Allergen-Specific CTL Require Perforin Expression To Suppress Allergic Airway Inflammation

Noriyuki Enomoto, Evelyn Hyde, Joel Zhi-Iong Ma, Jianping Yang, Elizabeth Forbes-Blom, Brett Delahunt, Graham Le Gros and Franca Ronchese

J Immunol published online 16 January 2012
http://www.jimmunol.org/content/early/2012/01/16/jimmunol.1102699

Supplementary Material
http://www.jimmunol.org/content/suppl/2012/01/17/jimmunol.1102699

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Allergen-Specific CTL Require Perforin Expression To Suppress Allergic Airway Inflammation

Noriyuki Enomoto,*1 Evelyn Hyde,* Joel Zhi-Jong Ma,*2 Jianping Yang,* Elizabeth Forbes-Blom,* Brett Delahunt,‡ Graham Le Gros,* and Franca Ronchese*

Allergen-specific CTL have a protective effect on allergic airway inflammation, a function thought to be mediated by cytokines, especially IFN-γ. However, the contribution of cytotoxic function to this protective effect has not been investigated. We examined the contribution of cytotoxic function to the therapeutic effect of allergen-specific CTL in allergic airway inflammation. We used a murine model of allergic airway inflammation in which mice were sensitized to OVA and then challenged with the same Ag via the intranasal route. CTL were elicited in these mice by immunization with dendritic cells (DC) or by adoptive transfer of in vitro-activated CD8+ T cells. Hallmark features of allergic asthma, such as infiltration of eosinophils in the bronchoalveolar lavage fluid and mucus production, were assessed. Suppression of allergic airway inflammation by allergen-specific CTL was critically dependent on the expression of perforin, a key component of the cytotoxic machinery. Both perforin-sufficient and perforin-deficient allergen-specific CTL were recovered from the lungs of allergen-sensitized mice and upregulated CD69 expression and dependent on the expression of perforin, a key component of the cytotoxic machinery. Both perforin-sufficient and perforin-deficient allergen-specific CTL were recovered from the lungs of allergen-sensitized mice and upregulated CD69 expression and secreted the cytokines IFN-γ and TNF-α upon intranasal allergen challenge. However, only perforin-sufficient CTL inhibited eosinophil infiltration in the airway, mucus production, and cytokine accumulation in the bronchoalveolar lavage fluid. Treatment with allergen-specific CTL, but not their perforin-deficient counterparts, was also associated with a decrease in the number of DC in the mediastinal lymph node. Our data suggest that the cytotoxic function of allergen-specific CD8+ T cells is critical to their ability to moderate allergic airway inflammation. The Journal of Immunology, 2012, 188: 000–000.
perforin, a critical component of the CTL cytotoxic granule, to reduce eosinophilic inflammation and mucus production in the airway, whereas IFN-γ is not critical. Thus, our data highlight cytotoxic function as a critical mechanism for the control of allergic airway inflammation.

Materials and Methods

Mice

All mice were bred at the Malaghan Institute of Medical Research. C57BL/6j and perforin knockout (PKO) mice were originally from Jackson Laboratories (Bar Harbor, ME). CD45-congenic B6.SJL-Ptprca mice were from the Animal Resources Centre (Perth, Australia). OT-I mice carry a transgenic TCR specific for H-2K^d + fragment 257–264 of chicken OVA, whereas Line 318 (L318) mice carry a transgenic TCR specific for H-2D^d + gp33. OT-I mice that are PKO (PKO OT-I) were generated by conventional breeding. All experimental protocols were approved by the Victoria University Animal Ethics Committee and performed according to institutional guidelines.

In vitro culture media and reagents

All cultures were in complete medium composed of IMDM, 2 mM glutamax, 1% penicillin-streptomycin, 5 × 10^{-5} M 2-ME, and 5% FBS (all from Invitrogen). The OVA_257-264 (SIINFEKL) and gp33 (KAVYNFATM) peptides were from Sigma-Genosys. LPS from Escherichia coli was from Sigma-Aldrich. OVA Grade V was from Sigma-Aldrich, low endotoxin peptides were from Sigma-Genosys. LPS from Escherichia coli was from Sigma-Aldrich. OVA Grade V was from Sigma-Aldrich, low endotoxin peptides were from Sigma-Genosys. LPS from Escherichia coli was from Sigma-Aldrich. OVA Grade V was from Sigma-Aldrich, low endotoxin peptides were from Sigma-Genosys.

Sensitization and challenge

Six- to eight-week-old female mice were sensitized by i.p. injection of 2 μg OVA in 1.36 mg alum adjuvant (SERVA) in a total volume of 200 μl on days 0 and 14. Control mice received alum adjuvant (vehicle) only. On day 24, mice were anesthetized and instilled with 100 μg OVA in 50 μl PBS intranasally (i.n.). In some experiments, the same amounts of low-E OVA or OVA-AF488 were used, as indicated.

Culture and adoptive transfer of bone marrow DC

To generate DC, bone marrow cells from C57BL/6 mice were cultured at 4 × 10^7 cells/ml in complete medium containing 20 ng/ml murine rIL-4 and 10 ng/ml murine rGM-CSF for 7 d, as described (25), and activated by adding 100 ng/ml LPS during the last 24 h of culture. DC were collected from culture by gentle pipetting and were ≥80% CD11c^+ by flow cytometry. They were loaded with 10 μM peptide or PBS (vehicle) for 2 h at 37°C, and 1 × 10^6 cells were instilled i.n. into anesthetized mice in 50 μl PBS.

Culture and adoptive transfer of CTL

To generate CTL, lymph nodes (LN) were removed from OT-I mice or PKO OT-I mice, cocultured with DC/SIINFEKL for 4 d, and expanded in 100 U/ml human rIL-2 for an additional 2 d (26). A similar protocol was used to generate L318 CTL (27), except that DC/gp33 were used. These protocols generated populations that were uniformly CD62L^lowCD44^hi, highly cytotoxic (28, 27, 26), and produced large amounts of IFN-γ when activated in vitro with specific peptide (27). Cells were harvested on day 6, and 5 × 10^6 cells were injected into recipient mice through the lateral tail vein.

Bronchoalveolar lavage analysis

Mice were euthanized by nonrecovery anesthesia, the trachea was cannulated, and lungs were lavaged with 1 ml PBS at room temperature. After erythrocyte lysis, the recovered cells were washed, counted, and spun onto a glass slide. The cells were stained with Diff-Quik (Dade Behring), and differential counts were performed on 200 cells at 200× magnification (29). Bronchoalveolar lavage fluid (BALF) samples were stored at −20°C for the measurement of cytokines.

Measurement of cytokines

The concentrations of cytokines (IFN-γ, IL-4, IL-5, IL-10, IL-12p70, IL-13, TNF-α, and IL-17) in BALF were evaluated using a bead multiplex immunoassay and Bio-plex suspension array system (Bio-Rad Life Sciences) or Milliplex Map Mouse Cytokine Panel (Millipore), according to the manufacturers’ instructions. The concentration of TGF-β was determined using a sandwich ELISA (Quantikine, R&D Systems).

Lung histopathology

On day 3 after i.n. challenge, lungs were recovered after bronchoalveolar lavage (BAL) and fixed in 10% formalin before embedding in paraffin. Mucus-containing goblet cells were detected by staining of 4-μm-thick slices with Alcian blue and periodic acid-Schiff (AB-PAS). All bronchioles with a diameter of 250–500 μm were counted in both lungs. Bronchioles were scored as mucus producing when the number of mucus-producing cells was ≥11 cells/mm, as determined by measuring the circumference of the airway at basement membrane level using ImageJ software (National Institutes of Health).

DC elimination assay in vivo

This assay was carried out as described (30), except that DC were injected i.v. and were recovered from the mediastinal LN (MLN). Briefly, bone marrow DC were cultured as described above, harvested from culture, washed, labeled with CFSE (Molecular Probes) or 5-(and-6)-((4-chloromethyl)benzoyl)lamino) tetramethylrhodamine) (CMTMR) (Molecular Probes), loaded with SIINFEKL or no peptide (PBS), and washed extensively.Recipient mice were injected i.v. with a mixture of 4 × 10^6 CFSE-labeled DC/SIINFEKL and 4 × 10^6 CMTMR-labeled DC/PBS. Forty-eight hours after the injection, MLN were removed, digested in Liberase TH and DNase I (both from Roche Applied Science), and analyzed by flow cytometry for the presence of live CFSE^+ and CMTMR^+ cells. The survival of CFSE^+ DC/SIINFEKL was calculated as a percentage of the CMTMR^+ DC/PBS population in each sample and normalized to the relevant controls, as described (30). Specific DC killing (%) was calculated as (100 − surviving DC %).

Tracking of airway APC

To track OVA in airway APC, mice were anesthetized and instilled with 100 μg OVA-AF488 in 50 μl PBS i.n. Twenty-four hours after the instillation, MLN were removed, digested in Liberase TH and DNase I, and analyzed by flow cytometry for the presence of OVA-AF488^+ DC (identified as DAPI^+CD11c^highMHCII^+ cells).

In vivo IFN-γ neutralization

In some experiments, mice were injected with 500 μg the IFN-γ-neutralizing mAb XMG-6, produced in-house from hybridoma culture supernatants and tested in vivo for the ability to neutralize the IFN-γ-induced upregulation of MHC class II expression on lung macrophages. The mAb was injected i.p. 4 h before i.n. OVA challenge on day 24.

Preparation of lung cell suspensions

Mice were sensitized with OVA in alum adjuvant (OVA/Alm) and challenged i.n. with 100 μg OVA-AF488. Twenty-four hours after challenge, mice were euthanized and perfused with ~15 ml PBS to remove blood from the lung vascular bed. Minced lung tissue was incubated in IMDM containing 0.5 mg/ml Liberase TL and 0.5 mg/ml DNase I for 45 min at 37°C. 10 μM EDTA was added to stop digestion. Remaining tissue fragments were broken down by passage through an 18G needle and a 70-μm cell strainer (BD Falcon). The resulting cell suspension contained >70% CD45^+ cells by flow cytometry (31).

Flow cytometry

Anti-FcγRII (2.4G2) was affinity purified from hybridoma culture supernatant and used to block FcRs before incubation with fluorescent Abs. Anti–CD45.2-FTTC, anti–CD8-PerCP, and anti–CD90-PE were used to examine CTL activation in the lungs of mice injected with in vitro-activated CTL. Anti–CD11c–PE-Cy7, anti–CD11c–AP700, anti–MHCII–AF647, and anti–CD11b–PerCP-Cy5.5 were used to identify DC and macrophage populations in lungs and MLN. All Abs were from BD Pharmingen or eBioscience. All samples were analyzed on FACSCalibur or LSRII multicolor flow cytometers (BD Biosciences) using CellQuest (BD Biosciences) and FlowJo (Tree Star) software. Live cells were identified by propidium iodide (BD Pharmingen) or DAPI (Molecular Probes) dye exclusion.

Statistical analysis

Data from multiple experiments were expressed as mean ± SEM. Data were analyzed using one-way ANOVA with Bonferroni correction or using a two-sided unpaired t test. Statistical analyses were performed using Prism 5, GraphPad Software. All tests were performed at the 0.05 significance level.
Results

Allergen-specific CTL decrease allergic airway inflammation

To evaluate the effects of allergen-specific cytotoxic function on allergic airway inflammation, we used a model in which mice were sensitized with OVA/Alm or vehicle alum adjuvant (Alm) on days 0 and 14 and then challenged i.n. on day 24. As shown in Fig. 1, this protocol of immunization did not induce activation of OVA-specific CTL, because sensitized mice failed to kill spleen targets loaded with the MHC class I-binding peptide OVA257–264 and injected i.v. In contrast, mice sensitized with OVA/Alm and immunized i.n. on day 17 with DC/SIINFEKL, but not DC/PBS, generated strong OVA-specific cytotoxic responses (Fig. 1).

We then tested the effect of OVA-specific CTL induced by DC/SIINFEKL immunization on allergic airway inflammation. Mice were sensitized with OVA/Alm and immunized on day 17 with DC/SIINFEKL, DC/PBS, or no DC, according to the protocol in Fig. 2A. All mice were challenged i.n. with OVA on day 24. As shown in Fig. 2A, compared with mice sensitized with Alm, mice sensitized with OVA/Alm and not immunized with DC, and mice sensitized with OVA/Alm and immunized with DC/PBS, showed increased cellularity in BALF, as well as infiltration of eosinophils. In contrast, the number of BALF eosinophils was significantly lower in mice immunized with DC/SIINFEKL (Fig. 2A).

Lung histopathology was also used to determine the effects of DC/SIINFEKL immunization on airway mucus production. The percentage of mucus-producing bronchioles was reduced in mice treated with DC/SIINFEKL compared with DC/PBS (Fig. 2A, Supplemental Fig. 1A). The levels of the Th2 cytokines IL-4, IL-5, and IL-13 were also significantly lower in the BALF of DC/SIINFEKL-treated mice compared with untreated or DC/PBS-treated mice (Supplemental Fig. 1A); some IFN-γ was detected in DC/SIINFEKL-treated mice but at low levels. The levels of IL-12p70, IL-10, TGF-β, and IL-17 were low and did not significantly change across any of the groups (Supplemental Fig. 1A). Therefore, immunotherapy to elicit allergen-specific CTL can specifically decrease allergic airway inflammation.

To validate the long-term effects of DC treatment, mice were sensitized with OVA/Alm on days 0 and 14, treated with DC i.n. on...
day 17, and challenged i.n. with OVA 6 wk later (Fig. 2B). BAL was performed 3 d after OVA challenge. Again, eosinophil numbers were decreased in the BALF of mice treated with DC/SIINFEKL compared with DC/PBS, and the percentage of mucus-producing bronchioles was decreased (Fig. 2B). Therefore, allergen-specific CTL induced by appropriate DC immunization mediate long-term protection against allergic airway inflammation.

To directly assess the role of allergen-specific CTL in the reduction of allergic airway inflammation, we used in vitro-activated OVA-specific CD8+ T cells from OT-I mice. Activated OT-I CTL were transferred i.v. into OVA/Alm-sensitized mice 1 d prior to i.n. OVA challenge (Fig. 2C). Total cell and eosinophil numbers in BALF and the percentage of mucus-producing bronchioles were significantly decreased in mice treated with OT-I CTL compared with OVA-sensitized controls (Fig. 2C, Supplemental Fig. 1B). The levels of IL-4, IL-5, and IL-13 were also significantly lower in OT-I CTL-treated mice compared with untreated mice. In contrast, IFN-γ was significantly increased, suggesting that OT-I CTL were the likely source of this cytokine (Supplemental Fig. 1B).

Therefore, allergen-specific CTL appear to decrease the activation of Th2 cells in the lung and airway, as indicated by decreased eosinophil infiltration, mucus production, and Th2 cytokines.

IFN-γ is not required for the inhibition of allergic airway inflammation by allergen-specific CTL

It was reported that CD8+ T cells can suppress allergic airway inflammation in an IFN-γ–dependent fashion (10, 32). In our experiments, IFN-γ production by CD8+ T cells did not appear to correlate with their ability to inhibit allergic airway inflammation (Supplemental Fig. 1A, B). Nonetheless, to further evaluate the role of IFN-γ in our model, we used the IFN-γ–neutralizing mAb XMG-D6 to block IFN-γ in vivo. One i.p. dose of 500 μg XMG-D6 was sufficient to completely prevent the IFN-γ–dependent upregulation of MHC class II on lung macrophages in mice treated with OT-I CTL and challenged with OVA i.n. (data not shown).

To establish the effects of IFN-γ on allergic airway inflammation, the XMG-D6 mAb was injected i.p. 4 h before i.n. OVA challenge on day 24. Although IFN-γ neutralization slightly attenuated the protective effects of DC/SIINFEKL, this treatment was still able to significantly reduce total cell and eosinophil numbers in BALF (Fig. 3A), whereas macrophage, neutrophil, and lymphocyte numbers were not affected (data not shown). Even after IFN-γ neutralization, DC/SIINFEKL treatment decreased IL-5 in BALF (Fig. 3B) and mucus-producing bronchioles in the lungs (Fig. 3C, 3D). These results indicated that IFN-γ is neither necessary nor
sufficient for the inhibition of allergic airway inflammation by allergen-specific CTL.

The suppression of airway inflammation requires perforin expression by allergen-specific CTL.

Because IFN-γ was not required for the inhibition of allergic airway inflammation by allergen-specific CTL, we examined the role of cytotoxic activity. We used PKO mice, because CTL from PKO mice exhibit defective cytotoxic ability, and our previous studies showed that PKO mice are unable to generate cytotoxic responses that kill DC in vivo (24). Defective killing was confirmed in PKO mice sensitized with OVA/Alm and immunized with DC/SIINFEKL (Supplemental Fig. 2A, 2B). In contrast, similarly immunized wild-type (WT) mice and mice treated with neutralizing anti-IFN-γ mAb (Supplemental Fig. 2C) generated good cytotoxic responses.

PKO and WT C57BL/6 mice were sensitized with low-E OVA/Alm to exclude allergen-nonspecific effects, treated with DC/PBS or DC/SIINFEKL i.n., and their responses to i.n. challenge with low-E OVA were compared. To control for the Ag specificity of the CTL response, some WT mice were also immunized with DC and the irrelevant peptide gp33 from lymphocytic choriomeningitis virus. As shown in Fig. 4A, compared with DC/PBS, treatment with DC/SIINFEKL significantly decreased BALF eosinophil numbers in WT mice, whereas treatment with DC/gp33 had no effect. In contrast, in PKO mice, treatment with DC/SIINFEKL did not affect airway eosinophilia (Fig. 4A) or the numbers of other BALF cell populations (data not shown). Treatment with DC/SIINFEKL, but not DC/gp33, led to a decrease in IL-5 and IL-13 levels in the BALF of WT mice (Fig. 4B), whereas DC/SIINFEKL treatment did not affect IL-5 levels in the BALF of PKO mice. Similarly, in WT mice, the percentage of mucus-producing bronchioles was decreased after treatment with DC/SIINFEKL compared with treatment with DC/PBS or DC/gp33 (Fig. 4C, 4D). In contrast, treatment with DC/SIINFEKL failed to decrease the percentage of mucus-producing bronchioles in the airway of PKO mice. Therefore, perforin expression is required for the suppression of airway inflammation by allergen-specific CTL.

Further experiments were carried out using an adoptive transfer model of in vitro-activated CTL to confirm the importance of allergen specificity and to establish whether perforin must be expressed by the CTL themselves or by other immune cell populations. Treatment of sensitized WT B6.SJL-Ptprca mice with perforin-sufficient OT-I CTL decreased the number of eosinophils in BALF and the percentage of mucus-producing bronchioles in
the lungs, whereas treatment with PKO OT-I CTL or with L318 CTL of irrelevant specificity was ineffective (Fig. 5A). OT-I CTL, PKO OT-I CTL, and L318 CTL could all be recovered from the lung tissue of mice undergoing allergic inflammation 1 d after i.n. challenge (Fig. 5B); these OT-I CTL and PKO OT-I CTL also had upregulated CD69 expression, indicating recognition of cognate Ag within the lung (Fig. 5B; Supplemental Fig. 3A). Analysis of BALF 72 h after OVA challenge showed high levels of IFN-γ and measurable levels of TNF-α in mice treated with OT-I and PKO OT-I CTL (Fig. 5C), further confirming that both CTL populations were activated by allergen administration. Similar data were obtained at 24 h after OVA challenge (data not shown). In contrast, IFN-γ was undetectable in the BALF of mice treated with L318 CTL (data not shown) or not treated with CTL (Fig. 5C). In line with the observed IFN-γ production, MHC class II expression on lung CD11b⁺CD11c[−] cells was increased in mice treated with OT-I or PKO OT-I CTL, but not in mice treated with L318 CTL or not treated with CTL (Fig. 5D, Supplemental Fig. 3B). Lastly, the concentration of OVA-specific serum IgE was elevated in OVA/Alm mice compared with controls, but it was not further affected by treatment with OT-I CTL or PKO OT-I CTL (Fig. 5E).

Together, these results suggest that OT-I CTL and PKO OT-I CTL can both migrate to the lung and respond to allergen challenge. However, only perforin-sufficient OT-I CTL can suppress allergic airway inflammation. In addition, production of IFN-γ and TNF-α do not appear to correlate with the suppressive effect.

Allergen-specific treatments decrease the numbers of DC in the MLN

DC are critical for Th2 activation in the lung and consequent inflammation (4). In addition, DC are sensitive to perforin-dependent CTL-mediated killing (21, 24). Therefore, we examined the possibility that allergen-specific CTL may reduce inflammation by killing allergen-presenting DC in vivo. We examined DC number in the lung-draining MLN, because lung and airway-derived DC loaded with inhaled Ag can be demonstrated in MLN (33) (Supplemental Fig. 4). In addition, differences in the number of lung DC due to CTL-mediated killing should also be reflected in the MLN (24).

OVA/Alm-sensitized mice were instilled i.n. with OVA-AF488 on day 24. Twenty-four hours later, MLN were excised and digested, and the total number of DC was evaluated by flow cytometry (Fig. 6A). DC were examined as a whole population, rather than separately as MLN resident and tissue-derived DC as shown in Supplemental Fig. 4, because the distinction between these two populations becomes less clear in LN undergoing immune responses. As shown in Fig. 6C, DC numbers were decreased in the MLN of OT-I CTL-treated mice compared with controls; this was the consequence of a combined decrease in MLN cellularity and percentage of DC in MLN (Fig. 6C). Some decrease in DC numbers was also observed in mice treated with PKO OT-I CTL, but this was not statistically significant. In addition, we noted a decrease in the OVA-AF488 median fluorescence intensity in OT-I–treated mice (Fig. 6C), suggesting a selection against DC that had taken up high levels of OVA; however, this was not statistically significant. Together, these data suggest that successful treatment with allergen-specific CTL correlates with a decrease in the number of DC in MLN.

Discussion

In this article, we report that allergen-specific CTL can therapeutically ameliorate allergic airway inflammation by a mechanism that requires intact cytotoxic function. The therapeutic effect of CTL is mediated at the effector phase of the response, involves a decrease in the Th2 response in BALF, and is associated with a decline in the number of DC in the MLN. Together, these observations support the notion that specific CTL may suppress allergic airway inflammation by killing allergen-presenting DC and presumably removing the APC that elicit CD4⁺ T cell activation and effector function in the lung.

Numerous studies reported the protective function of both allergen-specific and nonspecific CTL on allergic airway inflammation. In most of those studies, the effect of CTL was found to be mediated by IFN-γ (34, 10, 32), either directly or indirectly via the induction of IL-12 production by lung DC (12). Our experiments revealed the presence of variable levels of IFN-γ in the BALF of mice treated with specific CTL; however, these did not correlate with suppression of allergic airway inflammation. IL-12 was not detected. In addition, although treatment with IFN-γ–neutralizing mAb was effective and successfully blocked the biological effects of IFN-γ on lung macrophages, it could not reverse the protective effect of allergen-specific CTL, suggesting that IFN-γ was not required for this immunotherapeutic effect. IFN-γ had an inhibitory effect in some cases, but only when using CTL that were not allergen specific together with allergen preparations that contained endotoxin (N. Enomoto and F. Ronchese, unpublished observations). This is unlike the current study, which used low-E allergen preparations. Together, these results suggest that IFN-γ cannot, by itself, suppress airway inflammation, but presumably cooperates with additional mediators or signaling pathways that are elicited by endotoxin treatment. Therefore, our studies suggest that CTL can inhibit airway inflammation by at least two separate mechanisms, one that is allergen nonspecific and endotoxin and IFN-γ dependent, and a second, previously unappreciated mechanism...
that is allergen specific and endotoxin and IFN-γ independent, and requires perforin expression by CTL.

Perforin differs from other cytotoxic granule proteins, such as granzyme A, for which a proinflammatory function has also been reported (35), in that its only known function is in cell-mediated cytotoxicity. Thus, the protective effects of allergen-specific CTL on allergic airway inflammation are likely to be due to the direct killing of a cell population that is critical to the allergic response. Importantly, this protective effect is mediated at the effector stage of the allergic response; therefore, it is clearly distinct from other mechanisms invoking immune deviation of allergenic Th2 cells into type 1 effector cells (36). The requirement for cytotoxic function may also reconcile the protective effects of the type 1 CTL used in our study with the exacerbation observed when type 2 CD8+ T cells were transferred into sensitized mice (5, 37), because Tc2 cells may lack full cytotoxic function (38, 39).

Treatment with perforin-sufficient CTL resulted in a significant decrease in the number of DC in the MLN. The number of DC in MLN is thought to reflect the migration of lung-derived DC, as indicated by the presence of inhaled OVA-FA488 in this cell population (33). In addition, our previous experiments showed that decreased numbers of DC in LN is the consequence of decreased numbers of DC in nonlymphoid tissues (24). Together, these data support the possibility that lung DC are the likely target of CTL activity, and that decreased allergic inflammation is the consequence of decreased Ag presentation to disease-mediating Th2 cells in the airway. Importantly, this observation also implies that the same DC populations that present OVA to CD4+ Th2 cells can also cross-present Ag to CD8+ T cells and become targets of CTL activity. We cannot rule out that additional cell populations that are involved in allergic airway inflammation might also become targets of allergen-specific CTL. Mast cells and basophils are reported to have cross-presenting function (40, 41); however, their sensitivity to CTL-mediated killing in vivo has not been reported, and their loss would not be expected to result in the marked phenotype described in this article. In contrast, airway DC are reportedly critical in allergic inflammation (4). In CTL-treated mice, changes in numbers of DC were already observed within 24 h of allergen challenge, a time that appears compatible with the profound effect on airway inflammation observed at day 3 following i.n. challenge.

In addition to reducing eosinophil accumulation and goblet cell hyperplasia, the removal of allergen-presenting DC might be expected to have additional effects on airway inflammation. Airway hyperresponsiveness was not examined in our study, but it is known to correlate with increased eosinophils and mucus production (42, 43), and it is also dependent on an intact lung DC compartment (4), suggesting that it may be decreased in our CTL-treated mice. Prolonged allergen presentation by DC may be required to support the retention of disease-mediating memory Th2 cells in tissues (44–46). The removal of these DC may lead to a decrease in the memory cell population in lymphoid and nonlymphoid tissues. Thus, the effects of reducing the numbers of allergen-presenting DC may provide multiple therapeutic benefits and lead to a sustained reduction of allergic airway inflammation.

Lastly, our findings highlight the importance of the context in which the first allergen exposure takes place and whether this is conducive to the activation of allergen-specific CTL (47). For example, exposure to allergen in a context that supports CTL activation, such as i.p. immunization with high Ag doses, leads to weaker allergic responses than when CTL are not induced (48). The resolution of inflammation may also be accelerated. We propose that establishing whether environmental exposure to allergens results in the activation of allergen-specific effector CTL may, in some cases, help to explain the appearance and severity of allergic inflammation.

In summary, we report that treatment with allergen-specific CTL suppresses allergic airway inflammation and mucus production via a perforin-dependent mechanism. We suggest that this previously unappreciated mechanism of regulation of the immune response may be relevant to the pathogenesis of allergic asthma. Unlike steroid treatment, immune therapy using allergen-specific CTL is not expected to be broadly immunosuppressive, and it may lead to improved treatment for asthma and other allergic diseases.

Acknowledgments

We thank Shiaux Choost Tang for help with cytokine measurements and Cathrine Plunkett for IgE measurements. We also thank Kylie Price for support with flow cytometry, the staff of the Biomedical Research Unit for expert animal breeding, and all staff of the Malaghan Institute for useful advice.

Disclosures

The authors have no financial conflicts of interest.

References

Figure S1. Intranasal treatment with DC loaded with an MHC-I allergen epitope, or adoptive transfer of allergen-specific CTL, reduce goblet cell hyperplasia and Th2 cytokines in the airway

Mice were sensitized with OVA/Alm or Alm alone, and treated with DC/PBS or
DC/SIINFEKL (A), or injected with OVA-specific OT-I CTL (B), according to the protocols shown in Figure 2A and 2C. Three d after i.n. challenge, mucus-producing goblet cells in bronchioles were evaluated on histological specimens stained with AB-PAS. Representative bronchioles from each experimental group are shown; bars correspond to 200µm. The corresponding average data are shown in Figure 2A and 2C. The concentrations of IL-4, IL-5, IL-13, IL-10, TGF-β and IL-17 in BALF were evaluated 3 d after OVA challenge, while IL-12p70 and IFN-γ were assessed 6h and 24h after OVA challenge, respectively. (A) Bar graphs show mean + SEM for 5 mice/group. (B) Bar graphs show mean + SEM for groups of 7-9 mice. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
Figure S2. OVA-specific DC killing activity is not affected by treatment with IFN-γ-neutralizing mAb but is abrogated in PKO mice

WT or PKO mice were sensitized with OVA/Alm, and treated with OT-I CTL as described in Figure 1A, or with DC/PBS or DC/SIINFEKL as described in Figure 2A. On d 24, mice were injected i.v. with a mixture of target DC that were CFSE-labeled and loaded with SIINFEKL, or CMTMR-labeled and left untreated. Forty-eight h after target DC injection, MLN were collected and analyzed for the presence of fluorescent cells by flow cytometry. (A) Representative contour plots of live-gated total MLN cells from individual mice. The percentages of remaining CFSE+ DC/SIINFEKL are shown in each plot. (B) Normalized OVA-specific DC killing.
Bars show the mean ± SEM for 4 mice/group; **, \(p < 0.01 \). (C) Normalized OVA-specific DC killing in mice that had been injected i.p. with 500\(\mu \)g IFN-\(\gamma \)-neutralizing mAb 4 h before the i.v. transfer of target DC. Bars show mean + SEM for 4-5 mice/group.
Figure S3: Expression of CD69 on CTL in lung tissue, and MHCII on lung macrophages in CTL-treated mice.

Mice were treated as in Figure 5. Lungs were collected one day after i.n. challenge with low-E OVA, and processed into single cell suspensions. (A) Live cells were identified by DAPI exclusion and donor CTL were identified as CD8$^+$ and CD45.2$^+$CD44$^+$ cells. Expression of CD69 on the gated populations is shown in the histogram: L318 CTL, solid gray histogram; OT-I, black line; PKO OT-I, dashed black line. (B) Live cells were identified by DAPI exclusion, and macrophages were identified as low-autofluorescent CD45$^+$ cells which were CD11b$^{\text{high}}$CD11c$^{\text{int}}$. Expression of MHCII on the gated populations is shown in the histogram: L318 CTL, solid gray histogram; OT-I, black line; PKO OT-I, dashed black line.
Figure S4. OVA administered i.n. is preferentially located in a subpopulation of tissue-derived DC in the MLN.

Panels on the left show gating of the various APC populations in LN cell suspensions from mice injected i.n. with 100 ug OVA-AF488 or PBS vehicle 24h previously. 1) LN resident DC; 2) tissue-derived DC; 3) B cells. Histogram overlays show the OVA-AF488 fluorescence of each APC population isolated from mice that received i.n. PBS (solid gray histograms) or OVA-AF488 (empty histograms). The bar graph on the right shows the average + SE of the OVA-AF488 Median Fluorescence Intensity for each APC population; data refer to groups of 4 mice.