Intracellular Insulin-like Growth Factor-1 Induces Bcl-2 Expression in Airway Epithelial Cells

Hitendra S. Chand, Jennifer Foster Harris, Yohannes Mebratu, Yangde Chen, Paul S. Wright, Scott H. Randell and Yohannes Tesfaigzi

J Immunol published online 28 March 2012

http://www.jimmunol.org/content/early/2012/03/28/jimmunol.1102673

Supplementary Material

http://www.jimmunol.org/content/suppl/2012/03/28/jimmunol.1102673.DC1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Intracellular Insulin-like Growth Factor-1 Induces Bcl-2 Expression in Airway Epithelial Cells

Hitendra S. Chand,* Jennifer Foster Harris,* Yohannes Mebratu,* Yangde Chen,†
Paul S. Wright,‡ Scott H. Randell,‡ and Yohannes Tesfaigzi*

Bcl-2, a prosurvival protein, regulates programmed cell death during development and repair processes, and it can be oncogenic when cell proliferation is deregulated. The present study investigated what factors modulate Bcl-2 expression in airway epithelial cells and identified the pathways involved. Microarray analysis of mRNA from airway epithelial cells captured by laser microdissection showed that increased expression of IL-1β and insulin-like growth factor-1 (IGF-1) coincided with induced Bcl-2 expression compared with controls. Treatment of cultured airway epithelial cells with IL-1β and IGF-1 induced Bcl-2 expression by increasing Bcl-2 mRNA stability with no discernible changes in promoter activity. Silencing the IGF-1 expression using short hairpin RNA showed that intracellular IGF-1 (IC-IGF-1) was increasing Bcl-2 expression. Blocking epidermal growth factor receptor or IGF-1R activation also suppressed IC-IGF-1 and abolished the Bcl-2 induction. Induced expression and colocalization of IC-IGF-1 and Bcl-2 were observed in airway epithelial cells of mice exposed to LPS or cigarette smoke and of patients with cystic fibrosis and chronic bronchitis but not in the respective controls. These studies demonstrate that IC-IGF-1 induces Bcl-2 expression in epithelial cells via IGF-1R and epidermal growth factor receptor pathways, and targeting IC-IGF-1 could be beneficial to treat chronic airway diseases. The Journal of Immunology, 2012, 188: 000–000.

Abbreviations used in this article: AG1478, anilinoquinazoline; CF, cystic fibrosis; CS, cigarette smoke; EGFR, epidermal growth factor receptor; FA, filtered air; IC-IGF-1, intracellular insulin-like growth factor-1; IGF-1, insulin-like growth factor-1; PPI, picrotoxinin; shRNA, short hairpin RNA.

Copyright © 2012 by The American Association of Immunologists, Inc.

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1102673

*Chronic Obstructive Pulmonary Disease Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108; †Sanofi-Aventis Corp., Bridgewater, NJ 08807; and ‡Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC 27599

Received for publication September 15, 2011. Accepted for publication March 5, 2012.

This work was supported by National Institutes of Health Grants HL68111 and ES015482.

The Journal of Immunology
Intracellular IGF-1 mediates IL-1β-induced Bcl-2 expression

Office of Human Research Ethics Institutional Review Board. The lung specimens with the CFTR mutation were rapidly procured from individuals with cystic fibrosis (CF). Controls were portions of donor lungs that were trimmed for size matching. Demographics of these subjects are shown in Table I. Specimens were fixed by immersion in neutral buffered formalin and conventionally processed for paraffin embedding and sectioning. The lung tissue specimens from subjects diagnosed with chronic bronchitis and nondiseased controls (Table II) were obtained from Lung Tissue Research Consortium that is sponsored by the National Heart Lung and Blood Institute.

Laboratory animals
Specific pathogen-free F344/NCrR male rats 6–8 wk age were obtained from the National Cancer Institute (Frederick, MD) and were housed until 5–10 wk age. The rats were housed in pairs and were provided food and water ad libitum, a 12-h light/dark cycle at 22.2°C, and 30–40% humidity. Rats were weighed and randomly assigned to each experimental group. Pathogen-free wild-type C57BL/6J mice were purchased from The Jackson Laboratory. Mice were housed in isolated cages under specific pathogen-free conditions. All experiments were approved by the Institutional Animal Care and Use Committee and were conducted at Lovelace Respiratory Research Institute, a facility approved by the Association for the Assessment and Accreditation for Laboratory Animal Care International.

Rat intratracheal instillation
For intratracheal instillations, rats were briefly anesthetized with 5% isoflurane in oxygen and instilled intratracheally with 1000 µL (Pseudomonas aeruginosa serotype 10, lot 31K4122, 3,000,000 LPS units) of pyrogen-free saline. Control rats were instilled with 0.5 ml 0.9% pyrogen-free saline. For intratracheal instillations, rat lungs were inflated with 10% dithiothreitol to achieve a fully expanded state. Rats were briefly anesthetized with 5% isoflurane in oxygen and instilled intratracheally with 1000 µL (Pseu-domonas aeruginosa serotype 10, lot 31K4122, 3,000,000 LPS units) of pyrogen-free saline. Control rats were instilled with 0.5 ml 0.9% pyrogen-free saline.

Immunofluorescent staining and image analysis
Lung sections were deparaffinized, hydrated in graded ethanol and deionized water, and then washed in 0.05% Brij-35 in Dulbecco’s PBS (pH 7.4). The Ags were unmasked by treating with a Digest-All kit (Zymed Laboratories, San Francisco, CA) at a 1:3 dilution of trypsin to diluent at 37°C for 10 min. Sections were then blocked using 0.2% Triton X-100 in blocking solution containing 3% IgG-free BSA, 1% gelatin, and 2% normal donkey serum followed by incubation with anti-Bcl-2 (1:1000, Santa Cruz Biotechnology, Santa Cruz, CA), anti–IL-1β (1:1000, Santa Cruz Biotechnology), anti–IFN-γ (1:1000, Santa Cruz Biotechnology), or isotype controls at 1:200 dilution. The immunolabeled cells were detected using F(ab’)2 fragments of respective secondary Abs conjugated to either Dylight-549 or Dylight-649 (Jackson Immunolabs, West Grove, PA) at 1:1000 dilution and mounted using Fluoromount-G (SouthernBiotech, Birmingham, AL) at a 1:3 dilution of trypsin to diluent at 37°C for 10 min. Sections were then blocked using 0.2% Triton X-100 with 0.2% saponin in a blocking solution containing 3% IgG-free BSA, 1% gelatin, and 2% normal donkey serum followed by incubation with anti-Bcl-2 (1:1000, Santa Cruz Biotechnology), anti–IL-1β (1:1000, Santa Cruz Biotechnology), or isotype controls at 1:200 dilution. The immunolabeled cells were detected using F(ab’)2 fragments of respective secondary Abs conjugated to either Dylight-549 or Dylight-649 (Jackson Immunolab Research Laboratories, West Grove, PA) at 1:1000 dilution and mounted with DAPI containing Fluormount-G (SouthernBiotec, Birmingham, AL) for nuclear staining. For cytometry, cells were grown on Lab-Tek-II eight-chamber slides (Nalge Nunc International, Rochester, NY) and treated with 100 ng/ml IFN-γ or 5 ng/ml IL-1β or were left untreated and were fixed using 3% paraformaldehyde with 3% sucrose in PBS and processed for immunostaining as described above. Quantification of Bcl-2–positive and IGF-1–positive cells per millimeter of basal lamina was performed using the VisiMorph system (Visiopham, Horsholm, Denmark).

Cell culture treatments and quantitative RT-PCR
Immortalized rat airway epithelial cells, SPOC-1 cells, were maintained as described (20, 21). The human airway epithelial cells, AALEB cells (22), and primary human airway epithelial cells (Clontech, Walkersville, MD) were maintained in bronchial epithelial growth medium (Lonza, Walkersville, MD). The SPOC-1 cells were treated with rat IL-1β (5 ng/ml), IL-6 (1 ng/ml), IL-9 (0.01 ng/ml), VEGF (5 ng/ml), TNF-α (1 ng/ml), IGF-1 (100 ng/ml), or left untreated. The AALEB cells and primary human airway epithelial cells were treated with human IGF-1 and human IL-1β (R&D Systems, Minneapolis, MN). Cells were then pretreated with picropodophyllin (PPP; Santa Cruz Biotechnology, Santa Cruz, CA), an inhibitor of IGF-1R activation or various inhibitors of EGFR tyrosine kinase activation, anilinoquinazoline (AG1478; Santa Cruz Biotechnology, Santa Cruz, CA), EKB-569, or PD153035 (Selleck Chemicals, Houston, TX) for 2 h with no effect on cell viability prior to the treatment with IGF-1 or IL-1β. RNA was isolated from the snap-frozen right lungs of animals using TRIzol as described previously (22), whereas RNA from cultured cells was extracted using the RNeasy kit (Quagen, Valencia, CA). The primer/probe sets for IL-1β, IGF-1, Bcl-2, MUC5AC, and CDKN1B were obtained from Applied Biosystems and were amplified by quantitative real-time PCR using a RT-PCR Master Mix (Applied Biosystems) in the ABI Prism 7900HT real-time PCR system. Relative quantities were calculated by normalizing averaged Ct values to CDKN1B or 18S to obtain ΔΔCt and the relative standard curve method was used for determining the fold change as described previously (23).

Western blot analysis
Protein was extracted from the right lungs of LPS instilled rats by homogenization in RIPA buffer (10 mM Tris [pH 7.4], 150 mM NaCl, 1% Triton X-100, 1% deoxycholate, 0.1% SDS, and 5 mM EDTA) supplemented with a protease inhibitor mixture (Sigma-Aldrich) at 1:100 final concentration. Protein concentration was determined using the BCA kit (Pierce/Thermo Fisher Scientific, Rockford, IL) and 100–150 µg protein lysate was analyzed by Western blotting. The Bcl-2, IGF-1, EGFR, and β-actin were detected using appropriate peroxidase-conjugated secondary Abs and visualized by chemiluminescence (PerkinElmer, Waltham, MA) using the Fujifilm image reader LAS-4000 (Fujifilm, Valhalla, NY).

mRNA half-life analysis
Cells were treated with the RNA polymerase inhibitor 5,6-dichloro-1β-d-ribofuranosidazole (Sigma-Aldrich) at a final concentration of 100 ng/ml to block RNA polymerase activity and harvested at 0, 0.5, 1, 2, 4, 6, 8, 12, and 24 h posttreatment. The relative mRNA abundance was calculated using the ΔΔCt method, and mRNA half-life was calculated using the Greenberg Equation (24).
sus Brn3a-interacting region at residues 93–99. All transient transfections were carried out in 24-well-plates (USA Scientific, Orlando, FL) using Fugene 6.0 reagent (Roche Applied Biosystems, Indianapolis, IN) as described previously (25).

LPS instillation

Male C57BL/6 mice at 8–10 wk age were briefly anesthetized with 5% isoflurane in oxygen and instilled intranasally with 60 μg LPS (Pseudomonas aeruginosa serotype 10, lot 31K4122, 3,000,000 LPS units [endotoxin units]/mg; Sigma-Aldrich) in 0.05 ml 0.9% pyrogen-free saline. Control mice were instilled with 0.05 ml 0.9% pyrogen-free saline. Mice were sacrificed 3 d after instillation and lung tissues were processed and analyzed.

Exposure to cigarette smoke

Male C57BL/6 mice at 8–10 wk age were exposed whole body to mainstream cigarette smoke (CS) or filtered air (FA) as described previously (26). Mice were acclimated to the CS exposure at 100 mg/m³ total particulate material for the first week and then exposed to CS concentration at 250 mg/m³ total particulate material for the following 22 wk. CS was generated from 2R4F filtered research cigarettes (University of Kentucky Tobacco Research and Development Center, Lexington, KY) using the AMESA type 1300 smoking machine. Mice were sacrificed postexposure and lung tissues were processed and analyzed.

IGF-1 gene silencing by short hairpin RNA transfection

AALEB cells were transfected with IGF-1 short hairpin RNA (shRNA) containing retroviral vectors or control vectors (Origene Technologies, Rockville, MD) as per the manufacturer’s instructions. After infection with IGF-1 or control shRNAs, cells were treated with 20 ng/ml human IL-1β, and 48 h later cells were assessed for IGF-1 expression.

Statistical analysis

Grouped results were expressed as means ± SEM. Data were analyzed using GraphPad Prism software (GraphPad Software, San Diego, CA). Grouped results were analyzed using two-way ANOVA. When significant main effects were detected (p < 0.05), a Fisher least significant difference test was used to determine differences between groups.

Results

Microarray analysis of laser-capture microdissected airway epithelia

Previously, we observed increased number of Bcl-2–positive epithelial cells in rats exposed to LPS, specifically on day 2 after LPS challenge (7). Thus, to identify the mediators involved in upregulation of Bcl-2 expression, we microdissected airway epithelial cells by laser-capture microscopy (Fig. 1A) from lungs of noninstilled rats or 2 d after LPS exposure. Microarray profiling of the mRNA isolated from the dissected epithelial cells on rat RGU34A chips revealed 800 differentially expressed genes (p < 0.05), and the heat map of the differentially expressed genes displayed consistent gene expression patterns among individual rats in the same treatment group (Fig. 1B). Among the 800 genes, there were 137 growth factors, 51 cytokines, and 44 apoptosis-related genes (Fig. 1C). The most significantly induced genes (2- to 6-fold) were IGF-1, IL-1α, IL-1β, eotaxin, MCP-1, MIP-2, and MIP-3α; however, IGFBP3 levels were downregulated by 3-fold in LPS-treated rats. Highly induced expression of IGF-1 and IL-1β along with that of elevated MUC5AC levels was validated by quantitative RT-PCR (Fig. 1D). Consistent with previous observations, Bcl-2 mRNA was also found to be 1.9-fold higher in LPS-exposed rats compared with noninstilled controls (Fig. 1D).

IL-1β and IGF-1 induce Bcl-2 expression in airway epithelial cells

We first tested the effect of the candidate inflammatory factors, IL-1β and IGF-1, on Bcl-2 expression by treating AALEB cells, a human airway epithelial cell line, with recombinant human IL-1β and IGF-1. A significant induction of Bcl-2 mRNA levels was consistently observed following IGF-1 (Fig. 2A) and IL-1β (Fig. 2B) treatments. Similar results were observed in SPC-1 cells, a rat airway epithelial cell line, following treatment with recombinant rat IL-1β and IGF-1 (Supplemental Fig. 1). Accordingly, 100 ng/ml IGF-1 and 5 ng/ml IL-1β were chosen for further analysis and resulted in increased Bcl-2 protein levels as analyzed by Western blot (Fig. 2C) and immunofluorescent staining (Fig. 2D) analyses.

Intracellular IGF-1 mediates Bcl-2 upregulation via EGFR and IGF-1R pathways

The EGFR pathway has been shown to be essential in cell survival and proliferation pathways, and therefore we tested whether IL-1β– and IGF-1–mediated induction of Bcl-2 requires the EGFR pathway. For this purpose, AALEB cells were treated with IGF-1 or IL-1β in the presence and absence of a specific EGFR kinase inhibitor, AG1478. The pretreatment of cells with AG1478 abolished the IGF-1– and IL-1β–mediated increase in Bcl-2 mRNAs (Fig. 3A). Pretreatment with other EGFR kinase inhibitors, PD153035 and EKB-569, a potent irreversible inhibitor, also showed identical results (Supplemental Fig. 2). Because IL-1β was previously shown to induce IGF-1 (27), we hypothesized that IL-1β mediates IGF-1 and Bcl-2 expression. To test this hypothesis, AALEB cells were pretreated with specific IGF-1R tyrosine kinase inhibitor, PPP, followed by IGF-1 or IL-1β treatment. Both IGF-1– and IL-1β–mediated increases in Bcl-2 mRNA levels were abolished with PPP pretreatment (Fig. 3A).

Furthermore, both IGF-1 and IL-1β treatment increased the immunopositivity for intracellular IGF-1 (IC-IGF-1) and Bcl-2 by 4- to 5-fold, and IC-IGF-1 and Bcl-2 were colocalized in the same cells (Fig. 3B). Bcl-2 was absent in cells lacking IC-IGF-1 expression, and pretreatment with either AG1478 or PPP suppressed this effect (Fig. 3B). Similar results were obtained when IGF-1R and EGFR were inhibited in SPC-1 cells treated with rat IGF-1 and rat IL-1β (Supplemental Fig. 3).

To understand the kinetics of Bcl-2 induction, we determined the expression of Bcl-2 in primary human airway epithelial cells by immunofluorescence staining of cells treated with IGF-1 or IL-1β for 1, 2, 3, 4, 8, and 12 h. Compared to untreated cells, both IGF-1 and IL-1β treatments showed increase in Bcl-2–positive cells already at 1 h posttreatment with further increases in Bcl-2–positive cells at later time points (Fig. 3C). However, there were no significant differences between the two treatments. The role of IC-IGF-1 in inducing Bcl-2 expression was investigated by blocking its expression using shRNA specific for IGF-1. The IL-1β–induced expressions of both IC-IGF-1 and Bcl-2 were completely suppressed compared with control shRNA transfected cells (Fig. 3D).

Because IC-IGF-1 appeared to be central in increasing Bcl-2 expression, we examined whether IGF-1 induces Bcl-2 expression in airway epithelial cells in vivo by instilling rats with IGF-1 intratracheally and harvesting lungs at 24 h for immunostaining. Bcl-2 positivity of airway epithelial cells was increased by 2-fold compared with the vehicle-instilled group (Fig. 3E). Thus, IGF-1 induced Bcl-2 expression in airway epithelial cells both in vitro and in vivo.

Collectively, these data suggest that Bcl-2 expression is upregulated by IC-IGF-1 via convergence of EGFR and IGF-1R pathways.

IGF-1 increases Bcl-2 mRNA stability

We tested whether IGF-1 induces Bcl-2 promoter activity by transfecting AALEB cells with various Bcl-2 promoter luciferase reporter constructs described earlier (25). However, no changes
in luciferase activity were observed following IGF-1 treatment (Supplemental Fig. 4A), suggesting that transcriptional activity was not affected. However, IGF-1 increased Bcl-2 mRNA half-life by \(\sim 4.6\)-fold in AALEB cells (Fig. 4A). Because the Bcl-2 mRNA contains the P2 region upstream of the transcriptional start site (25), we investigated whether merely transfection with plasmids containing this upstream region may compete for mRNA degrading factors and thereby affect Bcl-2 mRNA levels in IGF-1–treated cells. Interestingly, cells transfected with the constructs containing only the P2 promoter region consistently showed enhanced increase in Bcl-2 mRNA levels compared with those transfected with empty vector when treated with IGF-1 (Fig. 4B).

Similar results were obtained when cells transfected with P2 promoter constructs were treated with IL-1\(\beta\) (Supplemental Fig. 4B). These highly reproducible findings suggested that P2 region may interact with mRNA destabilizing factors that facilitate the IGF-1–mediated stability of Bcl-2 mRNA.

To identify the minimum possible subregion within P2 that was responsible for facilitating IGF-1–induced Bcl-2 mRNA stability, we generated various P2 deletion constructs and a mutant P2 construct with substitutions at the 93–99 region that would destroy the Brn3a-interacting site (28) (Fig. 4C). Following IGF-1 treatment, the cells transfected with D1 (1–356) and D2 (1–126) deletion constructs showed an IGF-1–induced increase in Bcl-2 mRNA levels compared with those transfected with empty vector when treated with IGF-1 (Fig. 4B).

FIGURE 1. Microarray analysis of laser-capture microdissected rat airway epithelia. (A) Light micrographs of the rat large airways before and after laser-capture microdissection of epithelial cells. Original magnification \(\times 100\). (B) Venn diagram clustering of gene expression patterns obtained by microarray analysis of laser-capture microdissected epithelial cells from LPS-instilled and control rats. (C) Heat map displaying differential gene expression patterns \((p < 0.05)\) of microdissected airway epithelia mRNA from rats instilled with LPS or noninstilled controls \((n = 3 \text{ rats/group})\). (D) Relative quantities of Bcl-2, MUC5AC, IGF-1, and IL-1\(\beta\) mRNA levels in laser-capture microdissected epithelial cells from LPS-instilled rats compared with control rats as quantified by quantitative RT-PCR.

FIGURE 2. IL-1\(\beta\) and IGF-1 induce Bcl-2 expression in airway epithelial cells. Bcl-2 mRNA levels in AALEB cells 24 h after treatment with recombinant human IGF-1 (A) or recombinant human IL-1\(\beta\) (B) as quantified by quantitative RT-PCR. (C) Bcl-2 protein levels in AALEB cells following treatment with IGF-1 (100 ng/ml) and IL-1\(\beta\) (5 ng/ml) compared with the nontreated cells and normalized to the \(\beta\)-actin levels \((n = 3)\). The upper panel shows a representative immunoblot. (D) In situ analysis of Bcl-2 expression in AALEB cells by immunofluorescence following IGF-1 (100 ng/ml) and IL-1\(\beta\) (5 ng/ml) treatment. The Bcl-2–positive and total cells were counted 24 h after treatment and data are expressed as the percentage of Bcl-2–positive cells \((n = 3)\). Scale bars, 10 \(\mu\)m. Results shown as mean \(\pm\) SEM. \(*p < 0.05, **p < 0.01, ***p < 0.001.\)
mRNA whereas cells transfected with D3 deletion construct (1–106) and the mutant P2 construct failed to show any change (Fig. 4C). These findings suggest that the region 91–108 previously shown to interact with Brn3a (29) is involved with IGF-1–induced stabilization of Bcl-2 mRNA.

IC-IGF-1 and Bcl-2 are coexpressed in epithelial cells of chronic inflammatory airways

We next tested whether IC-IGF-1 and Bcl-2 are expressed in animal models and, more importantly, in subjects with chronic airway diseases. As reported earlier (7–9), Bcl-2 mRNA levels were increased significantly in LPS- compared with saline-instilled rats (Fig. 5A). The airway epithelial cells when analyzed for IC-IGF-1 and Bcl-2 immunopositivity showed a 9- and 11-fold increase, respectively, in LPS-instilled mice compared with saline-instilled controls (Fig. 5B). Additionally, in CF the percentage of Bcl-2–positive epithelial cells is significantly increased compared with nondiseased controls (7). Because the present study shows that IC-IGF-1 is crucial for inducing Bcl-2 expression, we immunostained airway tissues from CF and controls with Abs to IC-IGF–1 and Bcl-2. The results are shown as means ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, #p < 0.05 compared with IGF-1–treated group, $p < 0.05$ compared with IL-1β–treated group.
Bcl-2. We found that in subjects with CF the number of IC-IGF-1– and Bcl-2–positive airway epithelial cells/mm BL was increased 3- and 7-fold, respectively, compared with normal subjects (Fig. 5C).

In a mouse model of chronic CS exposure, we observed a 4-fold increase in Bcl-2 mRNA levels in lung tissues of mice instilled with LPS or saline as quantified by quantitative RT-PCR. (B) Analysis of IC-IGF-1– and Bcl-2–positive airway epithelial cells in lung tissues of mice instilled with LPS or saline. Mouse lung tissues were harvested 3 d after LPS or saline instillation. (C) IC-IGF-1– and Bcl-2–positive epithelial cells in airways of subjects with CF or no lung disease. (D) Bcl-2 mRNA levels in lung tissues of mice exposed to CS or FA controls for 22 wk. (E) IC-IGF-1– and Bcl-2–positive airway epithelial cells in lung tissues of mice exposed to FA or LPS instillation. (F) IC-IGF-1– and Bcl-2–positive epithelial cells in lung tissues from former smokers with chronic bronchitis (CB) compared with former smokers with no CB. Lung tissue sections from former smokers with no CB (left panels) and with CB (right panels) were coimmunostained for IC-IGF-1 (top panels) and Bcl-2 (middle panels). The bottom panels illustrate the merged image showing the coexpression of IGF-1 and Bcl-2 in airway epithelial cells of CB (n = 4 subjects/group). For (B), (C), (E), and (F), lung tissue sections were immunostained for IC-IGF-1 (top panels) and Bcl-2 (bottom panels) and the numbers of positive cells per millimeter of basal lamina were quantified (n = 4/group). Scale bars, 10 μm. Results are shown as means ± SEM. *p < 0.05, **p < 0.01, ***p < 0.0001.

Discussion
The present study identifies IL-1β and IGF-1 as the principal inflammatory mediators that induce Bcl-2 expression in airway epithelial cells. Induction in Bcl-2 expression involved both EGFR and IGF-1R pathways and required the expression of IC-IGF-1. Several observations suggest that not the “secreted IGF-1” but the IC-IGF-1 mediates induction in Bcl-2 expression. First, IGF-1 treatment of airway epithelial cells increased IC-IGF-1 and Bcl-2 levels both in vitro and by intratracheal instillation of rats in vivo. Second, immunofluorescent analysis of IL-1β–treated cells showed that IC-IGF-1 and Bcl-2 are colocalized in the same cells, whereas cells without IGF-1 positivity were Bcl-2–negative. Third, IL-1β treatment of airway epithelial cells resulted in robust IC-IGF-1 expression and blocking IC-IGF-1 expression using shRNA suppressed Bcl-2 expression. Collectively, these data show that IL-1β and IGF-1 lead to induced Bcl-2 expression via up-regulating IC-IGF-1. The mechanism by which IL-1β induces IC-IGF-1 is not clear. However, similar results were observed in prostate epithelial cells and in cardiac cells, where IL-1β induces anti-apoptotic and proliferative phenotype by upregulating IGF-1-1 transcription using the JAK–STAT pathway (27, 30). The molecular mechanisms by which IL-1β induces IC-IGF-1 in airway epithelial cells are yet to be defined.

In airway epithelial cells, the EGFR pathway has been identified as a common denominator for proinflammatory responses that aid in epithelial cell hyperplasia and mucous cell metaplasia (19, 31–33). Tyner et al. (19) proposed that the EGFR pathway is associated with survival of airway epithelial cells in response to a...
viral challenge. However, the mechanism of EGFR-induced survival of airway epithelial cells was not identified. Our data show that EGFR activation by inflammatory mediators results in induced Bcl-2 expression and present a new paradigm that EGFR activation sustains airway epithelial cells by inducing the antiapoptotic protein Bcl-2. These findings are consistent with other studies that report that TGF-α–induced activation of EGFR mediates Bcl-2 induction in NCI-H292 cells (34) and in gastric mucosal cells (35). Moreover, the external stimuli such as exposure to ozone, LPS, CS, or allergen sensitization that upregulate Bcl-2 expression (36) are also known to activate EGFR in airway epithelial cells (37, 38). EGFR and IGF-1R pathways and their ligands have been shown to cross-talk, but mostly in transformed cells, with IGF-1 induction resulting in secretion of the EGFR ligands TGF-α and amphiregulin, and blocking of EGFR activation abolished the IGF-1R–stimulated intracellular pathways (39, 40). Additionally, continuous EGF stimulation required a functional IGF-1R pathway that resulted in ERK activation in mouse fibroblasts (41, 42).

The observed increase in Bcl-2 immunopositivity as early as an hour after treatment indicates rapid convergence of these pathways leading to Bcl-2 induction. Besides epithelial cell proliferation and survival signaling, EGFR mediates MUC5AC synthesis following exposure to LPS, CS, or infection with Pseudomonas aeruginosa (31, 37, 38). Interestingly, EGFR activation causes MUC5AC and Bcl-2 expression (33, 34), and Bcl-2 expression sustains epithelial cell hyperplasia (7). Future studies will investigate whether Bcl-2 expression directly mediates MUC5AC expression. Moreover, Bcl-2 binds and suppresses NALP1, an integral component of inflammasomes, to reduce caspase-1, originally identified as an IL-1β–converting enzyme, and thus inhibits IL-1β production (43, 44). Taken together, the present data suggest that the inflammatory mediators such as IL-1β and IGF-1 stimulate EGFR and IGF-1R pathways that converge to induce IC-IGF-1 to help upregulate Bcl-2 expression in epithelial cells, and induced Bcl-2 expression could, in a negative feedback mechanism, suppress inflammation (Fig. 6).

Bcl-2 expression is regulated at the transcriptional and post-translational levels. The P1 region harbors the positive regulatory elements for Bcl-2 transcription (25, 45), and the P2 region suppresses the P1 activity (25). Transcriptional factors such as the CREB and SP-1 (46, 47) interact with the P1 region to upregulate its transcriptional activity, whereas factors such as nuclear NF-κB (11), Brm3a (29), C/EBP (46), and p53 (25) interact with the P2 region to either suppress or enhance its inhibitory role. However, in our experimental setting IGF-1 did not affect the promoter activity of various luciferase reporter constructs containing Bcl-2 promoter regions. Instead, IGF-1 treatment stabilized Bcl-2 mRNA resulting in increased Bcl-2 mRNA levels. Although the repressor that binds to the P2 region plays an important role in regulating Bcl-2 transcription as shown in our previous study (25), the lack of IGF-1 affecting the Bcl-2 promoter region suggests that IGF-1–induced Bcl-2 mRNA stability is not mediated by this repressor. However, cells that were transfected with a plasmid containing the P2 region consistently showed an additional increase in Bcl-2 mRNA when treated with IGF-1. In the absence of IGF-1, the transfection of P2 construct alone had no effect on Bcl-2 mRNA, suggesting that the P2 region, when transfected as part of a plasmid, did not affect the repressor function of the P2 region. Taken together, these data suggest that the repressor-binding potential of the P2 region is not playing a role in the context of IGF-1–mediated induction of Bcl-2 mRNA. Therefore, we conclude that IGF-1 increased Bcl-2 mRNA stability by P2, serving as a sink for the putative destabilizing factor(s). Previous studies have shown that the P2 repressor activity is mediated by the region 412–607 that includes a 195-bp p53-dependent negative regulatory element. The present study showed that deleting the region 106–126 or mutating the core Bm3a binding site (28), 93–99, is sufficient to disrupt the IGF-1–mediated enhancement of Bcl-2 mRNA when transfecting the P2 region. These findings suggest that the regions interacting with the putative destabilizing factor and repressor are nonoverlapping. Whether the repressor binding to the P2 region is competed out by the destabilizing factor causing steric hindrances or whether other factors are involved to exclude repressor binding to the transfected P2 region will require additional studies. Nonetheless, both IL-1β and IGF-1 induced the Bcl-2 mRNA in cells transfected with P2 promoter region, implicating a common mechanism that likely involves IC-IGF-1. Stabilization of Bcl-2 mRNA has been recently reported as one of the mechanism by which Bcl-2 is upregulated in cancer cells (48, 49). Further studies will be carried out in identifying the mechanisms that mediates IGF-1–induced Bcl-2 mRNA stabilization but are beyond the scope of the present study.

In mouse models of acute or chronic lung injury using LPS or CS, respectively, we observed increased number of IC-IGF-1– and Bcl-2–positive airway epithelial cells. Similar findings in autopsyed lung airways from patients with cystic fibrosis and chronic bronchitis suggest that this pathway is of clinical relevance and should be exploited to help regulate chronic airway epithelial inflammation. However, the numbers of IC-IGF-1–positive cells were consistently higher than were the Bcl-2–positive cells, suggesting that IC-IGF-1 expression is upstream of Bcl-2 induction, and also that IC-IGF-1 may be involved in other prosurvival mechanisms besides Bcl-2 induction. It is also possible that as yet unknown factors or pathways affect IC-IGF-1–induced Bcl-2 expression in airway epithelial cells. Importantly, Bcl-2 as a proto-oncogene is implicated in several cancers, including melanoma, breast, prostate, and lung carcinomas (3, 11, 50, 51), and IGF-1 and IGF-1R levels have been positively correlated with tumor progression (52, 53). Additionally, EGFR, when constitutively active due to mutations, promotes carcinogenesis (54) and when heterodimerized with IGF-1R monomers (55) may enhance Bcl-2 expression. Therefore, the IC-IGF-1–mediated Bcl-2 induction could be one of the early molecular changes that sustain inflammation-induced hyperplasia and could be the germinal centers for preneoplastic lesions.

Acknowledgments

We thank Nick Johnson, Xin Zhang, Edward Roberts, Karen Cardon, and Zekarias Woldegiorgis for help in selected experiments. This study used biological specimens and data provided by the Lung Tissue Research Consortium supported by the National Heart, Lung, and Blood Institute.

FIGURE 6. Schematic representation of a proposed molecular pathway by which IL-1β and IGF-1 induce IC-IGF-1 and Bcl-2 expression.
Disclosure
The authors have no financial conflicts of interest.

References

