Distinct Regulation of Murine Lupus Susceptibility Genes by the IRF5/Blimp-1 Axis

Ravichandran Panchanathan, Hongzhu Liu, Hongqi Liu, Chee-Mun Fang, Loren D. Erickson, Paula M. Pitha and Divaker Choubey

J Immunol published online 23 November 2011
http://www.jimmunol.org/content/early/2011/11/23/jimmunol.1102311

Why *The JI*?
- **Rapid Reviews! 30 days*** from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Speedy Publication!** 4 weeks from acceptance to publication

*average

Subscription Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Distinct Regulation of Murine Lupus Susceptibility Genes by the IRF5/Blmp-1 Axis

Ravichandran Panchanathan,*,† Hongzhu Liu,* Hongqi Liu,* Chee-Mun Fang,‡ Loren D. Erickson,§ Paula M. Pitha,‡ and Divaker Choubey*,*†

Genetic studies involving systemic lupus erythematosus (SLE) patients have identified several lupus susceptibility genes, including IRF5 and PRDM1 (encoding for the IFN regulatory factor 5 [IRF]5 and Blimp-1) in the human genome. Accordingly, the murine Irf5 and Prdm1 genes have been shown to play a role in lupus susceptibility. However, it remains unclear how IRF5 and Blimp-1 (a transcriptional target of IRF5) contribute to lupus susceptibility. Given that the murine lupus susceptibility locus Nba2 includes the IFN-regulated genes Ifi202 (encoding for the p202 protein), Aim2 (encoding for the Aim2 protein), and Fcgr2b (encoding for the FcγRIIB receptor), we investigated whether the IRF5/Blimp-1 axis could regulate the expression of these genes. We found that an Irf5 deficiency in mice decreased the expression of Blimp-1 and reduced the expression of the Ifi202. However, the deficiency increased the expression of Aim2 and Fcgr2b. Correspondingly, increased expression of IRF5 in cells increased levels of Blimp-1 and p202 protein. Moreover, Blimp-1 expression increased the expression of Ifi202, whereas it reduced the expression of Aim2. Interestingly, an Aim2 deficiency in female mice increased the expression of IRF5. Similarly, the Fcgr2b−/− mice expressed increased levels of IRF5. Moreover, increased expression of IRF5 and Blimp-1 in lupus-prone C57BL/6, New Zealand Black, and C57BL/6.Sle123 female mice (as compared with age-matched C57BL/6 female mice) was associated with increased levels of the p202 protein. Taken together, our observations demonstrate that the IRF5/Blimp-1 axis differentially regulates the expression of Nba2 lupus susceptibility genes, and they suggest an important role for the IRF5/Blimp-1/p202 axis in murine lupus susceptibility. The Journal of Immunology, 2012, 188: 000–000.

*Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267; †Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45220; ‡Biology Department, The Johns Hopkins University, Baltimore, MD 21218; and §Department of Microbiology, University of Virginia, Charlottesville, VA 22908

Received for publication August 10, 2011. Accepted for publication October 28, 2011.

This work was supported by National Institutes of Health Grants AI066261 and AI089775 (to D.C.). Research in the laboratory of P.M.P. was supported by National Institutes of Health Grant AI067632. A grant from the Lupus Research Institute (to D.C.). A grant from the Lupus Research Institute (to D.C.). Research in the laboratory of P.M.P. was supported by National Institutes of Health Grant AI067632. A grant from the Lupus Research Institute (to D.C.).

Address correspondence and reprint requests to Dr. Divaker Choubey, Department of Environmental Health, University of Cincinnati, 3223 Eden Avenue, P.O. Box 670056, Cincinnati, OH 45267. E-mail address: divaker.choubey@uc.edu

Abbreviations used in this article: B6, C57BL/6; ER, estrogen receptor; IRF, IFN regulatory factor; NZB, New Zealand Black; NZW, New Zealand White; SLE, systemic lupus erythematosus.

Copyright © 2011 by The American Association of Immunologists, Inc. 0022-1767/11/S16.00
exert multiple biological effects on the immune system by affecting differentiation, proliferation, and survival of immune cells (17, 18). The IFN-inducible genes encode "effector" proteins that mediate the immunomodulatory functions of IFNs (19). Increased serum levels of IFN-α and the "IFN signature" have been reported in SLE patients (20, 21). Accordingly, lupus-prone New Zealand Black (NZB) mice that are deficient in the type I receptor do not develop disease (22). Interestingly, the SLE-associated variant of IRF5 has been linked to higher IFN-α levels in sera of human SLE patients (23).

The telomeric chromosome 1 in the mouse (and its syntenic equivalent 1q21–q44 region in humans) has shown a strong linkage to systemic autoimmunity (24). In the mouse, three loci have been identified in the autoimmunity susceptibility region: New Zealand White (NZW)-derived (25), and NZB-derived Lbw7 (26) and Nha2 (24, 27–32) in (NZB × NZW)F1 mice. Interestingly, both Sle1 and Nha2 intervals contain candidate lupus susceptibility genes, which include members of the FcγR family, members of the SLAM family, and members of the Ifi200 family (28, 30). The Nha2 locus (~90-97 cM) has been shown to be a major genetic contributor from the NZB strain to lupus susceptibility in the (NZB × NZW)F1 spontaneous mouse model of SLE (28–32). Accordingly, B6 mice congenic for the Nba2 interval (congenic mice indicated as B6.Nba2-ABC) produce detectable levels of anti-nuclear Abs at ~7 mo age, but they do not develop a kidney disease (28), thus suggesting interactions of the Nba2 locus with other loci for the development of the kidney disease. Based on the sequence polymorphisms that are identified in the Nba2 interval genes, it has been proposed that the interval may contain several candidate lupus susceptibility genes (28–32). The candidate genes include the Slam family genes (31, 32), the Fcgr2b gene (encoding for the inhibitory FcγRIIB receptor) (29), and the IFN-inducible Ifi202 gene (28, 33, 34). Interestingly, the B6.Nba2 congenic mice that are deficient in the type I receptor do not develop a lupus-like disease and express reduced levels of the Ifi202 mRNA (35).

Generation of B6.Nba2-ABC congenic lines (B6.Nba2-A, -A′B, -B, and -C) and their characterization reveal that the B6.Nba2-C congenic mice, which harbor the Ifi202 gene cluster, do not develop anti-nuclear Abs and do not produce type I IFN (32). Consistent with these observations, we were able to detect the expression of the p202 protein in the B6.Nba2-ABC female mice (age, ~4 mo), but not the parental B6 or B6.Nba2-C congenic mice (36). Moreover, genes within the subinterval C (comprising the Ifi200 family genes) negatively regulate the expression of the FcγRIIB gene and inhibit the FcγRIIB-induced apoptosis (32).

The IFN-inducible Ifi200 genes family includes structurally related mouse genes, including Ifi202a, Ifi202b, and Aim2 (33, 34). The 200-gene family region of the mouse chromosome 1 (~6000 kb) is syntenic to a region at the q123 on human chromosome 1, which contains four genes (IFI16, IFIX, MNDA, and AIM2) (33, 34). Proteins in the p200 family share at least one HIN200 domain. The domain participates in protein–protein interactions as well as detection of cytosolic DNA (37). The Aim2 protein, which contains a pyrin domain, recruits ASC adapter protein to form an Aim2 inflammasome (38, 39). Generation of the Aim2-deficient mice revealed that the Aim2 protein negatively regulates type I IFN responses and the expression of the Ifi202 (possibly both Ifi202a and Ifi202b genes) lupus susceptibility gene (36, 40). Given that the expression of the Ifi202 gene is regulated by the female sex hormone estrogen (41) and that p202 protein suppresses the expression of both Aim2 and Fcgr2b genes located within the Nha2 interval (42), we investigated whether the IRF5/Blimp-1 axis could regulate the expression of the Nha2 lupus susceptibility genes. We report that the axis differentially regulates the expression of Nha2 lupus susceptibility genes. These observations suggest that the IRF5/Blimp-1 axis contributes to lupus susceptibility in mice.

Materials and Methods

Mice

Generations of Ifi5- (4) and Aim2-deficient mice (40) on the mixed (129 × B6) genetic background have been described. Wild-type and Ifi5-deficient mice either 76% (KO-F) or 98% (KO-C) on the B6 genetic background were housed in specific pathogen-free animal facilities of The Johns Hopkins University (Baltimore, MD). The B6.Nha2 (or B6.Nha2-ABC) and B6.Nha2-C mice were housed in specific pathogen-free animal facilities at the University of Virginia (Charlottesville, VA). The FcγRIIB-deficient mice on the B6 genetic background and the corresponding wild-type mice were purchased from Taconic Farms (Germantown, NY). B6 and NZB male and female mice were purchased from The Jackson Laboratory (Bar Harbor, ME). The B6.Sle1/2 (B6.NZMSlc11a1Slc29a3 female mice (43, 44) (age, ~10 wk) were purchased from The Jackson Laboratory. NZB mice housed in specific pathogen-free animal facilities at the University of Cincinnati (Cincinnati, OH). The Institutional Animal Care and Use Committees at the institutions where the mice were housed approved the protocols for mice used in these studies.

Splenocyte isolation, cell culture, and treatments

Total splenocytes were prepared from age- and strain-matched male or female mice as described previously (36). Cells were resuspended in RPMI 1640 medium supplemented with 10% FBS. When indicated, splenic B cells (B220+) or plasma cells (CD138+) were purified using magnetic beads (purification kit purchased from Miltenyi Biotec) by the positive selection of cells. The purified (90–95%) pure cells were used immediately for the experiments. In most cases, unless indicated otherwise, cells from two or more age- and gender-matched mice were pooled to prepare total RNA or protein extracts.

The RAW264.7 murine macrophage cell line was purchased from the ATCC. The Cell Types Culture Collection, and cells were maintained as suggested by the supplier.

Plasmids and nucleoconfections

Plasmids to express murine IRF5 (pCMV-mIRF5) (10), Blimp-1 (pCMV-mPrdm1) (13), and p202 (pCMV-p202) (41) have been described. RAW264.7 cells (2 × 10⁶) from subconfluent cultures were nucleofected with highly purified (endotoxin-free) plasmid DNA encoding for the indicated protein. As a control, we used pCMV plasmid. For nucleoconfections, we used the Nucleofector II device (Axaman Biosystems, Köln, Germany) with kit V and the program D-032. After nucleoconfections, cells were incubated for 24–30 h before harvesting for total RNA or proteins. Nucleoconfections resulted in ~60% cell survival after 24 h.

Reporter assays

Promoter reporter assays were performed essentially as described previously (41). In brief, subconfluent cultures of RAW264.7 cells (in a six-well plate) were transected with the reporter plasmids 202-Luc (1.0 μg) and pRL-TK (0.2 μg) along with either an empty vector pCMV (0.8 μg) or equal amounts of a plasmid that allowed the expression of murine IRF5 (pCMV-mIRF5) or Blimp-1 (pCMV-mBlimp1) using the FuGENE 6 (Roche Applied Science, Indianapolis, IN) transfection reagent as suggested by the supplier. Cells were harvested between 40 and 45 h after transfections, and the firefly and Renilla dual luciferase activities were determined.

Isolation of RNA from splenocytes and RT-PCR

Splenocytes (5–8 × 10⁶ cells) were used to prepare total RNA using the TRIzol (Invitrogen, Carlsbad, CA) method (36). RNA (0.5–2 μg) was used for RT-PCR reaction using the SuperScript one-step RT-PCR system (Invitrogen). Semiquantitative regular PCR reaction was performed using a pair of primers specific to the Ifi5 (forward, 5'-AATACCCACCCACCCACCCACCCAC-3', reverse, 5'-TTGAGATCCGGGTTTGAGAT-3'), Ifi202 (forward, 5'-TTGGAGGACACCTTCTTTGCTAGTGTGTGTGT-3', reverse, 5'-ATGCTTTGCTTCTTTGCTGACAGAGAA-3'), and Ifi202b (forward, 5'-GAGCCTTACCATCGAGGAG-3', reverse, 5'-CTGAGATCCGGGTTTGAGAT-3').
ACACTGC-3′; reverse, 5′-ATCTGGCCTTTTCTGGCITGC-3′), or the murine Ifnβ (forward, 5′-CTCGTCTCCTCCTTGTCCTTCCA-3′; reverse, 5′-TTCTCCGTACCTCCATAGGGATC-3′) genes. The conditions for the regular PCR have been described (36).

To perform quantitative real-time TaqMan PCRs, we used the 7300 real-time PCR system (from Applied Biosystems, Foster City, CA) and the commercially available real-time TaqMan gene expression assays. The PCR cycling program has been described previously (36). The TaqMan assays for the murine Ifnβ (assay Mm00439552_s1), Prdm1 (assay Mm01187285_m1), Ifi202 (assay Mm035041890_m1; the assay allows the detection of both the Ifi202a and Ifi202b mRNA levels), Aim2 (assay Mm01295719_m1), Ifnb (assay Mm00439552_s1), Fcgr2b (assay Mm00438875_m1; the assay allows the detection of mRNA encoding both the B1 and B2 isoforms of the FcγRIIB receptor), the endogenous Actb control (catalog no. 4352933E), and β2-microglobulin (assay Mm00437762_m1) were purchased from Applied Biosystems and used as suggested by the supplier.

Immunoblotting

Total cell extracts containing equal amounts of proteins were subjected to immunoblotting as described previously (36). The p202 antisera, which allows the detection of both p202a and p202b proteins in immunoblotting, has been described (45). Additionally, we also used the polyclonal (catalog no. IMG-6670A from Imgenex, San Diego, CA) or monoclonal (sc-166253; from Santa Cruz Biotechnology, Santa Cruz, CA) anti-p202 Abs to detect the p202 protein. We have described polyclonal Abs against the murine Aim2 protein (36). Abs to murine IRF5 (catalog no. 4950), Blimp-1 (catalog no. 9115), STAT1 (catalog no. 9172), and β-actin (catalog no. 4967) were purchased from Cell Signaling Technology (Danvers, MA). Abs to detect the murine FcγRIIB receptor (sc-28842) were purchased from Santa Cruz Biotechnology.

Statistical analyses

The statistical significance of differences in the measured mean frequencies between the two groups of observations was calculated using the Student two-tailed t test. A p value <0.05 was considered significant.

Results

An Ifr5 deficiency in mice decreases expression of Blimp-1 and p202

Expression of IRF5 is critical for the development of lupus in certain models, including in FcγRIIB−/− Yaa and FcγRIIB−/- mice (3), as well as in MRL/lpr mice (7). Because development of lupus-like disease in B6.Nba2 congenic female mice depends on type 1 IFN signaling (35), and alterations in the expression of Ifi202, Aim2, and Fcgr2b genes that are located within the Nba2 autoimmune locus are associated with the development of lupus-like disease in mice (28, 32, 36, 42), we first investigated whether an Ifr5 deficiency in nonautoimmune mice could regulate the expression of these genes. As shown in Fig. 1, an Ifr5 deficiency in splenic cells isolated from female mice (age, ∼12 wk) on the B6 genetic background decreased levels of both Blimp-1 (a transcriptional target of IRF5) and p202 proteins as compared with age-matched B6 females. Given that the increased levels of the p202 protein in immune cells negatively regulates the expression of Aim2 and Fcgr2b genes (36, 42), we also compared the steady-state levels of Aim2 and FcγRIIB proteins. Notably, levels of the Aim2 and FcγRIIB proteins were higher in Ifr5-null cells than in the wild-type cells. Consistent with our above observations (Fig. 1A), we also noted decreases in steady-state levels of Prdm1 and Ifi202 mRNA levels in Ifr5-deficient splenocytes from female mice as compared with age-matched B6 females in regular PCR (Fig. 1B) and quantitative real-time PCR (Fig. 1C). Moreover, levels of the Aim2 and Fcgr2b mRNA were higher in Ifr5-deficient cells than in wild-type cells. Interestingly, we also detected reduced levels of Ifnb mRNA in Ifr5-deficient cells than in wild-type cells. Taken together, these observations indicated that an Ifr5 gene deficiency in mice decreases the expression of Blimp-1, IFN-β, and p202 proteins, whereas the deficiency increases the levels of Aim2 and FcγRIIB proteins.

![Figure 1](http://www.jimmunol.org/) An Ifr5 deficiency in mice decreases expression of Blimp-1 and p202 proteins. A, Total cell lysates prepared from splenic cells isolated from wild-type (lane 1) or Ifr5-deficient female mice (age, ∼12 wk) either 76% (lane 2) or 98% (lane 3) on the B6 background were analyzed by immunoblotting using Abs specific to the indicated proteins. B, Total RNA prepared from splenic cells isolated from wild-type (lane 1) or an Ifr5-deficient female mice (98% on B6 background; lane 2) was analyzed by semiquantitative PCR using a pair of primers specific to the indicated genes. C, The RNA samples in B were also subjected to quantitative real-time PCR using TaqMan assays specific to the indicated genes. The ratio of the mRNA levels for a test gene to β2-microglobulin mRNA was calculated in units (one unit being the ratio of the test gene to β2-microglobulin mRNA). The ratio of mRNA levels in the wild-type mice is indicated as 1. The error bars represent the SD.

IRF5 upregulates the expression of Blimp-1, IFN-β, and p202

To investigate further whether IRF5 stimulates the expression of the Prdm1, Ifnb, and Ifi202 genes, we chose to overexpress murine Ifr5 in murine macrophage RAW264.7 cells. We chose these cells because they do not express adaptor protein ASC (46), thus allowing expression of a desired gene after nucleofection of a plasmid DNA into cells without the activation of the Aim2 inflammasomes, which can induce cell death upon sensing cytosolic DNA (38, 39). Additionally, these cells express low levels of TLR9, which allows the activation of IRF5 upon sensing DNA that is taken up by cells that survive nucleofection. As shown in Fig. 2A and 2B, nucleofection of the pCMV-mIRF5 plasmid allowing expression of IRF5 in cells, but not an empty vector, increased steady-state levels of IRF5 and Blimp-1 mRNA.

Expression of IRF5 and its activation induce the expression of type I IFNs (8, 9). Therefore, our above observation that nucleofection of the pCMV-mIRF5 plasmid into RAW264.7 cells induced the expression of Blimp-1 expression prompted us to test whether IRF5 expression could induce IFN-β expression and the IFN-inducible Ifi202 gene. As shown in Fig. 2C and 2D, nucleofection of the plasmid DNA also increased steady-state levels of Ifnb and Ifi202 mRNAs. Moreover, consistent with our earlier observation (36), levels of Aim2 mRNA were inversely correlated with Ifi202 mRNA (Fig. 2E). Correspondingly, levels of STAT1, p202, and Blimp-1 proteins were higher in cells that were nucleofected with the pCMV-mIRF5 plasmid as compared with an empty vector (Fig. 2F). Furthermore, increased expression of IRF5 in promoter reporter assays using RAW264.7 cells stimulated the activity of the 202-luc-reporter plasmid ~6-fold (Fig. 2G). Taken together, these observations indicated that overexpression of the murine IRF5 in RAW264.7 cells after nucleofection of plasmid DNA stimulates the expression of Blimp-1, IFN-β, and p202.

Blimp-1 induces expression of Ifi202

Blimp-1 suppresses expression of c-Myc and E2F1 transcription factors (12). Interestingly, both c-Myc and E2F1 negatively regulate the Ifi202 expression (47, 48). Moreover, Blimp-1 can bind to the GA sequence (bound by the IRFs) that is present in the 5′ regulatory region of the Ifi202 gene (13, 49). Therefore, our above observations that IRF5 expression can stimulate the expression of...
Blimp-1 and p202 proteins raised the possibility that Blimp-1 could regulate the expression of \(I{f}_202 \) gene. As shown in Fig. 3, nucleofection of \(pCMV-\text{Prdm1} \) plasmid (allowing the expression of the murine Blimp-1 protein), but not an empty vector, into RAW264.7 cells increased levels of \(p202 \) mRNA (Fig. 3A) and protein (Fig. 3B). Furthermore, increased expression of Blimp-1 in promoter reporter assays using RAW264.7 cells stimulated the activity of the 202-luc-reporter plasmid \(\sim 14 \)-fold (Fig. 3C). Given that the \(p202 \) protein suppresses the expression of the \(\text{Aim2} \) gene (33, 39) and that Blimp-1 also suppresses the expression of the \(\text{Aim2} \) gene (14), we also explored whether \(p202 \) protein could regulate Blimp-1 expression. Interestingly, \(p202 \) overexpression in RAW264.7 cells increased levels of Blimp-1 protein (Fig. 3D).

Gender-dependent upregulation of IRF5 levels in Aim2-deficient mice

Expression levels of IRF5 and its nuclear localization are regulated by the female sex hormone estrogen (11). Given that an \(Irf5 \) deficiency in mice increased expression levels of \(\text{Aim2} \) protein (Fig. 1), we sought to investigate whether an \(\text{Aim2} \) deficiency could...
regulate levels of IRF5 protein. As shown in Fig. 4A, levels of IRF5 protein were higher in splenic B220+ B cells from wild-type female mice as compared with age-matched males. Interestingly, levels of the IRF5 protein were higher in the Aim2-deficient females than the age-matched wild-type females (compare lane 4 with lane 3), and IRF5 expression was not detectable in Aim2-deficient males. Consistent with these observations, we detected increased levels of IRF5 mRNA in splenic B220+ B cells from Aim2-deficient females as compared with age- and gender-matched wild-type mice (Fig. 4B). Correspondingly, we also detected increased levels of mRNA encoding for Blimp-1, IFN-β, and p202 proteins in Aim2-deficient B cells (B220+) than in wild-type cells. Taken together, these observations indicated that expression of Aim2 and IRF5 proteins is inversely correlated and that gender-dependent factors regulate the expression of IRF5 in Aim2-deficient immune cells.

Fcgr2b deficiency increases IRF5 levels

Deficiency of the inhibitory FcγRIIB receptor in immune cells induces type I IFN response and also induces expression of the Ifi202 gene (42). Therefore, increased levels of FcγRIIB receptor in IRF5-deficient cells (Fig. 1) prompted us to test whether the deficiency of the FcγRIIB receptor could regulate expression of IRF5. As shown in Fig. 5A, levels of IRF5 protein were higher in Fcgr2b-deficient cells from male and female mice as compared with age- and gender-matched B6 mice. Correspondingly, we also detected higher steady-state levels of IRF5 mRNA in Fcgr2b-deficient cells as compared with age- and gender-matched B6 mice (Fig. 5B). Taken together, these observations indicated that the lack of FcγRIIB receptor expression in immune cells increases levels of IRF5 mRNA and protein.

Increased expression of IRF5 and Blimp-1 in lupus-susceptible mice is associated with increased expression levels of p202 protein

Lupus-prone preautoimmune (much before the detection of autoantibodies; age, ~4 mo) B6.Nba2-ABC (same as B6.Nba2) female mice express increased levels of IFN-β, exhibit activation of IFN signaling, and express increased levels of p202 protein as compared with age-matched B6.Nba2-C and B6 non–lupus-prone female mice (36). Therefore, our above observations that both IRF5 and Blimp-1 stimulated the expression of Ifi202 gene in immune cells and an Ifi5 deficiency decreased p202 protein levels (Fig. 1) encouraged us to investigate whether levels of IRF5 and/or Blimp-1 proteins are higher in the lupus-prone B6.Nba2-ABC mice as compared with non–lupus-prone B6.Nba2-C and B6 mice.

FIGURE 4. Gender-dependent upregulation of IRF5 levels in Aim2-deficient mice. **A,** Total cell lysates prepared from purified splenic B cells (B220+) that were isolated from wild-type (lanes 1 and 3) and age-matched Aim2-deficient (lanes 2 and 4) male or female mice (age, 6–8 wk) were analyzed by immunoblotting using Abs specific to the indicated proteins. **B,** Total RNA prepared from purified splenic B cells (B220+), which were isolated from wild-type (lanes 1 and 3) and age-matched Aim2-deficient (lanes 2 and 4) male or female mice (age, 6–8 wk), were analyzed by regular PCR for mRNA levels.

As shown in Fig. 6A and 6B, we detected higher levels of IRF5 and Blimp-1 mRNA in splenic cells from B6.Nba2-ABC female mice as compared with the age-matched B6.Nba2-C or B6 female mice. Accordingly, we also detected the increased levels of both IRF5 and Blimp-1 proteins in splenic cells from B6.Nba2-ABC female mice as compared with the age-matched B6.Nba2-C and B6 mice (Fig. 6C). Interestingly, B6.Nba2-C splenic cells isolated from the female mice had higher levels of IRF5 but not Blimp-1. Because IRF5 expression decreases in plasma cells (4) and Blimp-1 promotes B cell differentiation (12), we also compared levels of IRF5, Blimp-1, and p202 proteins in splenic CD138+ plasma cells. As shown in Fig. 6D, we found that levels of IRF5 and p202 proteins were higher in lupus-prone B6.Nba2-ABC females than in age-matched non–lupus-prone B6 females. However, levels of Blimp-1 were comparable between the B6 and B6.Nba2 plasma cells, and levels of Aim2 protein were lower in the B6.Nba2-ABC females than in B6 females.

We have noted earlier that expression levels of IRF5, Blimp-1, and p202 are higher in splenic cells from females than from males and that the female sex hormone estrogen through estrogen receptor (ER)α upregulates their expression (11, 41). Therefore, we also compared levels of these proteins in splenic CD138+ plasma cells isolated from B6.Nba2-ABC males and age-matched females. As shown in Fig. 6E, we could detect the expression of ERα in CD138+ plasma cells and the levels were higher in females than in males. Consistent with our previous observations (11, 41), we detected much higher levels of IRF5, Blimp-1, and p202 in cells from females than males. Interestingly, we also detected much higher levels of STAT1 in females than in males. Taken together, these observations indicated that the gender-dependent increased levels of IRF5 and Blimp-1 proteins in the B6.Nba2-ABC female CD138+ plasma cells, as compared with age-matched males, are associated with increased expression levels of p202 protein.

B6.Sle123 congenic (congenic for the NZM2410 lupus-prone strain-derived Sle1, Sle2, and Sle3 loci) mice spontaneously develop lupus-like disease, which is characterized by autoantibody production, lymphophasenomegaly, and glomerulonephritis (44). As noted above, the Sle1 locus (derived from chromosome 1 from NZW strain) contains the genomic region corresponding to the Nba2 interval (43, 44). Because splenic cells from NZW females express higher levels of Ifi202 mRNA than do the age-matched B6 females (28), and the B6.Sle123 congenic females develop-
tectable levels of autoantibodies beginning ~6 mo of age (44), we decided to compare levels of IRF5, Blimp-1, p202, Aim2, and FcγRIIB proteins in splenic cells from age-matched (age, 8–10 wk; much before detection of autoantibodies) B6, B6.Nba2, NZB, and B6.Sle123 females. As shown in Fig. 7A, we detected increased levels of IRF5 and Blimp-1 in B6.Nba2, NZB, and B6.Sle123 cells as compared with B6 cells. Similarly, levels of p202 protein were higher in B6.Nba2, NZB, and B6.Sle123 cells than in B6 cells. As expected from our experiments above (Fig. 1), steady-state levels of Aim2 and FcγRIIB proteins in these four strains of female mice were inversely correlated with the levels of IRF5 and p202 proteins. Furthermore, we detected significantly higher steady-state levels of IRF5 mRNA in all lupus-prone strains of female mice (Fig. 7B). Accordingly, we also detected increased levels of Ifnb and Ifi202 mRNAs (Fig. 7C, 7D). Taken together, these observations indicated that increased expression levels of IRF5 and Blimp-1 in lupus-susceptible strains of mice are associated with increased levels of the p202 protein.

Discussion

Genetic studies involving SLE patients have identified IRF5 and PRDM1 genes as candidate lupus susceptibility genes (1, 2). Correspondingly, the murine Irf5 and Prdm1 genes have been shown to play a role in lupus disease in FcγRIIB−−/− Yaa and FcγRIIB−−/− mice (3), as well as in MRL/lpr mice (7). These studies suggest that the IRF5 transcription factor plays an important role in the development of lupus disease. Because the “IFN signature” in SLE patients is associated with the disease activity (20, 21) and a variant of human IRF5 is linked to increased serum levels of IFN-α in SLE patients (23), we tested whether the IRF5/Blimp-1 axis could regulate the expression of IFN-regulated lupus susceptibility genes within the Nba2 autoimmunity locus. Our observations revealed that: 1) an Irf5 gene deficiency in mice reduced the expression of Blimp-1 and p202 proteins, whereas it increased the expression of Aim2 and FcγRIIB proteins (Fig. 1); 2) overexpression of murine IRF5 in RAW264.7 cells upregulated expression of Blimp-1, IFN-β, and proteins.
p202 proteins and also stimulated the activity of the 202-luc-reporter (Fig. 2); 3) overexpression of Blimp-1 protein in RAW264.7 cells induced expression of Ifi202 gene (Fig. 3); 4) increased levels of p202 protein induced expression of Blimp-1 (Fig. 3); 5) gender-dependent factors increase steady-state levels of IRF5 mRNA and protein in Aim2-deficient mice (Fig. 4); 6) deficiency of the inhibitory receptor FcγRIIB in immune cells increases IRF5 mRNA and protein levels (Fig. 5); 7) increased expression of IRF5 and Blimp-1 proteins in lupus-susceptible B6. Nba2 (Fig. 6) and B6.Sle123 (Fig. 7) congenic female mice, as compared with age-matched B6 female mice, is associated with increased expression of p202 protein. These observations revealed that the IRF5/Blimp-1 axis differentially regulates the expression of lupus susceptibility genes within the Nba2 interval and suggest that the axis contributes to lupus susceptibility in part by down-regulating the expression of Aim2 and Fcgr2b genes (Fig. 8).

Notably, mice that are deficient in the IRF5 gene do not exhibit any significant change in the number of CD4+ and CD8+ cells (4). However, in these mice, some increase in the number of B cells (CD19+) was evident with the age: the old mice (~14 mo) exhibited an expansion of CD19+B220- cells presumably due to plasma blasts. Given that we used cells from ~12-wk-old Irf5-deficient female mice (Fig. 1), it is unlikely that changes in the expression of Blimp-1, IFN-β, p202, Aim2, and FcγRIIB proteins that are detected in splenic cells from the Irf5-deficient mice (as compared with age-matched wild-type mice) are due to changes in the composition of the lymphoid compartment.

Type 1 IFN receptor subunit 1-deficient FcγRIIB−/− Yaa mice maintain a substantial level of residual disease (3), thus raising the possibility that IRF5 contributes to lupus susceptibility independent of its role in type 1 IFN expression and activation of IFN signaling. Accordingly, a recent study (5) has noted that the IRF5 contributes to murine SLE-like disease through its direct control on transcription of the p202 protein in B6.Nba2-ABC lupus-prone female mice are associated with inhibition of the transcriptional activity of p53 (50) and that p53 represses class switch recombination (51), further work is needed to test whether the IRF5-induced p202 protein levels promote the class switch recombination by inhibiting the p53-mediated transcription.

Expression of FcγRIIB receptor is detectable in B cells and plasma cells (both splenic and bone marrow), and the receptor controls persistence and apoptosis of plasma cells in the bone marrow (52, 53). Consequently, mice that are deficient in the FcγRIIB receptor expression exhibit B cell hyperactivity and develop SLE disease spontaneously on certain genetic backgrounds (53). Interestingly, reduced expression of the Fcgr2b gene in the B6.Nba2-ABC congenic mice is associated with defects in apoptosis of germinal center B cells and plasma cells (32). Moreover, increased levels of p202 protein suppress the expression of the FcγRIIB receptor (42). Therefore, our observations that an IRF5 deficiency in mice decreased levels of both Blimp-1 and p202 proteins but increased levels of the FcγRIIB receptor are consistent with the negative regulation of the FcγRIIB gene by the IRF5/Blimp-1/p202 axis.

Previous studies indicate that Aim2 protein is not needed for type 1 IFN expression after sensing cytosolic dsDNA (40). Moreover, Aim2 deficiency in female mice increased stead-state levels of mRNA encoding for Ifi202 and Ifi202 and also stimulated the expression of IFN-inducible genes (36). These observations supported the idea that Aim2 protein suppresses type 1 IFN responses. Therefore, our observation that the Aim deficiency increased levels of IRF5 in female mice, as compared with age-matched wild-type female mice (Fig. 4), provides a potential molecular mechanisms by which the Aim2 protein suppresses the type 1 IFN responses in immune cells.

Expression levels of p202 and Aim2 mRNA and proteins are inversely correlated in immune cells derived from certain strains of male and female mice (36). Moreover, increased levels of p202 protein in RAW264.7 cells reduced levels of Aim2 protein (42). Given that Blimp-1 is reported to suppress transcription of the Aim2 gene (14), our observation that increased levels of the p202 protein induce expression of Blimp-1 (Fig. 3) supports the possibility that p202-mediated increased levels of Blimp-1 negatively regulate transcription of the Aim2 gene. Further work is in progress to test this exciting possibility.

The 5’ regulatory region of the Ifi202 gene contains a GA box (49), which contains a potential DNA-binding consensus sequence (GAAAG) for the IRF5 and Blimp-1 transcription regulators (14). Therefore, we observed that increased expression of IRF5 or Blimp-1 protein in RAW264.7 cells stimulated the expression of Ifi202 gene and increased the activity of the 202-luc-reporter in promoter reporter assays (Figs. 2 and 3, respectively) are consistent with the transcriptional regulation of the Ifi202 gene by these two regulators. Because Blimp-1 negatively regulates expression of c-Myc and E2F1 transcription factors (12), which negatively regulate the expression of Ifi202 gene (47, 48), our observations do not rule out the possibility that Blimp-1 stimulates the expression of Ifi202 gene through suppression of c-Myc and E2F1 activity. Therefore, further studies are in progress to investigate the molecular mechanisms.

Expression levels of p202 protein in immune cells are regulated by sex hormones (41): levels are higher in B cells, which express increased levels of ERα, whereas levels are lower in T cells, which express increased levels of androgen receptor. Therefore, our observations that increased levels of ERα in CD138+ plasma cells from female B6.Nba2 than from age-matched males are associated with increased levels of IRF5, Blimp-1, and p202 proteins are consistent with our previous observations that levels of IRF5, Blimp-1, and p202 proteins are upregulated by the female sex hormone estrogen through ERα (11, 41). Moreover, these observations suggest that the IRF5/Blimp-1/p202 axis contributes to sex bias in lupus disease in mice in part through downregulation of Aim2 and FcγRIIB expression.

In summary, our observations support our model (Fig. 8), which predicts that gender-dependent increased levels of IRF5 in mature B cells and Blimp-1 in plasma cells contribute to lupus susceptibility in part by differentially regulating the expression of Nba2 lupus susceptibility genes, such as Ifi202 and FcγRIIB. Our observations will serve as a basis to understand the role of the IRF5/Blimp-1/p202 axis in lupus susceptibility in mice.

FIGURE 8. Proposed roles of IRF5 and Blimp-1 proteins in differential regulation of the p202, Aim2, and FcγRIIB proteins encoded by the Nba2 lupus susceptibility genes.
Acknowledgments
We thank Dr. K. Calame (Columbia University, New York, NY) for providing the murine Blimp-1 expression plasmid. We also thank Drs. K. Fitzgerald and V. Rathinam (University of Massachusetts Medical School, Worcester, MA) for providing splenocytes from the Aim2-deficient mice.

Disclosures
The authors have no financial conflicts of interest.

References

