old mice (both male and female) were challenged i.p. with
indicated dose of LPS from Escherichia coli 0128:B12 and monitored for
body weight, symptoms of sepsis, mortality, and inflammatory parameters.
Blood was collected retro-orbitally at indicated time points, and hemolysis-
free serum was collected by centrifugation using serum separator tubes
from BD Biosciences. Mice that lost 25% of their initial body weight or
became moribund were considered dead. In some experiments, mice were
pretreated with 100 μM DFO i.p. 1 h before the administration of LPS and
monitored for cleaved caspase-3, systemic proinflammatory cytokines,
organ damage markers, and mortality.

Peritoneal exudate cell isolation

Peritoneal exudate cells (PECs) were collected by injecting 5 ml cold PBS
i.p. and plated in six-well plates with DMEM supplemented with 10% FBS
and 1% penicillin and streptomycin (22). Cells were cultured overnight at
37˚C, washed three times with PBS to remove nonadherent cells, and
stimulated with E. coli LPS (100 ng/ml) in serum-free DMEM. At various
time points supernatants and lysates were collected for cytokine analysis
and immunoblotting and stored at −80˚C until analysis.

Bone marrow-derived macrophage isolation and culture

Bone marrow-derived macrophages (BMDMs) were cultured as described
by Weischedelfeld and Porse (23). Briefly, bone marrow cells were isolated
and cultured in six-well plates in DMEM supplemented with 10% FBS,
1% penicillin and streptomycin, and 1% conditioned L929 media as a
source of M-CSF. On day 7, BMDM cultures with nearly 100% confluence
were stimulated with the indicated dose of E. coli LPS in serum-free DMEM
for 24 h. Cytokines were analyzed in the supernatants.

Measurement of apoptosis

Cleaved caspase-3 in spleen and bone marrow was analyzed by immu-
noblotting. TUNEL-positive cells in 10% formalin-fixed tissue were iden-
tified using TUNEL assay (Roche, Indianapolis, IN). The images were
captured using a Zeiss Axioskop2 Plus (Carl Zeiss Microimaging).

Quantification of apoptotic cells by flow cytometry

The apoptotic cell population in tissue was measured as in Zhang et al. (24)
with all Abs procured from eBioscience (San Diego, CA) except for Ly-
6G, which was from BD Biosciences (San Jose, CA). Annexin V staining was
performed according to the manufacturer’s protocol (Molecular Probes,
San Diego, CA). Data were acquired on a BD LSR II multiparameter flow
cytometer and analyzed using FlowJo software (Tree Star, Ashland, OR).

Immunoblotting

Immunoblotting was performed as described in Vijay-Kumar et al. (25).
Briefly, serum was diluted (1:10) in 2x Laemmli sample buffer (Bio-Rad)
with 2-ME and 100 mM DTT, boiled for 5 min, immediately cooled on ice
for 10 min, and subjected to SDS-PAGE on a 4–20% gel (Bio-Rad, Her-
cules, CA). Proteins were transferred to nitrocellulose, blocked with 5%
milk for 1 h, probed with primary Ab biotinylated anti-mouse Lcn2 (0.2
μg/ml) overnight at 4˚C, washed three times, and probed with streptavidin
HRP (Invitrogen, Grand Island, NY) for 1 h at room temperature. Immuno-
blots were developed by ECL (GE Healthcare, Buckinghamshire, U.K.). For
splenic cleaved-3 caspase, tissue was homogenized in RIPA buffer (Cell
Signaling Technology) with protease inhibitor mixture (Roche). Total protein
levels were quantitated by Bio-Rad method and 25 μg protein was loaded
under denaturing conditions. Immunoblots were developed using Abs from
Cell Signaling Technology as above. β-actin was probed as a loading
control.

Assay of cytokines

Cytokines in serum and cell supernatants were measured by DuoSet ELISA
cytokine kits according to the manufacturer’s instructions. Serum IL-1β
levels were measured using ELISA using an MBL kit.

Assay of systemic transaminasemia

Serum alanine transaminase (ALT) and aspartate transaminase (AST) were
measured using the Cholestech LDX system (Alere, San Diego, CA) according
to the manufacturer’s instructions.

Quantification of serum iron, lactate dehydrogenase, and
triglycerides

Hemolysis-free serum samples obtained by retro-orbital plexus were anal-
yzed using automated iron and lactate dehydrogenase (LDH) biochemical
assays on an Olympus AU680 chemistry analyzer (Beckman-Coulter, Brea,
CA). Analysis was performed at the Comparative Clinical Pathology Services
(Columbia, MO) under the supervision of a board-certified veterinary clinical
pathologist (Charles E. Wiedmeyer). Serum triglycerides were measured
using a kit from BioVision (Milpitas, CA).

Hepcidin quantification

Tissue RNA was isolated using a Qiagen kit. Quantitative RT-PCR was
employed to measure hepatic hepcidin, superoxide dismutase (SOD2), and
glutathione peroxidase (Gpx) using the following primers: hepcidin, forward,
5’-AGAGCTGCGCTTGGACAC-3’, reverse, 5’-GAAGATGCAGATGGA-
GAATG-3’; SOD2, forward, 5’-CAGCCTCCCAGACCTGCTT-3’, reverse,
5’-GTCACGCTGTAAGAGGCCAC-3’; Gpx, forward, 5’-GGCACCAAG-
ATCCGACTA-3’, reverse, 5’-AAATGGGCTCGACCCCCG-3’, and
housekeeping gene 36B4, forward, 5’-TCCAAGCTTGGGCGCATCA-3’,
reverse, 5’-CTTATACGTCGACATACGCA-3’. Quantitative RT-PCR
was carried out using a Quantifast RT kit with conditions 20 min incubation
at 50˚C and 5 min at 95˚C and 35–40 cycles of 10 s at 95˚C and 30 s at
60˚C using a Bio-Rad C1000 thermal cycler.

Measurement of tissue redox status

Liver and plasma (collected in EDTA tubes as anticoagulant) levels of
cysteine, cystine (CySS), reduced glutathione (GSH), and oxidized gluta-
thane (GSSG) were quantitated by HPLC and redox potential was cal-
lculated as described in Jones et al. (26) and Iyer et al. (27).

Statistical analysis

Statistical analysis for significance (p < 0.05) was determined using a
Student t test (GraphPad Prism).

Results

LPS induces Lcn2 in vivo in WT mice

To begin to investigate the role of Lcn2 in sepsis, we first analyzed
the kinetics of Lcn2 secretion in response to an i.p. administered
nonlethal dose of E. coli LPS (5 mg/kg body weight), a TLR4
ligand, in C57BL/6 mice. This resulted in a dramatic increase (150-fold) in
serum Lcn2 that peaked at 24 h and returned to basal levels by 48 h (Fig. 1A).
LPS induced Lcn2 with kinetics similar to the highly studied acute phase protein C-reactive protein in murine
inflammatory models (28). Immunoblotting sera confirmed our
ELISA results (Fig. 1B). Similar results were obtained by chal-
enging WT mice with the TLR5 ligand, flagellin (data not shown).

Lcn2 deficiency sensitizes LPS-induced mortality

Lcn2 is a substantially upregulated host protein during the acute
phase response not only during infection but also in sterile inflam-
mation and septic diseases (29). To study the role of Lcn2 in

Downloaded from http://www.jimmunol.org/ by guest on March 31, 2017
sensitivity that WT mice may induce cleavage of caspase-3 at earlier
time points, we monitored caspase-3 cleavage at 2, 4, 8, and 12 h
in WT mice by immunoblotting, but at no time did we detect
caspase-3 cleavage in the spleen (data not shown). In accordance,
TUNEL assays performed on spleens showed increased numbers
of apoptotic cell aggregates in LPS-treated Lcn2KO mice that were
not apparent in similarly treated WT mice (Fig. 4C). Similarly,
LPS induced more TUNEL-positive cells in the colon, specifically
at the base of the crypts (data not shown).

Increased LPS-induced immune cell apoptosis in Lcn2KO mice

Next, to identify the immune cell populations most prone to ap-
optosis, we analyzed cells for annexin V staining by flow cytom-
etry. We observed significant increases in LPS-induced apoptosis
of CD4+ T cells (CD3+CD4+), neutrophils (CD11b+Ly-6G+), and
dendritic cells (CD11b+CD11c+) isolated from spleens of Lcn2KO
mice when compared with those derived from WT mice (Fig. 5).
Analysis of bone marrow showed a similar trend of increased
apoptosis in Lcn2KO neutrophils (not shown), while B cell
(CD3-CD19+B220+) and macrophage (CD45+CD11b+MHC class
II+F4/80+) fractions were not different between the two genotypes
in both tissues assayed (data not shown).

Lcn2 deficiency potentiates LPS-induced proinflammatory gene
eexpression

LPS is known to induce extensive production of cytokines, espe-
cially TNF-α, a major determinant of multiple organ damage and
decay. Furthermore, LPS induced Lcn2 robustly in WT peritoneal
exudate cells (data not shown). Therefore, we studied proinflam-
matory cytokine response in WT and Lcn2KO mice in vivo. Lcn2KO
mice exhibited significantly elevated levels of serum TNF-α and
IL-18, master proinflammatory mediators that are highly linked to
sepsis (Fig. 6A, 6B). Such increased cytokine production was also
seen in peritoneal immune cells stimulated with LPS ex vivo.
Specifically, relative to WT mice, Lcn2KO PECs exhibited greater
production of KC, IL-6, and TNF-α (Fig. 6C–E). Analogous results
were seen for proinflammatory enzymes. Specifically, Western
blots revealed that COX-2 levels were markedly upregulated in
Lcn2KO cells and only moderately upregulated in WT cells, es-
specially at the 12 h time point. Similar results were seen for iNOS,
which was also modestly induced by LPS in WT cells but markedly induced in cells of LPS-treated Lcn2KO PECs (Fig. 6H). Such elevated proinflammatory mediators were accompanied by concomitant increases of the anti-inflammatory mediators IL-10 and secretory (s)IL-1Ra (Fig. 6F, 6G).

Next, to examine the extent to which hyperresponsiveness of Lcn2KO PECs resulted from loss of Lcn2 in these cells per se or was an indirect consequence of a Lcn2-deficient environment, we compared responses of naive BMDMs that had been cultured from WT and Lcn2KO mice. First, we verified that WT BMDMs induced Lcn2 in response to LPS (data not shown). Similar to PECs, BMDMs from Lcn2KO mice exhibited greater LPS-induced cytokine secretion relative to BMDMs from WT mice. Such elevated cytokine secretion was seen for both proinflammatory cytokines (IL-1β, IL-6, and KC) and the anti-inflammatory cytokine (sIL-1Ra) at both 100 and 500 ng/ml concentrations of LPS (Supplemental Fig. 1), suggesting the increased septic response observed in Lcn2KO mice was not due to a broad defect in counterregulatory mediators but rather reflects an important direct role for Lcn2 in containing sepsis.

FIGURE 3. Lcn2KO mice display elevated systemic inflammatory markers. Mice (n = 3–6) were given either PBS or LPS (5 mg/kg body weight), bled at different time points, and analyzed for the organ damage markers in the serum at 6 and 24 h after LPS treatment. (A) AST, (B) ALT, (C) LDH, and (D) 24 h after LPS-treated serum triglycerides. *p < 0.05.

FIGURE 4. Lcn2 deficiency sensitizes LPS-induced apoptosis. WT or Lcn2KO mice (n = 3–6) were given either PBS or LPS (5 mg/kg body weight) and after 24 h apoptosis markers were measured in spleen and bone marrow cells. (A) Immunoblot showing cleaved caspase-3 in spleen lysates. (B) Immunoblot showing cleaved caspase-3 in bone marrow cells. (C) TUNEL staining of spleen. Original magnification ×20. White arrows show aggregates of TUNEL-positive cells in Lcn2KO mice.
Delayed LPS-induced hypoferremia in Lcn2KO mice

Inflammatory responses are accompanied by hypoferremia of inflammation, a primitive host protective mechanism that limits the iron available to invading pathogens and that can participate in a Fenton reaction, exacerbating oxidative stress (7, 33). Lcn2 is known to chelate iron and play a role in its transport (16, 17). Thus, we reasoned that loss of Lcn2 may disrupt iron transport while rendering intracellular siderophore-bound iron more labile (18, 19), thus mediating the high toxicity to LPS seen in Lcn2KO mice. Measurement of serum iron revealed a modest increase in basal iron levels in Lcn2KO mice relative to WT littermates. Moreover, Lcn2KO mice exhibited only modest hypoferremia in response to LPS, ∼25% by 4 h, whereas iron levels dropped by >50% in WT mice. At later times, serum iron levels fell in Lcn2KO mice such that they were similar to those of WT mice from 6 to 24 h after LPS treatment (Fig. 7). Interestingly, there was no significant

![FIGURE 5](image)

FIGURE 5. Increased LPS-induced immune cell apoptosis in Lcn2KO mice. WT or Lcn2KO mice (n = 3–6) were given either PBS or LPS (5 mg/kg body weight) and after 24 h (%) apoptotic cells were measured in the spleen by flow cytometry. (A) CD3⁺CD4⁺ T cells. (B) CD11b⁺Ly-6G⁺ neutrophils. (C) CD11b⁺CD11c⁺ dendritic cells. *p < 0.05.

![FIGURE 6](image)

FIGURE 6. Lcn2 deficiency potentiates LPS-induced proinflammatory gene expression. Mice (n = 3–6) were given either PBS or LPS (5 mg/kg body weight) and, after 6 h, serum was analyzed for (A) TNF-α and (B) IL-18 (pg/ml). (C–H) PECs stimulated in triplicate with either PBS or LPS (100 ng/ml) in serum-free media. Supernatants were collected at 12 and 24 h and analyzed for cytokines by ELISA or lysates subjected to immunoblotting for COX2 and iNOS. (C) KC, (D) IL-6, (E) TNF-α, (F) IL-10, (G) sIL-1Ra (expressed in ng/mg protein). (H) Immunoblot showing iNOS and COX2 expression in PEC lysates. (A) and (B) and (C–H) are representatives of two and three independent experiments, respectively. *p < 0.05.
difference in basal or LPS-induced hepatic hepcidin, a major hypoferremic hormone, in WT and Lcn2KO mice (Supplemental Fig. 2A).

Increased LPS-induced oxidative stress in Lcn2KO mice

Lcn2 not only transports and stabilizes iron but also regulates the intracellular iron concentration. Nairz et al. (34) demonstrated that Lcn2KO mice have increased cellular iron levels. We hypothesized that such defective iron homeostasis in Lcn2KO mice may render them more susceptible to oxidative stress via participation of iron in the Fenton reaction. To study this, we analyzed GSH and cysteine, as well as GSSG and CySS, in plasma and liver as indicators of redox state, itself an important determinant of cytokine expression as changes in cysteine and GSH metabolism modulate inflammation (35). As shown in Fig. 8A and 8B, Lcn2KO mice exhibited significantly elevated levels of CySS and GSSG in the liver 24 h after LPS administration when compared with similarly treated WT mice. Similar, but more modest, elevations in CySS and GSSG were observed in plasma (data not shown). Next, we analyzed expression of the antioxidant enzymes SOD2 and Gpx1 in livers of WT and Lcn2KO mice. Whereas WT mice livers upregulated SOD2 expression by 10-fold 6 h after LPS with expression returning to basal levels by 24 h, Lcn2KO mice exhibited significantly less SOD2 expression when compared with WT mice despite decreased levels of tissue redox state indicators (Fig. 8C). No significant differences were observed in Gpx levels between the two strains (Supplemental Fig. 2B).

DFO rescues LPS-induced toxicity in Lcn2KO mice

DFO is a siderophore-based iron chelator routinely used clinically to treat iron overload. DFO-bound iron is metabolically inactive and unable to participate in a Fenton reaction, thus limiting free radical generation (36–38). To study our hypothesis that delayed LPS-induced hypoferremia, as well as increased intracellular labile iron, in Lcn2KO mice may render them more susceptible to LPS-induced septic shock, we pretreated Lcn2KO mice with DFO (100 μM) i.p. 1 h before LPS (5 mg/kg body weight) administration. Control mice were given PBS. Such pretreatment of Lcn2KO mice with DFO resulted in significant reduction of cleaved caspase-3 in the spleen (Fig. 9A) and systemic proinflammatory gene expression. Specifically, in DFO-pretreated Lcn2KO mice, LPS-induced IL-6 and KC were reduced by >50% at 4 h relative to Lcn2KO mice pretreated with PBS. Additionally, whereas at 24 h cytokine levels remained elevated in PBS-pretreated LPS-challenged Lcn2KO mice, they were undetectable in DFO-pretreated Lcn2KO mice (Fig. 9B, 9C). Furthermore, DFO pretreatment substantially reduced LPS-induced AST and ALT, markers of liver and multiple organ damage, respectively (Fig. 9D, 9E). Finally, to test whether DFO-mediated reduction in cleaved caspase-3 and serum inflammatory markers would protect against LPS-induced mortality, we challenged Lcn2KO mice with a high dose of LPS (20 mg/kg body weight) 1 h after DFO administration. Lcn2KO mice that were pretreated with DFO still exhibited symptoms of sepsis initially but recovered and survived (70%), whereas Lcn2KO mice given PBS succumbed to death within 7 d (Fig. 9F). Collectively, our studies demonstrate that Lcn2 is a host protective factor against LPS-induced toxicity (Fig. 10).

Discussion

Lcn2 is an acute phase protein known to be highly upregulated during inflammatory conditions such as sepsis. Induced acute phase proteins may amplify or dampen the inflammatory response. For instance, HMGB1 and SAA are known to amplify the inflammatory response by activating TLR4. However, the role of Lcn2 in sepsis is not known. In this study we demonstrate that Lcn2 is highly upregulated in WT mice in response to the TLR4 ligand, LPS. In Lcn2KO mice, LPS-induced sepsis resulted in increased toxicity as

FIGURE 7. Lcn2KO mice exhibit delayed LPS-induced hypoferremia. Mice (n = 4–7) were given either PBS or LPS (5 mg/kg body weight) and, at indicated time points, serum iron levels were measured as described in Materials and Methods.

FIGURE 8. Lcn2KO mice exhibit greater LPS-induced oxidative stress than did WT mice. Mice (n = 3–5) were given either PBS or LPS (5 mg/kg body weight) and at indicated time points for liver cysteine (Cys), CySS, GSH, and GSSG levels were measured and redox potential was calculated. A portion of liver was used to isolate RNA for quantitative RT-PCR of SOD2. (A) Liver (CySS/Cys), (B) liver GSSG/GSH, (C) liver SOD2. Data are from representative of two independent experiments. *p < 0.05.
accessed by immune cell apoptosis, proinflammatory cytokine gene expression, systemic organ damage markers, and mortality. Furthermore, we demonstrated that Lcn2KO mice exhibited delayed hypoferremia of inflammation at the onset of inflammation, which eventuated in increased oxidative stress. Whereas delayed hypoferremia was most prominent at 4 h, elevated oxidative stress was only observed at later time points (24 h). This temporal difference likely reflects that the major nonprotein thiol and cellular reductant, GSH, is generally present in high concentrations (39), likely high enough to protect from oxidative damage for a limited period, thus manifesting in depletion of GSH stores only at 24 h (39). Importantly, reducing levels of free iron with the iron chelator DFO substantially ameliorated LPS-induced toxicity and mortality.

Sepsis is characterized by an exacerbated host proinflammatory response and elevated immune cell apoptosis eventuating in immunosuppression. The increased sensitivity of Lcn2-deficient cells to LPS suggests that Lcn2 may negatively regulate proinflammatory gene expression. Our results also support the previous study that used siderophore/iron-free recombinant Lcn2 to substantially reduce LPS-induced proinflammatory cytokines in macrophages (40). However, it is not clear at present whether the highly upregulated Lcn2 observed during inflammatory conditions is apo-Lcn2 (iron- and siderophore-free) or whether it is bound to a siderophore, another aspect of Lcn2 biology that warrants further investigation. It would be reasonable to predict that mammalian-derived Lcn2 would be in a siderophore-containing form, as Lcn2 can only bind iron through the action of a mammalian siderophore such as catechol or 2,5-dihydroxybenzoic acid (19). Exploring the role of apo-and holo-Lcn2 (siderophore- or siderophore- and iron-bound) during inflammatory conditions, their targets and molecular fates could reveal key insights regarding Lcn2 signaling and iron homeostasis. However, current technology does not easily permit in-depth study of the iron binding states of Lcn in vivo.

Immune cell apoptosis is a major factor underlying the increased mortality seen in septic patients (5). The increased immune cell apoptosis observed in Lcn2KO mice may contribute to the high mortality of the mice. Furthermore, Lcn2-deficient cells not only exhibited elevated proinflammatory cytokines but also substantially upregulated anti-inflammatory molecules (IL-10 and sIL-1Ra), which may also contribute to immunosuppression, a phenomenon known as compensatory anti-inflammatory response syndrome (41). Additionally, apoptotic immune cells appeared as aggregates in the spleens of Lcn2KO mice, suggesting the possibility that impaired autophagy results in a delay in the clearance of apoptotic cells contributing to the leakage of cellular debris, including many activators of innate immunity (danger-associated molecular patterns such as Hsp70 and HMGB1), which would further amplify the proinflammatory response (42).

Furthermore, our study clearly demonstrates that Lcn2 facilitates LPS-induced hypoferremia at early time points, allowing the host to control iron equilibrium based on inflammatory conditions. It is likely that Lcn2KO mice with significantly elevated proinflammatory cytokines accompanied with modestly elevated basal systemic iron levels may further aggravate LPS-induced toxicity in these mice. It is also possible that elevated concentrations of intracellular “labile” iron (34) in Lcn2KO mice may readily participate in a Fenton reaction, potentiating LPS-induced toxicity.
(18, 19). The substantial reduction of LPS-induced caspase-3 cleavage, organ damage markers, and proinflammatory cytokines by DFO suggests that dysregulated iron homeostasis plays a role in LPS-induced toxicity in Lcn2KO mice.

Macrophages play a central role in sepsis via secretion of proinflammatory cytokines, particularly TNF-α, and also by regulating iron homeostasis (43). The secretion of proinflammatory cytokines in response to LPS is NF-κB dependent (44, 45). It has been shown that treatment of cultured hepatic macrophages with 1,2-dimethyl-3-hydroxypyrid-4-one, a lipophilic iron chelator, blocked LPS-induced NF-κB activation and proinflammatory TNF-α and IL-6 expression (46). Furthermore, Darshan et al. (47) demonstrated that 6 h pretreatment of RAW264.7 macrophages with DFO inhibited LPS-induced IL-6 in vitro and LPS-induced TNF-α and IL-6 were significantly lower in rats on an iron-deficient diet. Similarly, DFO treatment reduced LPS-induced mortality in mice (48). Iron supplementation increases proinflammatory cytokines in IL-10KO mice, which are prone to develop spontaneous colitis (49). Furthermore, Sindrilaru et al. (50) have shown that in humans with chronic venous leg ulcers, iron-loaded macrophages exhibit increased proinflammatory cytokines. This study also showed that coadministration of iron/dextran delays wound healing whereas DFO improves wound healing. Taken together, these studies demonstrate that iron homeostasis plays a crucial role not only in ROS generation but also in host proinflammatory gene expression. Accordingly, neutralization of LPS-induced toxicity by DFO in Lcn2KO mice strongly supports previous work, which demonstrated elevated intracellular labile iron levels in Lcn2KO mice (34). Thus, elevated Lcn2 during sepsis serves to induce hypoferremia and stabilize iron, which can limit oxidative stress, cellular apoptosis, and proinflammatory gene expression as shown schematically in Fig. 10.

That dramatic induction of Lcn2 protects mice against cata
trophic inflammation suggests the possibility that Lcn2, and its human ortholog NGAL, may have therapeutic potential in the treatment of septic shock. Indeed, our results suggest that Lcn2 not only exerts antiseptic activity via bacterial siderophore sequestra-
tion (51), but it also acts as an anti-inflammatory agent by regu-

...8 LIPOCALIN 2 PROTECTS AGAINST ENDOTOXIC SHOCK

P. Lesnik. 2008. Enhanced dendritic cell survival attenuates lipopolysaccharide-

LPS-induced toxicity in Lcn2KO mice.

J. M. Quinn. 1999. The patient-related costs of care for sepsis patients in a

174: 3765–3772.

Cherayil, B. J. 2011. The role of iron in the immune response to bacterial in-

References

Disclosures

We thank Daniel Moore, III for technical assistance.

The authors have no financial conflicts of interest.

Supplementary Figure 2

A

- WT
- Lcn2KO

Hepcidin copy/1000 copies 36B4

Hours (Post LPS administration)

B

- WT
- Lcn2KO

Gpx copy/1000 copies 36B4

Hours (Post LPS administration)
Suppl. Figure. 1 Bone marrow derived macrophages from Lcn2KO mice are hyperresponsive to LPS. Bone marrow derived macrophages from Lcn2KO mice and their WT littermates were stimulated with 100 or 500 ng/ml of *E. coli* LPS serum free DMEM for 24h and cytokines were analyzed in the supernatants. (A) IL-1β (B) IL-6 (C) KC (D) sIL-1Ra (*p<0.05)

Suppl. Figure. 2 Eight week old male wild type (WT) BL6 mice were given either 0.1ml PBS or *E. coli* LPS (5mg/kg body weight) i.p. Hepatic hepcidin and glutathione peroxidase (Gpx) levels were measured at indicated time point by qRT-PCR.