Decitabine and Vorinostat Cooperate To Sensitize Colon Carcinoma Cells to Fas Ligand-Induced Apoptosis In Vitro and Tumor Suppression In Vivo

Dafeng Yang, Christina M. Torres, Kankana Bardhan, Mary Zimmerman, Tracy L. McGaha and Kebin Liu

J Immunol published online 28 March 2012
http://www.jimmunol.org/content/early/2012/03/28/jimmunol.1103035

Supplementary Material
http://www.jimmunol.org/content/suppl/2012/03/28/jimmunol.1103035.DC1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Decitabine and Vorinostat Cooperate To Sensitize Colon Carcinoma Cells to Fas Ligand-Induced Apoptosis In Vitro and Tumor Suppression In Vivo

Dafeng Yang,* Christina M. Torres,* Kankana Bardhan,* Mary Zimmerman,* Tracy L. McGaha,†‡§ and Kebin Liu*†‡

T he Fas-mediated apoptosis pathway was originally identified to play a critical role in the immune system for depletion of self-reactive lymphocytes. Germline and somatic mutations or deletions of Fas- or its physiological ligand (FasL)-coding sequences in humans lead to autoimmune lymphoproliferative syndrome (1–5). Mice that are deficient in Fas or FasL also develop lymphoproliferation disorder, resulting in lymphadenopathy and systemic lupus-like autoimmune disease (6, 7). These observations indicate that Fas plays a critical role in immune cell homeostasis and in the suppression of autoimmune diseases. However, it has become increasingly appreciated that the Fas-mediated apoptosis pathway is also directly involved in tumor cell apoptosis. The critical role of Fas in tumor cell apoptosis makes targeting the Fas-mediated apoptosis pathway an attractive approach in cancer therapy. For example, both the Fas and FasL gene promoters are polymorphic, including a G-to-A substitution at −1377 bp and an A-to-G substitution at −670 bp in the Fas gene promoter, as well as a C-to-T substitution at −844 bp and an A-to-G substitution at −124 bp in the FasL gene promoter. These polymorphisms diminish transcription factor binding to the Fas and FasL promoter to decrease Fas and FasL expression levels, resulting in an increased risk for cancer development in humans (14–19). Moreover, a study with a large cohort of human colorectal cancer patient specimens showed that Fas-mediated apoptosis is an important contributor to tumor regression (11). Therefore, the Fas and FasL system also regulate apoptosis of cancerous cells and, thus, functions as a critical component of the host cancer immunosurveillance system against cancer development (20–22).

The death receptor Fas and its physiological ligand (FasL) regulate apoptosis of cancerous cells, thereby functioning as a critical component of the host cancer immunosurveillance system. To evade Fas-mediated apoptosis, cancer cells often downregulate Fas to acquire an apoptosis-resistant phenotype, which is a hallmark of metastatic human colorectal cancer. Therefore, targeting Fas resistance is of critical importance in Fas-based cancer therapy and immunotherapy. In this study, we demonstrated that epigenetic inhibitors decitabine and vorinostat cooperate to upregulate Fas expression in metastatic human colon carcinoma cells. Decitabine also upregulates BNIP3 and Bik expression, whereas vorinostat decreased Bcl-xL expression. Altered expression of Fas, BNIP3, Bik, and Bcl-xL resulted in effective sensitization of the metastatic human colon carcinoma cells to FasL-induced apoptosis. Using an experimental metastasis mouse model, we further demonstrated that decitabine and vorinostat cooperate to suppress colon carcinoma metastasis. Analysis of tumor-bearing lung tissues revealed that a large portion of tumor-infiltrating CD8+ T cells are FasL+, and decitabine and vorinostat-mediated tumor-suppression efficacy was significantly decreased in Fas−/− mice compared with wild-type mice, suggesting a critical role for FasL in decitabine and vorinostat-mediated tumor suppression in vivo. Consistent with their function in apoptosis sensitization, decitabine and vorinostat significantly increased the efficacy of CTL adoptive transfer immunotherapy in an experimental metastasis mouse model. Thus, our data suggest that combined modalities of chemotherapy to sensitize the tumor cell to Fas-mediated apoptosis and CTL immunotherapy is an effective approach for the suppression of colon cancer metastasis.

Received for publication October 21, 2011. Accepted for publication February 25, 2012.

This work was supported by the National Institutes of Health (CA133085 to K.L.) and the American Cancer Society (RSG-09-209-01-TBG to K.L.).

Address correspondence and reprint requests to Dr. Kebin Liu, Department of Biochemistry and Molecular Biology, Georgia Health Sciences University, 1410 Laney Walker Boulevard, Augusta, GA 30912. E-mail address: Kliu@georgiahealth.edu

The online version of this article contains supplemental material.

Abbreviations used in this article: FasL, Fas ligand; HDAC, histone deacetylase; MS, methylation sensitive; MTD, maximally tolerated dose; PI, propidium iodide; siRNA, small interfering RNA; Treg, regulatory T cell; wt, wild-type.

Copyright © 2012 by The American Association of Immunologists, Inc. 0022-1767/12/S16.00 for both hematopoietic and nonhematopoietic cancers (1, 4, 13). Furthermore, both the Fas and FasL gene promoters are polymorphic, including a G-to-A substitution at −1377 bp and an A-to-G substitution at −670 bp in the Fas gene promoter, as well as a C-to-T substitution at −844 bp and an A-to-G substitution at −124 bp in the FasL gene promoter. These polymorphisms diminish transcription factor binding to the Fas and FasL promoter to decrease Fas and FasL expression levels, resulting in an increased risk for cancer development in humans (14–19). Moreover, a study with a large cohort of human colorectal cancer patient specimens showed that Fas-mediated apoptosis is an important contributor to tumor regression (11). Therefore, the Fas and FasL system also regulate apoptosis of cancerous cells and, thus, functions as a critical component of the host cancer immunosurveillance system against cancer development (20–22).

The efficacy of cytotoxicity-based cancer therapy largely depends on induction of tumor cell apoptosis. The critical role of Fas in tumor cell apoptosis makes targeting the Fas-mediated apoptosis pathway an attractive approach in cancer therapy. FasL protein and anti-Fas agonist Abs are potentially effective anticancer agents. However, Fas-based chemotherapies are likely highly toxic because infusion of FasL protein or anti-Fas agonist Abs induces extensive apoptosis of hepatocytes, resulting in lethal liver damage (23–25), thereby limiting the clinical use of FasL protein or anti-Fas Abs for systemic anticancer chemotherapy. In contrast, FasL is expressed on activated CTLs, and tumor-specific FasL+ CTLs are natural biological agents for inducing Fas-mediated apoptosis in cancer therapy (11, 26). However, cancer cells often silence Fas expression and/or acquire an apoptosis-resistant phenotype to evade Fas-mediated killing. For example, Fas is constitutively expressed at high levels in normal human
regulate the expression of Fas, BNIP3, Bik, and Bcl-xL to cooperate and identified that epigenetic inhibitors decitabine and vorinostat test this hypothesis, we performed this proof-of-concept study that promote Fas-mediated apoptosis to destroy the tumors. To overcome apoptosis resistance in various types of cancers (35–37). These epigenetic inhibitors were shown to either reactivate the expression of hypermethylated genes (33). Therefore, vorinostat and decitabine are often combined to achieve maximal activation efficacy of epigenetically silenced genes in cancer cells (31, 33–35).

Pioneer studies demonstrated that decitabine and vorinostat can overcome apoptosis resistance in various types of cancers (35–37). The epigenetic inhibitors were shown to either reivate the expression of death receptor Fas in tumor cells (36–38) or target the Fas-mediated apoptosis-signaling pathways to induce tumor cell apoptosis (33–35, 39, 40). Based on these observations, we hypothesized that epigenetic mechanism-based chemotherapy may be combined with CTL immunotherapy to overcome tumor cell Fas resistance to increase the efficacy of CTL immunotherapy. This idea is analogous to a "one-two punch" strategy. First, cancer cells are treated with apoptosis-sensitizing drugs to activate Fas and/or sensitize tumor cells to Fas-mediated apoptosis. Once "sensitized," tumors are treated with Fasl. tumor-specific CTLs that promote Fas-mediated apoptosis to destroy the tumors. To test this hypothesis, we performed this proof-of-concept study and identified that epigenetic inhibitors decitabine and vorinostat regulate the expression of Fas, BNIP3, Bik, and Bcl-xL to cooperatively sensitize the metastatic human colon carcinoma cells to FasL-induced apoptosis. Furthermore, we demonstrated that decitabine and vorinostat-mediated tumor suppression depends, at least in part, on Fasl in vivo. Overall, our results indicate that combined Fas-based chemotherapy and Fasl-dependent CTL immunotherapy is effective in suppressing colon carcinoma metastasis, and it holds great promise for further development for the treatment of metastatic human colorectal cancer.

Materials and Methods

Mice

Fasl (Cpt.C3-Fasl(gdf4)), BALB/cByJ mice were obtained from The Jackson Laboratory. BALB/c mice were obtained from the National Cancer Institute (Frederick, MD). All mice were used at age ≥6 wk. Experiments and care/welfare were in agreement with federal regulations and an approved protocol by the Georgia Health Sciences University Animal Care and Use Committee.

Reagents

Decitabine was obtained from Sigma (St. Louis, MO). Vorinostat (Merck) was provided by the Cancer Treatment and Evaluation Program, National Cancer Institute/National Institutes of Health. Fasl (Mega-Fas Ligand, kindly provided by Drs. Steven Butcher and Lars Damstrup, Topotarget, Copenhagen, Denmark) is a recombinant fusion protein that consists of three human Fasl extracellular domains linked to a protein backbone comprising the dimer-forming collagen domain of human adiponectin. The Mega-Fas Ligand was produced as a glycoprotein in mammalian cells using a Good Manufacturing Practice-compliant process at Topotarget.

RT-PCR analysis

Total RNA was isolated from cells or tissues by using TRIzol reagent (Invitrogen, San Diego, CA) and used for real-time RT-PCR analysis of gene expression, as described (41, 42). The PCR primer sequences are as follows: human Fas: forward: 5'-ATTATGTCCCAAAAGTTTAAT-3', reverse: 5'-TGCTAGTTTCTGATCTTCTTCT-3'; mouse Fasl: forward: 5'-CTTGGGCCTCTTCAAGGTCCATG-3', reverse: 5'-TCTCCCTTATTAGCCAGATCC-3'; and β-actin: forward: 5'-ATTGTTACCATGGACGACATG-3', reverse: 5'-CTTATGAGTGATCTGTAG-3'.

Cell treatments

For treatment with decitabine, cells were cultured in its presence for 3 d. For vorinostat treatment, cells were cultured in its presence for 2 d

Sodium bisulfite treatment and DNA-methylation analysis

Genomic DNA was isolated using a DNeasy Tissue Kit (QIAGEN). Sodium bisulfite treatment of genomic DNA was carried out using a CpGenome Universal DNA Modification Kit (Chemicon, Temecula, CA). Methylation-sensitive (MS)-PCR was carried out as previously described (43). The primer sequences are as follows: Bnip3: unmethylation: forward: 5'-TGGTTTTT-TTAAAGGGATATTTGG-3', reverse: 5'-CAAAAAAAAGACCTACA-ATACAC-3'; methylation: forward: 5'-TTATGTTTTTAAAAGGAGGAA-ATTCC-3', reverse: 5'-GAAAAAAAAAAACCTACTACAGG-3' and Bik: unmethylation: forward: 5'-GATCGGCTGATGTTAAGATTGGG-3', reverse: 5'-GATACCGGAGCGTGGAGATTCG-3'; methylation: forward: 5'-GTACGGGAGGATGTTAAGGATTCG-3', reverse: 5'-ATAAGAAACCACAAACCACAACACAC-3' and 5'-ATAAGAAACCACAAACCACAACACAC-3'.

Western blotting analysis

Western blotting analysis was performed as previously described (44). The following primary Abs were obtained from Cell Signaling Biotech (Danvers, MA): Bak, Bik, Bid, FLIP, cIAP1, xIAP, Bad, Bok, and PUMA. The Western blotting analysis was performed as previously described (44). The following primary Abs were obtained from Cell Signaling Biotech (Danvers, MA): Bak, Bik, Bid, FLIP, cIAP1, xIAP, Bad, Bok, and PUMA. The following primary Abs were obtained from Santa Cruz Biotechnology (Santa Cruz, CA): Bax, survivin, McI-1, and BNIP3. The following Abs were obtained from BD Biosciences: Bcl-2 and Bcl-xL. Anti-β-actin was obtained from Sigma (St. Louis, MO).

Aptosis assays

Cells were either stained with propidium iodide (PI) (Trevigen, Gaithersburg, MD) or PI plus Annexin V-Alexa Fluor 647 (BioLegend, San Diego, CA) and analyzed by flow cytometry.

Cell surface protein analysis

Tumor cells were stained with anti-Fas (BD Biosciences) mAb, Isootype-matched control IgG (BD Biosciences) was used as a negative control. The stained cells were analyzed by flow cytometry. For Fasl protein analysis, mouse lungs were digested in collagenase solution to create a single-cell suspension. The cell suspension was stained with PE-conjugated Fasl (BD Biosciences), FITC-conjugated CD8 mAb (BioLegend), both mAbs and analyzed by flow cytometry.

Gene silencing

Tumor cells were transiently transfected with scramble small interfering RNA (siRNA; Dharmaco, Lafayette, CO) and human Bcl-xL-specific siRNA (Santa Cruz Biotechnology), respectively. Cells were then harvested and cultured in 24-well plates overnight in the absence or presence of Fasl, before analysis for apoptosis.
Tumor cell transfection

Tumor cells were transiently transfected with the pEGFP control vector and pEGFP.hBik plasmid, respectively. Cells were then harvested and cultured overnight in 24-well plates in the absence or presence of FasL before analysis for apoptosis.

Liver-toxicity analysis

Decitabine (0.1 mg/kg body weight) and vorinostat (25 mg/kg body weight) were injected i.v. into BALB/c mice either alone or in combination. Serum was collected from mice 3 d later and measured for complete liver profile (Table I) at Georgia Laboratory Animal Diagnostic Service (Athens, GA).

Experimental lung metastasis mouse model and CTL immunotherapy

Tumor-specific CTLs were generated from perforin-deficient BALB/c mice, as previously described (45). The experimental lung metastasis mouse model and CTL adoptive-transfer immunotherapy were carried out as previously described (45). Decitabine was used at a dose of

FIGURE 1. Decitabine and vorinostat cooperate to upregulate Fas expression and sensitize the metastatic human colon carcinoma cells to FasL-induced apoptosis. LS411N cells were treated with decitabine for 3 d (A) or vorinostat for 2 d (B) at the indicated doses, stained with Fas-specific mAb, and analyzed by flow cytometry for cell surface Fas protein level. Gray area: IgG isotype-control staining; solid line: Fas-specific staining. **Lower panels,** The Fas protein level was quantified as mean fluorescence intensity (MFI). Column: mean; bar: SD. (C) LS411N cells were treated with decitabine (0.5 μM, 3 d), vorinostat (0.5 μM, 2 d), or both decitabine and vorinostat and analyzed for Fas protein level by flow cytometry (left and middle panels). The Fas protein level is quantified as MFI (middle panel). Column: mean; bar: SD. Fas mRNA level was measured by real-time RT-PCR (right panel). The Fas mRNA level in control cells was arbitrarily set at 1. (D) Tumor cells were treated as in (C), followed by incubation with FasL (200 ng/ml) overnight, staining with PI, and analysis by flow cytometry (left panels). The percentage of FasL-induced cell death was quantified as percentage of PI+ cells in the presence of FasL − percentage of PI+ cells in the absence of FasL (right panel). Column: mean; bar: SD.
0.1 mg/kg body weight, and vorinostat was used at a dose of 20 mg/kg body weight.

Statistical analysis

Where indicated, data are represented as the mean ± SD. Statistical analysis was performed using a two-sided t test, with p values < 0.05 considered statistically significant.

Results

Decitabine and vorinostat cooperate to upregulate Fas expression and sensitize metastatic human colon carcinoma cells to FasL-induced apoptosis

It was shown that vorinostat activates Fas gene expression in tumor cells (36, 37, 46), whereas Fas promoter DNA methylation has been observed in certain colon carcinoma cells (47). Based on these observations, we reasoned that inhibition of DNA methylation and HDAC activity may upregulate Fas expression in metastatic human colon carcinoma cells. To test this notion, the metastatic human colon carcinoma cell line LS411N was treated with decitabine and vorinostat and analyzed for Fas expression. Both decitabine and vorinostatin increased Fas protein level on the tumor cell surface in a dose-dependent manner, and the increase reached a plateau at a dose of ~0.75 μM (Fig. 1A, 1B). Interestingly, combined decitabine and vorinostatin treatment resulted in a significantly higher level of Fas protein than did either agent alone (Fig. 1C). Decitabine and vorinostatin also increased the Fas mRNA level, but combined decitabine and vorinostatin did not further increase the Fas mRNA level compared with either agent alone (Fig. 1C).

Metastatic human colon carcinoma LS411N cells are highly resistant to FasL-induced apoptosis. To determine whether the increased Fas expression leads to increased sensitivity of the tumor cells to FasL-induced apoptosis, LS411N cells were treated with decitabine and vorinostatin, either alone or in combination, and then incubated with FasL protein. Analysis of cell death revealed that decitabine or vorinostatin treatment alone increased the tumor cell sensitivity to FasL-induced apoptosis (Fig. 1D). However, consistent with the Fas protein level, combined treatment with the two agents rendered the metastatic human colon carcinoma cells more sensitive to FasL-induced apoptosis than did either treatment alone (Fig. 1D). Taken together, our data suggest that inhibition of both DNA methylation and HDAC activity is an effective approach to overcome apoptosis resistance in metastatic human colon carcinoma cells.

Fas promoter DNA is sporadically methylated in metastatic human colon carcinoma cells

To determine whether decitabine upregulates Fas expression through inhibition of the Fas promoter DNA methylation, we analyzed the Fas promoter DNA methylation status in the metastatic human colon carcinoma cell lines LS411N and SW620. Analysis of the human Fas gene revealed that the human Fas gene promoter contains multiple classical CpG islands surrounding the transcription-initiation site (Fig. 2A). However, analysis of the genomic DNA sequence in two regions of the Fas promoter indicated that the Fas promoter is not methylated in LS411N cells (Fig. 2B). In SW620 cells, we observed that only 1–3 cytosines of the 34 CpGs analyzed are methylated (Fig. 2B). Therefore, we conclude that Fas upregulation by decitabine is unlikely to occur through inhibition of Fas promoter DNA methylation.

Statistical analysis

Where indicated, data are represented as the mean ± SD. Statistical analysis was performed using a two-sided t test, with p values < 0.05 considered statistically significant.

Targets

4 TARGETING Fas RESISTANCE TO SUPPRESS COLON CANCER
Decitabine and vorinostat regulate the expression of BNIP3, Bik, and Bcl-xL

Sensitivity to Fas-mediated apoptosis is mediated at both the death receptor Fas level and within its downstream signaling pathway (48–50). Therefore, we next analyzed the key mediators of the Fas-signaling pathway in decitabine and vorinostat-treated metastatic human colon carcinoma cells. Western blotting analysis revealed that protein levels of BNIP3 and Bik were increased...
following decitabine treatment, whereas Bcl-xL protein was decreased by vorinostat treatment (Fig. 3A). Thus, inhibition of DNA methylation and HDAC activity altered the expression levels of multiple apoptosis-related mediators. Analysis of the BNIP3 and Bik promoters revealed that there are classical CpG islands in these two promoter regions around the transcription-initiation sites (Fig. 3B, 3C). MS-PCR analysis indicated that both BNIP3 and Bik promoter DNA was hypermethylated in the metastatic human colon carcinoma cell lines LS411N and SW620 (Fig. 3B, 3C). Thus, our data demonstrated that the pro-apoptotic BNIP3 and Bik gene promoters are silenced by DNA methylation in metastatic human colon carcinoma cells and that decitabine inhibits DNA methylation to reactivate BNIP3 and Bik.

Bik, BNIP3, and Bcl-xL mediate apoptosis resistance in metastatic human colon carcinoma cells

The above observations suggest that decitabine and vorinostat alter BNIP3, Bik, and Bcl-xL protein levels suggest that these three proteins might play critical roles in the regulation of apoptosis in metastatic human colon carcinoma cells. The function of BNIP3 in regulating apoptosis in metastatic human colon carcinoma cells was demonstrated recently (51). To determine whether Bik and Bcl-xL function in the apoptosis of colon carcinoma cells, we silenced Bcl-xL in LS411N cells and analyzed the tumor cell sensitivity to Fas-mediated apoptosis. Analysis of apoptotic cell death indicated that silencing Bcl-xL significantly increased tumor cell sensitivity to FasL-induced apoptosis (Fig. 4A, 4B). We also overexpressed Bik in LS411N cells and observed that restoration of Bik expression significantly increased LS411N cell sensitivity to FasL-induced apoptosis (Fig. 4C, 4D). Therefore, BNIP3, Bik, and Bcl-xL play critical roles in apoptosis in metastatic human colon carcinoma cells.

Decitabine and vorinostat cooperate to suppress colon carcinoma development in vivo

To determine whether the above observations can be extended to in vivo colon carcinoma suppression, we made use of the colon carcinoma CT26 experimental lung metastasis mouse model. We first analyzed the CT26 responses to decitabine and vorinostat and observed that, like metastatic human colon carcinoma cells, CT26 cells responded to decitabine and vorinostat to upregulate Fas and became sensitive to FasL-induced apoptosis (Supplemental Fig. 1). Next, CT26 cells were transplanted to syngeneic BALB/c mice. These tumor-bearing mice were then treated with decitabine and vorinostat, either alone or in combination, and examined for lung metastasis. Both decitabine and vorinostat exhibited tumor-suppression effects individually. However, a much greater tumor-suppression effect was observed when decitabine and vorinostat were used in combination (Fig. 5A). Fas-mediated apoptosis is initiated by FasL binding to the Fas receptor. To identify the source of FasL, we first extracted total RNA from lungs derived from tumor-free control mice or tumor-bearing mice and analyzed FasL mRNA levels. Real-time RT-PCR analysis indicated that both tumor-free and tumor-bearing lung cells express FasL, and tumor-free lung tissues express higher levels of FasL than do the tumor-bearing lung tissues (Fig. 5B). Next, we sought to determine which types of cells in the lung express FasL. Lungs from tumor-bearing mice were digested with collagenase to make single-cell suspensions and were analyzed for FasL protein levels on the cell surfaces of CD8⁺ T cells and non-CD8⁺ cells in the lung. CD8⁺ T cells accounted for ∼8% of the total lung cells (Fig. 5Cb), and ∼10% of lung cells expressed FasL (Fig. 5Ce). Approximately 24.8% of lung tissue-infiltrating CD8⁺ T cells expressed FasL (Fig. 5Cc, 5D), whereas ∼12.7% of non-CD8⁺ cells expressed FasL (Fig. 5Ci, 5D). Taken together, our data suggest that, although a significant portion of tumor-infiltrating CD8⁺ T cells is FasL⁺ cells, both tumor-infiltrating CD8⁺ T cells and CD8⁺ lung cells are the sources of FasL in the tumor microenvironment.

FasL plays a critical role in suppression of metastatic colon carcinoma in vivo

The above observations suggest that FasL is expressed on tumor-infiltrating immune cells, as well as other lung cells. To determine the role of FasL in tumor suppression in vivo, CT26 cells were transplanted to wild-type (wt) and Fas^{−/−} mice. In the absence of any treatment, no significant difference in lung tumor burden was observed between wt and Fas^{−/−} mice (Fig. 6A). However, combined decitabine and vorinostat treatment exhibited significantly greater tumor-suppression efficacy in wt mice than in Fas^{−/−} mice (Fig. 6B). Therefore, our results suggest that decitabine and vorinostat sensitize colon carcinoma cells to FasL-mediated tumor suppression in vivo.

Low-dose decitabine and vorinostat exhibit no significant liver toxicity in vivo

Toxicity, especially liver toxicity, is the major limitation for the use of DNA methylation inhibitors and HDAC inhibitors in human cancer therapy (29, 31, 52). To determine the toxicity of decitabine and vorinostat at the dose used in this study, we injected the two drugs i.v. into BALB/c mice, either alone or in combination. Three days later, blood was collected, and serum was analyzed for complete liver enzyme profiles. Aspartate aminotransferase level was decreased >2-fold by vorinostat treatment (Table I). Decitabine and vorinostat did not significantly alter liver enzyme leakage into the peripheral blood. Taken together, our data suggest that decitabine and vorinostat exert effective tumor-suppression activity at a dose that is not toxic in mice.

FIGURE 6. Decitabine and vorinostat-mediated tumor suppression is FasL dependent in vivo. (A) CT26 cells were injected into wt and Fas^{−/−} mice at doses of 7.5 × 10⁵ cells/mouse (upper panel) or 5 × 10⁵ cells/mouse (lower panel) and examined for lung tumor growth. The number of lung tumor nodules was enumerated as in (B) (right panel). Each circle represents total tumor counts from a single mouse. The horizontal lines in the plot box represent mean tumor nodule number. (B) CT26 cells were injected into wt and Fas^{−/−} mice at doses of 7.5 × 10⁵ cells/mouse. The tumor-bearing mice were treated with decitabine and vorinostat, as in Fig. 5A. Shown are tumor-bearing lungs of wt and Fas^{−/−} mice. The number of lung tumor nodules was enumerated as in (A) (right panel).
CTL-adaptive immunotherapy in combination with decitabine and vorinostat chemotherapy effectively suppresses colon carcinoma metastasis

Our above data suggest that decitabine and vorinostat, when used in combination, are effective in overcoming metastatic colon carcinoma cells’ resistance to FasL-induced apoptosis. Our data also indicate that FasL plays a critical role in decitabine and vorinostat-mediated tumor suppression in vivo. Because CD8⁺ T cells express FasL and use FasL as one of their primary effector mechanisms (9–12), we reasoned that combined chemotherapy with decitabine and vorinostat and tumor-specific CTL-adaptive immunotherapy is an effective therapy for the suppression of colon carcinoma metastasis. To test this hypothesis, CT26 cells were transplanted into syngeneic mice for 7 d to establish extensive lung metastases. The tumor-bearing mice were then treated with CT26 tumor-specific, perforin-deficient, pfpCTLs or pfpCTLs plus decitabine and vorinostat. The use of pfpCTLs eliminates the perforin-mediated cytoxicity to allow better evaluation of the FasL-induced cytotoxicity. The prediction is that if decitabine and vorinostat can overcome apoptosis resistance of the tumor cells in vivo, then combinational therapy should exhibit greater antitumor efficacy than CTL-adaptive immunotherapy alone. Indeed, although combined decitabine and vorinostat treatment (Fig. 5A) and pfpCTLs treatment (Fig. 7) alone showed significant tumor-rejection efficacy, combination chemotherapy plus CTL immunotherapy exhibited significantly enhanced tumor-rejection efficacy against the established colon carcinoma lung metastases compared with CTL immunotherapy or decitabine and vorinostat chemotherapy alone (Figs. 5A, 7). In summary, our data suggest that chemotherapy with decitabine and vorinostat in combination with CTL adoptive immunotherapy is effective for the intervention of colon carcinoma metastasis in vivo.

Discussion

It is well-established in the literature that decitabine and vorinostat exert direct cytoxicity to induce tumor cell death, in part through inducing cell cycle arrest and DNA damage response to activate the intrinsic apoptosis pathway (34, 53, 54). This mechanism may explain the decitabine and vorinostatinduced cell death in the absence of FasL observed in this study (Fig. 1D). Previous studies also convincingly demonstrated that vorinostat modulates Fas and other apoptosis-related genes to mediate tumor cell apoptosis (36–38). However, Fas is a death receptor, and it initiates apoptosis only after engagement by its ligand, FasL. Therefore, an increase in Fas alone and alteration of apoptosis-related genes are not sufficient to initiate Fas-mediated apoptosis in tumor cells in the absence of FasL. Nevertheless, increased Fas expression level induced by decitabine and vorinostat is apparently associated with increased sensitivity of human colon carcinoma cells to FasL-induced apoptosis (Fig. 1). More importantly, combined treatment with decitabine and vorinostat effectively overcomes metastatic human colon carcinoma cell resistance to Fas-mediated apoptosis, a hallmark of metastatic human colorectal cancer (27, 28).

Although a large portion of the tumor-infiltrating CD8⁺ cells express FasL, CD8⁺ cells in the lung tissue also express FasL (Fig. 5C). RT-PCR analysis revealed that the FasL mRNA level is higher in the lungs of tumor-free mice than in those of tumor-bearing mice (Fig. 5B). The majority of cells in lungs of tumor-bearing mice is tumor cells (Fig. 5A). Although tumor-infiltrating CD8⁺ T cells express FasL, these T cells only consist of a small portion of totals lung cells. This may explain the high FasL mRNA level in the tumor-free mice. The type of FasL⁺ lung cells and their function in Fas-mediated apoptosis require further study.

Our studies indicated that the Fas promoter is only sporadically methylated in metastatic human colon carcinoma cells (Fig. 2). Therefore, decitabine-mediated Fas upregulation is unlikely to

Table I. Liver toxicity profiles in mice after decitabine and vorinostat treatment

<table>
<thead>
<tr>
<th>Serum Enzyme/Protein Level</th>
<th>Treatment</th>
<th>Control</th>
<th>Decitabine</th>
<th>Vorinostat</th>
<th>Decitabine and Vorinostat</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALP (U/l)</td>
<td></td>
<td>129</td>
<td>120</td>
<td>106</td>
<td>126</td>
</tr>
<tr>
<td>ALT (U/l)</td>
<td></td>
<td>31</td>
<td>34</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>AST (U/l)</td>
<td></td>
<td>137</td>
<td>140</td>
<td>54</td>
<td>89</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td></td>
<td>78</td>
<td>78</td>
<td>76</td>
<td>72</td>
</tr>
<tr>
<td>Albumin (g/dl)</td>
<td></td>
<td>3.6</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Total bilirubin (mg/dl)</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total protein (g/dl)</td>
<td></td>
<td>4.8</td>
<td>4.6</td>
<td>4.5</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Serum from three mice of each treatment group was pooled for liver profile analysis.

ALP, Alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate phosphatase.
occurs through direct inhibition of the Fas promoter DNA methyl-
ylation. NF-κB and p53 are prominent regulators of Fas expres-
sion, and chemotherapeutic agents were shown to upregulate Fas
through NF-κB– and p53-dependent mechanisms (55, 56) There-
fore, it is possible that decitabine and vorinostat upregulate Fas
expression through NF-κB– and p53-dependent mechanisms in
colon carcinoma cells, but it remains to be determined.

We also demonstrated in this study that BNIP3 and Bik promoter
DNA are methylated in metastatic human colon carcinoma cells
(Fig. 3), and decitabine effectively reactivates BNIP3 and Bik
expression in metastatic human colon carcinoma cells. Further-
more, vorinostat decreased Bcl-XL expression in metastatic human
colon carcinoma cells. Because silencing Bcl-XL expression or
overexpressing Bcl only altered the tumor cell sensitivity to FasL-
induced apoptosis to a small degree (Fig. 4), it is likely that
decitabine and vorinostat cooperate to alter the expression of
multiple targets, including Fas, BNIP3, Bik, and Bcl-XL, which
additively contribute to the greater degree of apoptosis induction
in vitro (Fig. 1D) and enhance tumor suppression in vivo (Fig.
5A).

One of the major obstacles in cancer immunotherapy is immune
suppression. Although tumor-specific FasL+ CTLs are potentially
effective anticancer agents (11, 57, 58), the target tumor cells
often induce immune suppression to suppress CTLs in the tumor
microenvironment (59–61). CTLs suppress target tumor cells pri-
marily through two cell contact-dependent cytotoxic mechanisms.

The first cytolytic mechanism depends on the polarization of
perforin and granzymes. The second effector mechanism
involves the interaction of FasL on activated CTL surfaces with its
receptor Fas on the target tumor cells (9, 10, 62, 63). Although it
was shown that regulatory T cells (Tregs) can inhibit clonal ex-
pansion of activated T cells in vitro (64), recent studies indicate
that Tregs do not inhibit CD8+ T cell activation and proliferation
in vivo but rather selectively inhibit granule exocytosis of CTLs,
thereby selectively impairing the perforin effector mechanism of
CTLs without inhibiting CTL activation and clonal expansion (65,
66). Therefore, the Fas-mediated cytotoxicity of the tumor-
specific CTLs should still be effective and is particularly impor-
tant in CTL-mediated antitumor activity under immunosuppres-
sive conditions. Furthermore, it was shown that Tregs are highly
sensitive to Fas-mediated apoptosis, whereas effector T cells are
resistant to Fas-mediated killing (67, 68). Thus, Fas-based cancer
therapy may not only induce tumor cell apoptosis, it may also
induce Treg apoptosis to eliminate Treg-mediated immune
suppression. In summary, our data suggest that chemotherapy with
decitabine and vorinostat, in combination with CTL immuno-
therapy, is an effective strategy for the suppression of colon
carcinoma metastasis and holds great promise for further deve-
lopment to treat metastatic colon cancer in human patients.

Acknowledgments
We thank Drs. S. Butcher and Lars Damstrup for providing Mega-Fas Li-
gand.

Disclosures
The authors have no financial conflicts of interest.

References
1. Straus, E. S., E. Jaffe, J. M. Puck, J. K. Dale, K. B. Elkon, A. Rosen-Wolf-
f, A. M. Peters, M. C. Sneller, C. W. Hallahan, J. Wang, et al. 2001. The de-
velopment of lymphomas in families with autoimmune lymphoproliferative syn-
drome with germline Fas mutations and defective lymphocyte apoptosis. Blood
P. L. Schwartzberg, F. Candotti, and R. M. Siegel. 2010. Systemic autoimmune

and defective Fas ligand secretion in the absence of the Wiskott-Aldrich syn-
from an international workshop on a genetic disease of apoptosis. Immunity 32:
291–295.
2011. A survey of 90 patients with autoimmune lymphoproliferative syndrome
J. M. Puck, E. S. Jaffe, S. Pittaluga, I. J. Cohen, et al. 2010. Somatic FAS
mutations are common in patients with genetically undefined autoimmune

6. Takushima, T., M. Tanaka, K. Braman, N. A. Jenkins, N. G. Copeland, T. Suda,
and S. Nagata. 1994. Generalized lymphoproliferative disease in mice, caused
by a point mutation in the Fas ligand. Cell 76: 969–976.
roles of Fas signaling in cell immune homeostasis and autoimmunity. Nat.
Fas ligand interactions suppress melanoma lung metastases. J. Exp. Med.
188: 1717–1723.
cancer cells using both perforin and Fas ligand-mediated lysis in vitro, but cause
3492.

ligand pathway is important for optimal tumor regression in a mouse model of
CTL adaptive immunotherapy of experimental CMS4 lung metastases. J.
P. Möllper. 2005. Impaired CD95 expression predisposes for recurrence in cura-
tively resected colon carcinoma: clinical evidence for immunosuppression and

14. Ka¨ gi, D., F. Vignaux, B. Ledermann, K. Bu¨ rki, V . Depraetere, S. Nagata,
ligand pathway is important for optimal tumor regression in a mouse model of
CTL adaptive immunotherapy of experimental CMS4 lung metastases. J.

signaling pathway is functional in colon carcinoma cells and induces apoptosis.

P. Möllper. 2005. Impaired CD95 expression predisposes for recurrence in cura-
tively resected colon carcinoma: clinical evidence for immunosuppression and

cancer cells using both perforin and Fas ligand-mediated lysis in vitro, but cause
3492.

ligand pathway is important for optimal tumor regression in a mouse model of
CTL adaptive immunotherapy of experimental CMS4 lung metastases. J.

P. Möllper. 2005. Impaired CD95 expression predisposes for recurrence in cura-
tively resected colon carcinoma: clinical evidence for immunosuppression and

Supplemental Figure 1. Decitabine and Vorinostat cooperate to up-regulate Fas expression and sensitize metastatic mouse colon carcinoma cells to FasL-induced apoptosis. A. CT26 cells were treated with Decitabine for 3 days (left panel) or Vorinostat for 2 days (right panel), respectively, at the indicated doses, then stained with Fas-specific mAb and analyzed by flow cytometry for cell surface Fas protein level. Gray area: IgG isotype control staining; solid line: Fas-specific staining. B. CT26 cells were treated with Decitabine (5 μM, 3 days), Vorinostat (5 μM, 2 days) or both Decitabine and Vorinostat, and analyzed for Fas protein level by flow cytometry as in A. C. The Fas protein levels in A and B are quantified as mean fluorescent intensity (MFI) and shown. Column: mean, bar: SD. D. Tumor cells were treated as in C, followed by incubation with FasL (200 ng/ml) overnight, staining with PI and analysis with flow cytometry. The % FasL-induced cell death was quantified as % PI-positive cells in the presence of FasL - % PI-positive cells in the absence of FasL, and shown at the right panel. Column: mean; bar: SD.