Neutrophilic Granulocytes Modulate Invariant NKT Cell Function in Mice and Humans

Gerhard Wingender, Marcus Hiss, Isaac Engel, Konrad Peukert, Klaus Ley, Hermann Haller, Mitchell Kronenberg and Sibylle von Vietinghoff

*J Immunol* published online 2 March 2012
http://www.jimmunol.org/content/early/2012/03/02/jimmunol.1101273

Supplementary Material
http://www.jimmunol.org/content/suppl/2012/03/02/jimmunol.1101273
3.DC1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Neutrophilic Granulocytes Modulate Invariant NKT Cell Function in Mice and Humans

Gerhard Wingender,*† Marcus Hiss,* Isaac Engel,* Konrad Peukert,‡ Klaus Ley,§ Hermann Haller,‡ Mitchell Kronenberg,* and Sibylle von Vietinghoff ‡

Invariant NKT (iNKT) cells are a conserved αβTCR+ T cell population that can swiftly produce large amounts of cytokines, thereby activating other leukocytes, including neutrophilic granulocytes (neutrophils). In this study, we investigated the reverse relationship, showing that high neutrophil concentrations suppress the iNKT cell response in mice and humans. Peripheral Vo14 iNKT cells from spontaneously neutrophilic mice produced reduced cytokines in response to the model iNKT cell Ag α-galactosylceramide and expressed lower amounts of the T-box transcription factor 21 and GATA3 transcription factor than did wild-type controls. This influence was extrinsic, as iNKT cell transcription factor expression in mixed chimeric mice depended on neutrophil count, not iNKT cell genotype. Transcription factor expression was also decreased in primary iNKT cells from the neutrophil-rich bone marrow compared with spleen in wild-type mice. In vitro, the function of both mouse and human iNKT cells was inhibited by coinoculation with neutrophils. This required cell–cell contact with live neutrophils. Neutrophil inflammation in experimental peritonitis in mice decreased iNKT cell T-box transcription factor 21 and GATA3 expression and α-galactosylceramide-induced cytokine production in vivo. This was reverted by blockade of neutrophil mobilization. Similarly, iNKT cells from the human peritoneal cavity expressed lower transcription factor levels during neutrophilic peritonitis. Our data reveal a novel regulatory axis whereby neutrophils reduce iNKT cell responses, which may be important in shaping the extent of inflammation. The Journal of Immunology, 2012, 188: 600–000.

iNKT cells are T lymphocytes characterized by the expression of an invariant Vα14-Jo18 TCR rearrangement (Vα14/1/ iNKT cells) in mice and a homologous Vα24-Jo18 TCR (Vα24/iNKT cells) in humans (1–3). They recognize glycolipids, such as the foreign Ag α-galactosylceramide (αGalCer), components of bacterial cell walls, and also endogenous lipids (2) when presented by CD1d, a nonpolymorphic MHC class I molecule, to T cells. NKT cells play a role in host defense, particularly against some pathogens such as Streptococcus pneumoniae as well as virus (7). They are also involved in a range of chronic and acute inflammatory processes including allergic asthma, ischemia-reperfusion injury, and atherosclerosis (1, 3). Clinical trials are currently exploring the potential of in vitro-expanded iNKT cells for the treatment of metastatic neoplasms (8).

Neutrophilic granulocytes (neutrophils) are the most abundant innate immune cells in blood (9). Although neutrophil counts in healthy individuals are remarkably stable under resting conditions (10, 11), many bacterial and fungal infections, and also hormones such as catecholamines and glucocorticoids, rapidly upregulate circulating blood neutrophil counts, making them a dynamic indicator of the extent of inflammation (9). In a number of adhesion molecule-deficient mice, such as β2 integrin gene-deficient (CD18; Itgb2−/−) and E- and P-selectin–deficient (Sele−/−; Selp−/−) mice, circulating neutrophil counts are spontaneously elevated (12).

iNKT cells modulate inflammatory processes, including neutrophilic inflammation. For example, iNKT cells stimulated neutrophil infiltration into the lung (13), ischemic kidney (14), and liver during Listeria infection (15), but inhibited neutrophil invasion in cholestatic liver damage (16). Furthermore, iNKT cells altered cytokine production by neutrophils, inhibiting IL-10 and increasing IL-12 secretion (17). However, data on the reverse relationship (i.e., neutrophils modulating iNKT cells) have not been reported. In this study, we investigated whether neutrophil concentration influences iNKT cell function and demonstrate a marked suppressive effect for both mouse and human iNKT cells.

Materials and Methods

Animals, bone marrow transplantation, and adoptive thymocyte transfer

Animal experiments were approved by the Animal Care Committee at the La Jolla Institute for Allergy and Immunology. Wild-type (wt; CD45.2) C57BL/6 mice and congenic B6.SJL-Ptpα−/−Pepc−/−BoyJ (CD45.1) were from The Jackson Laboratory (Bar Harbor, ME). B6.129-Tcrα-Jtm1Tgi/J are.

*Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; †Institute for Molecular Medicine, University of Bonn, Bonn D-53105, Germany; ‡Department of Medicine, Hannover Medical School, Hannover D-30625, Germany; and 3Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037

Received for publication May 3, 2011. Accepted for publication January 23, 2012.

This work was supported by an Outstanding International Fellowship by the Marie Curie Actions (to G.W.), National Institutes of Health Grants RO1 AI45053, R37 AI71922 (to M.K.), and HL58108 (to K.L.), and grants from Deutsche Forschungsgemeinschaft and Hannover Medical School (HJLF 09/10) (to S.v.V.).

Address correspondence and reprint requests to Dr. Mitchell Kronenberg or Dr. Sibylle von Vietinghoff, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, San Diego, CA. 92037 (M.K.) or Department of Medicine, Nephrology and Hypertension Section, Hannover Medical School, Carl Neuberg Strasse 1, D-30625 Hannover, Germany (S.v.V.). E-mail addresses: mitch@liai.org (M.K.) and vonvietinghoff.sibylle@mh-hannover.de (S.v.V.).

The online version of this article contains supplemental material.

Abbreviations used in this article: αGalCer, α-galactosylceramide; iNKT, invariant NKT cell; Il6g2, β2 integrin gene; MDSC, myeloid-derived suppressor cell; PD, peritoneal dialysis; PMN, polymorphonuclear leukocyte; T-bet, T-box transcription factor 21; wt, wild-type.
(Jo18/−/−), Ighb2−/− (96% B6) (18), and E- and P-selectin-deficient (Sele−/−/selp−/−) (19) (on a C57BL/6 background for at least six generations) were bred at La Jolla Institute for Allergy and Immunology in specific pathogen-free conditions. Mice were genotyped by PCR and used in age- and sex-matched groups. Lethal irradiations were performed in a [137Cs] irradiator (600 rad twice, 3 h apart), and mice were reconstituted with unfractionated bone marrow from wt (CD45.1+) and/or Ighb2−/− (CD45.2+) mice as indicated. Mice were treated with trimethoprim-sulfamethoxazole in drinking water for 2 wk after transplantation. Experiments were performed 3 to 4 mo after bone marrow transplantation. Adoptive transfer of CD8+ (Miltenyi Biotec, Auburn, CA) thymocytes and splenocytes was done after a single irradiation (400 rad) and cells analyzed at the indicated time points. Blood for leukocyte counts was taken via tail bleeding into EDTA-coated capillary tubes and analyzed with an automatic analyzer (Hemavet 950FS; DREW Scientific, Oxford, CT).

αGalCer application and peritonitis model

αGalCer ([2S,3S,4R]-1-O-(α-galactopyranosyl)-(1,3,4-octadecanetriol) (KRN7000; Kirin Pharma, Gunma, Japan) was given by i.v. injection 90 min before analysis (1 μg/mouse). For induction of peritonitis, 1 ml BBL fluid thioglycollate medium (BD Biosciences, Sparks, MD) was injected i.p., and cells were recovered by washing with 5 ml PBS at the indicated time points as described (20). Anti-CXCR2 (R&D Systems, Minneapolis, MN) was injected i.v. (30 μg/mouse). Cell preparation from liver, spleen, and thymus was essentially as described (21).

Human samples

Blood and peritoneal fluid were recovered after local ethics board approval (MHH 2010/807) and written informed consent according to the declaration of Helsinki. In stable peritoneal dialysis (PD) patients (n = 10, 64% male, mean age 55 y [range 20–73 y], mean time on PD 34 mo [5–124 mo], nine previous peritonitis episodes in four patients) and patients with acute peritonitis (n = 4; 75% male, mean age 53 y [range 28–69 y], mean time on PD 33 mo [6–84 mo], three previous peritonitis episodes in one patient), cells were recovered from peritoneal outflow of overnight dwell or the first peritonitic outflow before initiation of therapy. Leukocyte counts were assessed in the clinical laboratory at Hannover Medical School.

Ex vivo stimulation, human iNKT cell expansion, stimulation, and cytotoxicity assay

For ex vivo stimulation, 10⁶ murine splenocytes or thymocytes were coincubated in 200 μl full RPMI medium with 100 ng/ml αGalCer and/or Ighb2−/− (CD45.2+) mice as indicated. Mice were treated with trimethoprim-sulfamethoxazole in drinking water for 2 wk after transplantation. Experiments were performed 3 to 4 mo after bone marrow transplantation. Adoptive transfer of CD8+ (Miltenyi Biotec, Auburn, CA) thymocytes and splenocytes was done after a single irradiation (400 rad) and cells analyzed at the indicated time points. Blood for leukocyte counts was taken via tail bleeding into EDTA-coated capillary tubes and analyzed with an automatic analyzer (Hemavet 950FS; DREW Scientific, Oxford, CT).

αGalCer application and peritonitis model

αGalCer ([2S,3S,4R]-1-O-(α-galactopyranosyl)-(1,3,4-octadecanetriol) (KRN7000; Kirin Pharma, Gunma, Japan) was given by i.v. injection 90 min before analysis (1 μg/mouse). For induction of peritonitis, 1 ml BBL fluid thioglycollate medium (BD Biosciences, Sparks, MD) was injected i.p., and cells were recovered by washing with 5 ml PBS at the indicated time points as described (20). Anti-CXCR2 (R&D Systems, Minneapolis, MN) was injected i.v. (30 μg/mouse). Cell preparation from liver, spleen, and thymus was essentially as described (21).

Human samples

Blood and peritoneal fluid were recovered after local ethics board approval (MHH 2010/807) and written informed consent according to the declaration of Helsinki. In stable peritoneal dialysis (PD) patients (n = 10, 64% male, mean age 55 y [range 20–73 y], mean time on PD 34 mo [5–124 mo], nine previous peritonitis episodes in four patients) and patients with acute peritonitis (n = 4; 75% male, mean age 53 y [range 28–69 y], mean time on PD 33 mo [6–84 mo], three previous peritonitis episodes in one patient), cells were recovered from peritoneal outflow of overnight dwell or the first peritonitic outflow before initiation of therapy. Leukocyte counts were assessed in the clinical laboratory at Hannover Medical School.

Ex vivo stimulation, human iNKT cell expansion, stimulation, and cytotoxicity assay

For ex vivo stimulation, 10⁶ murine splenocytes or thymocytes were coincubated in 200 μl full RPMI medium with 100 ng/ml αGalCer for 1 h, washed, and resuspended in full media. Transwells (0.4-μm pore size) were from Corning (Corning, NY). For the cytotoxicity assay, fresh PBMC were incubated with 100 ng/ml αGalCer in full RPMI for 1 h, washed, and labeled with CFSE (Invitrogen, Carlsbad, CA) at 1 μM (αGalCer-loaded) and 0.1 μM (control) according to the manufacturer’s instructions (21). Stimulation of iNKT cells with αGalCer and without neutrophils was done for 4 h unless otherwise indicated; cytotoxicity was allowed to proceed for 6 h before cells were washed, stained, and analyzed by flow cytometry. Human IFN-γ ELISA was from BioLegend (San Diego, CA).

Cell preparation and staining for flow cytometry

The following Abs were used for flow cytometry: anti-mouse: CD1d (1B1), CD3e (145.2C11, 17A2), CD19 (1D3, 6D5), CD45 (30-F11), CD45.1-PE (A20), CD45.2 (104), CD69 (H1.F23), CD122 (TM-b1), CD154 (CD40L, MR1), 7/4, Ly6G (1A8), Ly6C(HK.1.4), Gr1 (RB6-8C5), T-bet (4B10), GATA3 (LS-O-283), TNF-α (MP6-XT22), IL-4 (11B11), and IFN-γ (XMG1.2); anti-human: CD1d (51.1), CD3e (BHT3a), CD19 (BB19), νNKT-cell, γδKT-cell (G5.3B), and T-bet (4B10). Abs were purchased from Abcam (Cambridge, MA), BD Biosciences (San Jose, CA), BioLegend, eBioscience (San Diego, CA), or Invitrogen. Near-infrared LINE/
Itgb2<sup>−/−</sup> than in wt mice (Fig. 1B, Supplemental Fig. 2). Similar decreases in cytokine production were seen in cells from spleen and liver (Fig. 1B). Baseline expression of the activation marker CD122, which constitutes a part of the IL-15R and is important for NKT cell survival (28), and the TNF family member CD154 (CD40L) was similar (Fig. 1C and data not shown). However, whereas induction of CD69 after activation was normal, CD154 upregulation on Itgb2<sup>−/−</sup> NKT cells upon αGalCer stimulation was significantly reduced (Fig. 1C). Decreased cytokine production in response to αGalCer was apparent in both NK1.1 and CD4-negative and -positive subpopulations to a very similar degree (data not shown). NK cells are rapidly activated downstream of αGalCer stimulation, a process referred to as trans-activation (29, 30). In line with the reduced NKT cell cytokine production and CD154 expression, NK cell trans-activation, measured by IFN-γ production by NK cells, was greatly reduced in neutrophilic Itgb2<sup>−/−</sup> mice (Fig. 1D). These data demonstrate impaired activation and cytokine production by NKT cells from neutrophilic mice in vivo.

Decreased T-bet and GATA3 transcription factor expression of Vα14i NKT cells from neutrophilic mice

To gain insight into the mechanism for the decreased cytokine responses by Vα14i NKT cells, we analyzed the expression of the T-bet and GATA3 transcription factors, critical for IFN-γ and IL-4 expression, respectively, in conventional CD4<sup>+</sup> T lymphocytes (5). Transcription factors were analyzed by flow cytometry after intracellular staining in thymic and peripheral NKT cells from Itgb2<sup>−/−</sup> and wt mice (Fig. 2A, 2B). Itgb2<sup>−/−</sup> splenic NKT cells contained significantly less of either transcription factor than wt cells (Fig. 2C, 2D). In contrast, the T-bet and GATA3 expression levels in thymic NKT cells were similar in wt and Itgb2<sup>−/−</sup> mice (Fig. 2), arguing against a developmental cause of this difference. Also, CD1d expression was not different in spleens or thymus of Itgb2<sup>−/−</sup> compared with wt mice (data not shown).

To test whether decreased NKT cell transcription factor expression was due to β<sub>2</sub> integrin deficiency, we employed mice deficient in endothelial and platelet, but not leukocyte selectins (19). These mice were neutrophilic to a similar degree as Itgb2<sup>−/−</sup> mice. (Supplemental Fig. 3A) (12). NKT cell characterization of this mouse strain is shown in Supplemental Fig. 1. Also in this strain, T-bet and GATA3 expression in splenic and hepatic NKT cells was reduced (Supplemental Fig. 3B, 3C), suggesting neutrophilia as a possible cause of the observed NKT cell phenotype.

Modulation of Vα14i NKT cells by neutrophils is cell extrinsic and reversible

To test if the phenotype of peripheral NKT cells from neutrophilic Itgb2<sup>−/−</sup> mice was cell intrinsic or environmental, we employed adoptive thymocyte and splenocyte transfers and bone marrow transplantations. We transferred thymocytes from wt or Itgb2<sup>−/−</sup> mice into normal and neutrophilic hosts. Thymocytes were used as the cell source, as they expressed similar levels of T-bet and GATA3 in both donor strains (Fig. 2). Four to 6 wk later, donor and recipient NKT cell T-bet and GATA3 expression levels were analyzed by flow cytometry. The wt and Itgb2<sup>−/−</sup> thymocytes transferred into NKT-deficient host mice (Jα18<sup>−/−</sup>), which have normal neutrophil counts (data not shown), expressed similar levels of T-bet and GATA3 in NKT cells (Fig. 3A). When thymocytes were transferred to mice with endogenous NKT cell populations, host neutrophil counts had a similar influence. For example, Itgb2<sup>−/−</sup> thymocytes transferred into wt hosts retained relatively higher T-bet and GATA3 expression, similar to their host counterparts (Fig. 3B). To create a cohort of neutrophilic recipients, we created bone marrow-chimeric recipients with 100% Itgb2<sup>−/−</sup> bone marrow. Transfer of wt thymocytes into these neutrophilic host mice resulted in lower T-bet and GATA3 transcription factor expression, similar to the host Itgb2<sup>−/−</sup> NKT cells (Fig. 3B). These data suggest that the decreased expression levels of T-bet and GATA3 observed in Itgb2<sup>−/−</sup> NKT cells was not a cell-intrinsic phenomenon, but rather a consequence of the environment.

To confirm these results in an experimental system in which wt and Itgb2<sup>−/−</sup> NKT cells develop in the same animal, we reconstituted lethally irradiated wt mice with bone marrow from wt and Itgb2<sup>−/−</sup> mice mixed at an equal ratio. As described (12), transfer of 50% wt/50% Itgb2<sup>−/−</sup> bone marrow resulted in normal peripheral blood neutrophil counts (in wt bone marrow-transplanted mice, 2.1 ± 0.2 PMN/μl [mean ± SEM]; in 50% wt/50% Itgb2<sup>−/−</sup>, 2.4 ± 0.4; and in Itgb2<sup>−/−</sup> bone marrow-transplanted mice, 16.9 ± 6.5 PMN/μl). Consistent with the results from transfer of mature cells, in mixed bone marrow chimeras, the expression of T-bet and GATA3 in wt and Itgb2<sup>−/−</sup> NKT cells from the same mouse was similar, irrespective of their genotype (Fig. 3C).

To test if the decrease in T-bet and GATA3 expression in peripheral NKT cells in neutrophilic Itgb2<sup>−/−</sup> mice was reversible, we adoptively transferred splenocytes from wt and Itgb2<sup>−/−</sup> mice at an equal ratio into NKT cell-deficient, normo-neutremic host mice. This completely normalized the transcription factor expression of the Itgb2<sup>−/−</sup> NKT cells by day 3 after transfer (Fig. 3D), indicating that the downregulation was a reversible phenotype. It is of note that both wt and Itgb2<sup>−/−</sup> bone marrow neutrophils were devoid of CD49d (data not shown), which has recently been proposed as a marker of myeloid-derived suppressor cells (MDSC) (31), a cell type induced in a variety of pathophysiologic conditions, but not present in healthy mice and humans (32–34).

Together, these results indicate that lower NKT cell T-bet and GATA3 expression in neutrophilic mice is not cell intrinsic, but determined by the environment, and they suggest neutrophil counts as the likely responsible factor.

Neutrophils modulate Vα14i NKT cell T-bet and GATA3 from wt mice

The murine bone marrow harbors large numbers of mature neutrophils (11). Therefore, if exposure to increased numbers of...
neutrophils decreased T-bet and GATA3 expression, wt bone marrow Vα14+ NKT cells might display lower transcription factor expression than cells from other organs. Flow cytometric analyses indeed showed decreased expression of T-bet and GATA3 in bone marrow NKT cells compared with cells from spleen (Fig. 4A) and thymus (data not shown) of the same wt animal. To test whether such downregulation could also be induced in vitro, primary mouse splenocytes and thymocytes were cocultured with mouse bone marrow neutrophils in vitro. This decreased T-bet and GATA3 expression in both splenic and thymic Vα14+ NKT cells (Fig. 4B), demonstrating that high local concentrations of resting neutrophils can induce NKT cell downregulation of these transcription factors also in unmanipulated wt mice and that it can be replicated in vitro in short-term cultures.

Most causes of neutrophilia in vivo also involve activation of neutrophils by inflammatory mediators leading to activation, degradation, and distinct forms of cell death (35). Stimulation of neutrophils by TNF-α, N-formylmethionyl-leucyl-phenylalanine, or PMA did not alter the neutrophil-mediated decrease in T-bet expression (data not shown). However, spontaneously apoptotic and heat-killed neutrophils lost their ability to affect Vα14+ NKT cell T-bet and GATA3 expression in our in vitro coculture systems (data not shown), indicating that live neutrophils were required. Even after density gradient purification, bone marrow contains other cell types. We therefore employed negative selection to obtain highly purified neutrophils. Comparing the decrease in T-bet and GATA3 transcription factor expression relative to absolute neutrophil numbers, measured by flow cytometry, revealed highly similar dose responses (Fig. 4C), indicating that indeed the neutrophils in the mixture were responsible for the NKT cell inhibitory effect.

Coculture with neutrophils did not alter PD-1, BLTA GITR, or CD152 on the NKT cell surface (data not shown). The wt and CD1d−/− bone marrow neutrophils did not differ in their ability to induce downregulation of T-bet and GATA3 in NKT cells (data}
not shown). To further investigate whether iNKT cell inhibition was due to a soluble factor or cell–cell contact dependent, neutrophils were separated from Vα14i NKT cells using a transwell (Fig. 4D). This completely abolished the neutrophil inhibitory effect on Vα14i NKT cell transcription factor expression.

**Neutrophils modulate Vα24i NKT cell function in vitro**

To test if neutrophils would similarly impact primary human Vα24i NKT cells, PBMCs were cocultured with elevated human neutrophil concentrations for 4 h. This significantly decreased iNKT cell T-bet and GATA3 expression (Fig. 5A). Similar to the murine system, neutrophil stimulation did not alter the neutrophil-mediated decrease in Vα24i NKT cell T-bet expression and IFN-γ production (data not shown).

Vα24i NKT cells are infrequent in human peripheral blood, but can be expanded in vitro (24, 25). In our hands, this expansion resulted mainly in IFN-γ-producing iNKT cells with IL-4 barely above detection limit. When in vitro-expanded human iNKT cells were exposed to neutrophils, T-bet expression decreased significantly (Fig. 5B). Restimulation with αGalCer in the presence of neutrophils resulted in significantly less IFN-γ secretion from the supernatant than control cells (Fig. 5C). Individual cell IFN-γ production was assessed by flow cytometry after intracellular staining. Cocubination with neutrophils resulted in a significantly smaller proportion of IFN-γ+ iNKT cells (Fig. 5D). Vα24i NKT cell cytotoxicity was assessed after a 6-h coculture with αGalCer-loaded, CFSE-labeled PBMCs. Addition of freshly isolated neutrophils significantly decreased αGalCer-mediated cytotoxicity (Fig. 5E, 5F). However, the use of neutrophil-derived supernatants or the separation of the neutrophils in culture using a transwell abolished their effect on Vα24i NKT cells (Fig. 5G and data not shown). These data show that inhibition of iNKT cells by high neutrophil concentrations applies similarly to mouse and human cells and demonstrate that cell–cell contact is required for neutrophils to impair iNKT cell function.

**Neutrophilic inflammation decreases Vα14i NKT cell cytokine production in vivo**

To investigate the effect of inflammatory neutrophilia on iNKT cell function in vivo, peritonitis was induced in wt mice by injection of thioglycollate (Fig. 6). After 3 d, iNKT cells were stimulated in vivo by injection of αGalCer and analyzed after 90 min. αGalCer did not alter the inflammatory peritoneal cavity leukocyte count (Fig. 6A). However, iNKT cell cytokine production was significantly lower in cells recovered from a neutrophil compared with a normal environment (Fig. 6B). iNKT cell T-bet and GATA3 expression levels were also decreased in mice with peritonitis and correlated well with iNKT cell cytokine production (Fig. 6C). Accumulation of peritoneal leukocytes, mostly neutrophils, was significant at 6 h after thioglycollate injection (Fig. 6D) (20). When we assessed the time course of T-bet and GATA3 expression levels in peritoneal iNKT cells, we found them to be already decreased at this time (Fig. 6E). Neutrophil recruitment in peritonitis is to a large degree CXCL1 chemokine dependent and can be prevented by CXCR2 chemokine receptor blockade (Fig. 6D) (20). CXCR2 blockade also normalized the expression of the transcription factors in peritoneal iNKT cells (Fig. 6E). Neutrophil recruit in peritonitis is to a large degree CXCL1 chemokine dependent and can be prevented by CXCR2 chemokine receptor blockade (Fig. 6D) (20). CXCR2 blockade also normalized the expression of the transcription factors in peritoneal iNKT cells (Fig. 6E), demonstrating that the reduction was not due to a direct effect of thioglycollate on iNKT cells. Altogether, these data indicate that acute, inflammatory neutrophilia induces downregulation of T-bet and GATA3 and impaired cytokine production following iNKT cell Ag stimulation in vivo.

**FIGURE 5.** Neutrophils modulate Vα24i NKT cell function in vitro. (A) Human PBMCs isolated by density gradient centrifugation were cultured in the presence or absence of neutrophils (5 × 10^7/ml) for 4 h. Neutrophils significantly decreased T-bet and GATA3 expression in Vα24i NKT cells (n = 4). (B) T-bet expression of in vitro-expanded Vα24i NKT cells was assessed after 4 h coinoculation with neutrophils (PMN; 10^7/ml). (C) In vitro-expanded Vα24i NKT cells were exposed to αGalCer (100 ng/ml) in the presence and absence of neutrophils (PMN; 10^7/ml). IFN-γ concentration in the supernatant after 48 h was determined by ELISA (n = 3). (D) Individual iNKT cell (CD3^+Vα24^-CD19^-) IFN-γ was determined by flow cytometry (n = 5). (E and F) iNKT cell cytotoxicity against fresh PBMC loaded with 100 ng/ml αGalCer. PBMCs were differentially stained with CFSE (1 μM for αGalCer exposed, 0.1 μM for control cells), mixed, and incubated in full RPMI for 6 h with and without iNKT cells and freshly isolated neutrophils (PMN; 10^7/ml). The proportion of αGalCer-labeled (CFSE<sup>hi</sup>) and CFSE<sup>low</sup> (control PBMC) was determined by flow cytometry and is expressed as αGalCer labeled relative to control PBMCs in (E) (n = 3 independent experiments). (G) αGalCer stimulation of in vitro-expanded human iNKT cells was conducted in the presence or absence of 10^7/ml neutrophils with or without physical contact (transwell with 0.4-μm pore size) for 10 h (n = 4, Bonferroni after one-way ANOVA). *p < 0.05, **p < 0.01.
Vα24i NKT cell T-bet expression is decreased in neutrophilic peritonitis

To test whether inflammatory neutrophilia in vivo also decreased human NKT cell function, we investigated peripheral blood and peritoneal cavity Vα24i NKT cells at baseline and in peritonitis. Peritoneal NKT cells were recovered from the outflow fluid of patients treated with chronic PD for renal replacement therapy. Total peritoneal fluid leukocyte concentrations were very low under resting conditions (Fig. 7A, 7B). Most leukocytes from peritoneal cavity of stable PD patients were lymphocytes (data not shown), most likely a resident population (36, 37). Vα24i NKT cells in the human peritoneal cavity have not been described, but were readily detected among CD3ε+ T cells (Fig. 7C). Conventional T cells in human peritoneum predominantly produce IFN-γ (37). Indeed, expression of the Th2 transcription factor GATA3 was at the detection limit in peritoneal Vα24i NKT cells (data not shown). However, the Th1 transcription factor T-bet was expressed and was significantly higher in Vα24i NKT cells from the peritoneal cavity than from peripheral blood (Fig. 7D). Acute peritonitis results in a massive neutrophil influx into the peritoneum, accounting for >90% of the leukocytes (Fig. 7B and data not shown), resulting in a concentration (cells per microliter) similar to peripheral blood. In peritonitis, T-bet expression in peritoneal Vα24i NKT cells was similar to or lower than in blood NKT cells from the same patient (Fig. 7D). These data show that T-bet expression of primary Vα24i NKT cells from the neutrophil-poor peritoneal cavity is higher than in peripheral blood and decreases in response to neutrophilic inflammation in humans in vivo.

Discussion

Our data show for the first time, to our knowledge, that neutrophilic granulocytes inhibit NKT lymphocyte function in mice and humans, both under resting conditions and during inflammation in vivo. We observed downregulation of NKT cell baseline T-bet and GATA3 expression and decreased responses to the NKT cell Ag αGalCer, regarding both cytokine production and CD154 (CD40L) upregulation. NK cell trans-activation to produce IFN-γ, an important pathway for amplification of immune responses downstream of NKT cell activation, was also impaired. These effects were reversible.

Mouse and human NKT cells and neutrophils differ in numbers and tissue distribution. Although neutrophils are more frequent in human than mouse blood and constitute the most common leu-
Oxygen species. Activated neutrophils retained their inhibitory function for iNKT cells, although it was not increased, indicating that iNKT cell inhibition by neutrophils is not restricted to resting conditions and therefore could be of general importance during inflammations in vivo.

T-bet and GATA3 transcription factors are critical for the expression of IFN-γ and IL-4/IL-13, respectively, in peptide-reactive or conventional CD4+ T lymphocytes (5). T-bet and GATA3 deficiency severely affect Vα14i NKT cell differentiation (38, 39), and therefore, data on their role in mature iNKT cells are limited. However, retroviral-mediated expression of T-bet (40) or GATA3 (41, 42) in Vα14i NKT cells increased cytokine production in response to αGalCer in vitro, suggesting a functional role in cytokine production by activated iNKT cells. Our data (Fig. 6C) demonstrate a correlation of T-bet and GATA3 expression with iNKT cell cytokine content assessed by intracellular cytokine staining. However, given the broad suppressive effect of neutrophils on the production of other cytokines by iNKT cells, including TNF-α, IL-13, and GM-CSF, it is likely that interaction with neutrophils leads to downregulation of additional transcription factors.

It is of note that CD49d-negative granulocytes isolated from normal mice and a large number of healthy donors suppressed iNKT cell function in our study. This suggests the suppressive cells are not exclusively MDSC, which although heterogeneous, are at least in part a CD49d+ (31) population with both granulocytic and monocytic phenotypes. Furthermore, MDSC (typically found in disease (e.g., infection and different forms of malignancies), and they are not usually present in healthy organisms, which provided the sources of the neutrophils in our study (32–34). Regulation of conventional T lymphocytes by neutrophils has been suggested by enhanced T cell activation in neutropenic animals (43, 44). Data on a mechanism for this, however, are controversial. Some reports described roles for soluble molecules such as NO induced by IFN-γ (45), IL-10 (46), or arginase liberated from dying cells (47). However, in other settings, direct interaction of neutrophils and APC appeared to be required (17, 44). In our experiments, iNKT cell inhibition by neutrophils depended on the presence of live cells and required cell–cell contact. Currently, no cell–cell contact dependent mechanism for T cell suppression by neutrophils has been described, and therefore, the inhibition of iNKT cells by neutrophils observed in this study likely represents a novel mechanism. Potential candidates for cell-surface molecules that could be important in the iNKT cell–neutrophil interaction are inhibitory molecules that have been reported to be involved in T cell–APC interactions (48–52). Although we did not observe changes in PD-1, BTLA, GITR, or CD152 iNKT cell-surface expression, whether they have a role in iNKT cell–neutrophil interaction remains to be established.

Inhibition of iNKT cells by neutrophilic granulocytes could play an important role in a number of pathophysiologic conditions that activate iNKT cells. Inhibition of iNKT cells by neutrophilia may be beneficial in settings of otherwise overwhelming iNKT cell activation (e.g., during sepsis and bronchial asthma) (1, 3), and it may contribute to reduced iNKT cell function in chronic inflammatory conditions such as atherosclerosis (53). However, an increased concentration of neutrophils also may inhibit beneficial iNKT cell responses, such as cytotoxicity or cytokine secretion required for the elimination of malignancies (1, 3) or pathogenic bacteria (7). Interestingly, several, although not all (54), pathogens in which host protection requires an iNKT cell response, such as Borrelia burgdorferi and Rickettsiae, and several viral infections do not usually elicit a strong neutrophilic response (7).

In summary, our report describes inhibition of iNKT cell activation by neutrophils, both in vitro and in vivo, and in mice as...
well as humans in both steady-state conditions and during inflammatory conditions. Deliberate modulation of this interaction may be potentially beneficial for induction of stronger iNKT cell responses to neoplasms and pathogens and for limiting allergic or autoimmune activity.

Acknowledgments

We thank blood donors, patients, and staff at Hannover Medical School peritoneal dialysis unit for participating in this study, Archana Khurana for preparation of the CD1d tetramers, and Hui Ouyang and Barbara Hertel for expert technical assistance.

Disclosures

The authors have no financial conflicts of interest.

References


