Activation of Wnt Signaling Arrests Effector Differentiation in Human Peripheral and Cord Blood-Derived T Lymphocytes

Sujatha Muralidharan, Patrick J. Hanley, Enli Liu, Rikhia Chakraborty, Catherine Bollard, Elizabeth Shpall, Cliona Rooney, Barbara Savoldo, John Rodgers and Gianpietro Dotti

J Immunol published online 19 October 2011
http://www.jimmunol.org/content/early/2011/10/25/jimmunol.1101585

Supplementary Material
http://www.jimmunol.org/content/suppl/2011/10/19/jimmunol.1101585.DC1

Subscription
Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Activation of Wnt Signaling Arrests Effector Differentiation in Human Peripheral and Cord Blood-Derived T Lymphocytes

Sujatha Muralidharam,† Patrick J. Hanley,† Enli Liu,† Rikhia Chakraborty,† Catherine Bollard,*,† Elizabeth Shpall,‡ Cliona Rooney,*,† Barbara Savoldo,† John Rodgers,*, and Gianpietro Dotti*,†,‡,§

The canonical Wnt/β-catenin signaling pathway plays an important role in thymocyte development and T cell migration, but little is known about its role in naive-to-effector differentiation in human peripheral T cells. We show that activation of Wnt/β-catenin signaling arrests human peripheral blood and cord blood T lymphocytes in the naive stage and blocks their transition into functional T effector cells. Wnt signaling was induced in polyclonally activated human T cells by treatment either with the glycogen synthase kinase 3β inhibitor TWS119 or the physiological Wnt agonist Wnt-3a, and these T cells preserved a naive CD45RA+CD62L+ phenotype compared with control-activated T cells that progressed to a CD45RO+CD62L– effector phenotype, and this occurred in a TWS119 dose-dependent manner. TWS119-induced Wnt signaling reduced T cell expansion, as a result of a block in cell division, and impaired acquisition of T cell effector function, measured by degradation and IFN-γ production in response to T cell activation. The block in T cell division may be attributed to the reduced IL-2Rα expression in TWS119-treated T cells that lowers their capacity to use autocrine IL-2 for expansion. Collectively, our data suggest that Wnt/β-catenin signaling is a negative regulator of naive-to-effector T cell differentiation in human T lymphocytes. The arrest in T cell differentiation induced by Wnt signaling might have relevant clinical applications such as to preserve the naive T cell compartment in Ag-specific T cells generated ex vivo for adoptive T cell immunotherapy. The Journal of Immunology, 2011, 187: 000–000.

The canonical Wnt/β-catenin signaling pathway regulates the progression of thymocyte development at different stages (1–3). However, the role of this signaling pathway in postthymic peripheral T lymphocytes is less understood. Resting and effector peripheral T cells express components of the Wnt signaling pathway. Wnt proteins induce T cell production of matrix metalloproteinases, which are required for peripheral T cell transmigration (4). TCR activation also leads to changes in expression patterns of Wnt-targeted transcription factors in peripheral T cells (5). These results indicate that the Wnt signaling pathway is active in peripheral T cells and it may play a role during T cell activation and differentiation. We undertook this study to elucidate the role of the canonical Wnt signaling pathway in naive-to-effector differentiation of human peripheral blood and cord blood T lymphocytes. This question is relevant both to the fundamental understanding of human T cells and our practical ability to expand therapeutic T cells ex vivo for treating patients with cancer. In particular, human T cells expanded ex vivo almost invariably acquire an effector phenotype that may limit their ability to persist in vivo after adoptive transfer into the patient. Manipulation of the Wnt pathway might help preserve the naive phenotype of T cells during these ex vivo cultures.

In the canonical Wnt pathway, a destruction complex comprised of scaffold proteins (adenomatous polyposis coli, axis inhibition protein 1) and two kinases (glycogen synthase kinase 3β [GSK3β], casein kinase 1) phosphorylates and promotes BTRCP-mediated ubiquitination and degradation of the β-catenin molecule in the absence of Wnt ligand (6). Nineteen different Wnt ligands identified in humans are all lipid-modified glycoproteins. Engagement of cell surface Frizzled/LRP-5/6 receptor complexes by Wnt ligands including Wnt1 and Wnt3a recruits the protein Disheveled to the receptor complex inducing phosphorylation of LRP-5/6 by casein kinase 1 and GSK3β. This recruits axis inhibition protein 1 to the plasma membrane and disassembles the destruction complex, allowing accumulation of cytoplasmic β-catenin, which can then translocate to the nucleus. β-catenin associates with transcription factors from the T cell factor or lymphoid enhancer binding factor family, including Tcf-1, Tcf-3, Tcf-4, and Lef-1 and activates expression of target genes including Tcf7 (7), Lef1 (8), Nfk (9), and Jun (10).

Willinger et al. (5) reported that mature human CD8+ T lymphocytes downregulate the expression of Wnt transcription factors Tcf-1 and Lef-1 upon activation but shift the pattern of splicing to favor the stimulatory isoforms of these transcription factors rather than the inhibitory isoforms, suggesting that Wnt signaling may...
play a complex role in peripheral T cell differentiation. It has been reported that induction of canonical Wnt signaling in pmel-1 transgenic TCR mouse CD8\(^+\) T cells in vitro arrests effector T cell differentiation and function (11). This observation agrees with another study in which activation of Wnt-\(\beta\)-catenin signaling in mouse T cells obtained by genetic modification to express a non-degradable \(\beta\)-catenin inhibited T cell activation at the proximal stages of TCR signaling and also arrested effector T cell proliferation and function (12). Importantly, Gattinoni et al. (11) found that in addition to arresting effector cell differentiation, induction of Wnt signaling in pmel-1 mouse T cells generated a distinct population that they called “T memory stem” (Tscm) cells. These Tscm cells expressed high levels of Sca-1, Bcl-2, and CD122, preserved a CD44 lowCD62L high naive phenotype even after undergoing several cycles of cell division, rapidly released cytokines upon Ag encounter, and had superior proliferative and anti-tumor activity in vivo compared with central or effector memory T cells (11).

Successful translation of these findings in human T cells could lead to an important clinical application to maintain naive T cells in ex vivo cultures, using Wnt signaling, for adoptive transfer. Invasion of naive T cells that have a greater potential to persist and expand in vivo may improve the objective clinical responses in cancer patients as previously observed in mouse models (13, 14). We investigated the role of canonical Wnt signaling in naive-to-effector T cell differentiation in human T lymphocytes. We found that induction of Wnt signaling, using graded doses of synthetic GSK3\(\beta\) inhibitor TWS119 or the native agonist Wnt-3a, preserves a naive phenotype (CD45RO\(^{−}\)CD45RA\(^{+}\)CD62L\(^{hi}\)) in activated CD4\(^+\) and CD8\(^+\) peripheral T cells. These Wnt-induced phenotypically naive cells also showed reduced effector T cell function in response to polyclonal stimulation and in Ag-specific redirected T cells. Additionally, Wnt signaling impaired T cell activation by inhibition of proximal TCR signaling and significantly blocked T cell division. Similar effects were observed in T cells derived from cord blood, which can be considered a better source of immature T cells compared with those circulating in peripheral blood (15). However, Wnt-induced T cells could be rescued from arrest in proliferation by exogenous \(\gamma\)-chain cytokines, allowing them to become effector T cells. We also found that Wnt signaling induced by TWS119 does not imprint on the T cell phenotype and functions, as these cells acquire proliferative and effector function when restimulated in the absence of TWS119. Therefore, our results using human T lymphocytes support a model in which Wnt signaling inhibits effector T cell differentiation and this observation may have relevant clinical implications in T cell-based immunotherapy.

Materials and Methods

Cell isolation and selection

Mononuclear cells were isolated using Ficoll gradient from peripheral blood collected from healthy donors at the Gulf Coast Regional Blood Center (Houston, TX) or from research cord blood units obtained from the MD Anderson Cord Blood Bank. Samples were collected according to Institutional Review Board-approved protocols. T cells were positively selected from PBMCs or cord blood-derived mononuclear cells by MACS (Miltenyi Biotec). CD45RO- and CD45RA-expressing T cells were sorted by negative selection using appropriate microbeads (Miltenyi Biotec).

T cell activation and culture

T cells were activated with plate-coated OKT3 (Ortho Biotech; 1 \(\mu\)g/ml) and anti-CD28 (clone CD28.2, BD Biosciences; 1 \(\mu\)g/ml) Abs and cultured for 7 d. TWS119 (GSK3\(\beta\) inhibitor) (EMD Biosciences) and recombinant human Wnt-3a (R&D Systems) were used at the indicated concentrations in culture. TWS119 was resuspended in DMSO (Sigma-Aldrich) and anti-CD28 (clone CD28.2, BD Biosciences; 1 \(\mu\)g/ml) Abs and cultured.

Flow cytometry

Cells were stained with Abs (BD Biosciences) coupled to FITC, PE, PerCP, or allophycocyanin against the indicated molecules. Routinely, 1 \(\times\) 10\(^6\) cells were stained with the indicated Ab or appropriate isotype controls for 20 min at 4\(°\)C, washed in PBS containing 1% FCS, and resuspended for FACS analysis.

To examine intracellular IFN-\(\gamma\) production and surface CD107 expression, T cells were collected after 7 d culture with control DMSO or TWS119 and restimulated overnight with 10 ng/ml PMA (Sigma-Aldrich) and 1 \(\mu\)m ionomycin (EMD Biosciences). For intracellular staining, cells were treated with protein transport inhibitor (brefeldin A), fixed, permeabilized, and stained in saponin-containing buffer (17).

The effector function of the CAR-redirected T cells was examined by coculturing them with Raji cells at a 5:1 E:T ratio in the presence or absence of DMSO or 3 \(\mu\)M TWS119 as indicated. After 5 d culture, the residual Raji and T cells in coculture were identified by their CD20 and CD3 expression, respectively, using flow cytometry. Nontransduced DMSO- or TWS119-treated T cells served as negative controls.

Cells were analyzed by CellQuest software on a BD FACScalibur cytometer. For each sample, a minimum of 10,000 events was analyzed.

ELISA

T cells were collected after 7 d culture with control DMSO or TWS119 and restimulated with 10 ng/ml PMA (Sigma-Aldrich) and 1 \(\mu\)m ionomycin (EMD Biosciences). For Ag-specific cells, the DMSO- or TWS119-treated CAR-redirected T cells were cocultured with Raji cells at a 5:1 ratio. After 24 h, the supernatant of the cultures was collected and analyzed for IFN-\(\gamma\), IL-2, or IL-17 using 96-well plates coated with the specific Abs by ELISA, according to the manufacturer’s instructions (R&D Systems). Other cytokines such as TNF-\(\alpha\), IL-4, and IL-10 were analyzed using cytometric bead array for human Th1 and Th2 cytokines (BD Biosciences).

Cell proliferation and apoptosis

T cell proliferation was evaluated in a CFSE dilution assay. Briefly, freshly isolated T cells were labeled with 1.5 \(\mu\)M CFSE (Invitrogen) according to the manufacturer’s instructions. For each sample, a minimum of 10,000 events was analyzed.

Cells were collected after 7 d culture with control DMSO or TWS119 and restimulated with 10 ng/ml PMA (Sigma-Aldrich) and 1 \(\mu\)m ionomycin (EMD Biosciences). For Ag-specific cells, the DMSO- or TWS119-treated CAR-redirected T cells were cocultured with Raji cells at a 5:1 ratio. After 24 h, the supernatant of the cultures was collected and analyzed for IFN-\(\gamma\), IL-2, or IL-17 using 96-well plates coated with the specific Abs by ELISA, according to the manufacturer’s instructions (R&D Systems). Other cytokines such as TNF-\(\alpha\), IL-4, and IL-10 were analyzed using cytometric bead array for human Th1 and Th2 cytokines (BD Biosciences).

Immunoblot analysis

Western blot analysis, complete cell lysates were prepared from T cells cultured with control DMSO or TWS119 for 6 or 24 h as indicated. Cell lysates were resolved by SDS-PAGE. Expression of \(\beta\)-catenin, phospho-\(\beta\)-catenin (\(\beta\)-catenin), and phospho-\(\beta\)-catenin (\(\beta\)-catenin) linker for activation of T cells (LAT), pY783 PLC\(\gamma\), and pY132 LAT were detected using Abs purchased from Cell Signaling Technology and Abcam. Immunoblots were developed using ECL detection reagents (Amersham Biosciences). As a loading control, the blots were probed with GAPDH-specific mAb (Santa Cruz Biotechnology).

Quantitative RT-PCR

T cells were activated and cultured with control DMSO or TWS119 for indicated times, washed, and total RNA was isolated using the RNeasy Mini column purification kit (Qiagen), cDNA was synthesized using a High Capacity RNA-to-cDNA kit (Applied Biosystems) according to the manufacturer’s instructions. Expression of genes Nkx, Fzd7, Tcf7, Jun, and Lef1 was evaluated by quantitative RT-PCR using specific primers/probes purchased from Applied Biosystems. The difference in cycles threshold values (\(\Delta\)Ct) of the gene was normalized to the \(\Delta\)Ct of GAPDH, and fold change in expression was expressed relative to untreated cells.
Results are presented as means ± SD. Student’s t test was used to determine the statistical significance of differences between samples (p values calculated as 0 were depicted as p < 0.001).

Results

TWS119 activates the canonical Wnt/β-catenin signaling pathway

First we wanted to determine whether treatment with the GSK3β inhibitor, TWS119, induces the canonical Wnt signaling pathway in human T cells as has been observed in mouse T cells (11). As illustrated in Fig. 1A, resting and activated human CD3+ T lymphocytes treated with TWS119 for 6 h showed a large increase in β-catenin accumulation relative to cells treated with DMSO, indicating that canonical Wnt signaling is activated upon TWS119 treatment in human T cells.

The expression of genes downstream of canonical Wnt signaling (Fzd7, Lef1, Nlk, Tcf7, and Jun) was examined by quantitative RT-PCR. Control DMSO-treated activated T cells downregulated expression of Fzd7, Lef1, and Tcf7 relative to untreated cells, and this is consistent with previously published observations (5) (Fig. 1B, 1C). However, in the presence of TWS119, activated T cells showed upregulation of Fzd7, Nlk, and Jun genes or reduced downregulation of Lef1 and Tcf7 compared with DMSO-treated cells. This trend of higher expression of Wnt target genes in TWS119-treated cells compared with DMSO-treated cells was observed for all genes with statistically significant differences in the case of Nlk, Jun, and Tcf7 (Fig. 1B). This further supports the claim that TWS119 activates the Wnt pathway in human T cells.

Induction of Wnt signaling by TWS119 preserves the subset of CD45RA+CD62L+ cells in polyclonally activated T cells

Previous reports have shown that Wnt signaling inhibits splenic T cell differentiation in mouse T cells (11). The difference in expression patterns of transcription factors and receptors of the Wnt signaling pathway between naive and effector human T cells indicates that this pathway plays a significant, if complex, role in naive-to-effector human T cell differentiation as well (4, 5). To test whether Wnt signaling inhibits differentiation of naive human T cells to effector cells, naive cells were polyclonally activated and cultured with graded doses of TWS119 for a week. Freshly isolated T cells consisted of both naive (CD45RA+CD62L+) and effector cells (CD45RO+CD62L−) (Fig. 2A). As expected, upon activation with OKT3 and anti-CD28 Abs, naive T cells progressed to Ag-experienced cells, showing decline in the expression of CD45RA and acquisition of the alternatively spliced variant, CD45RO (18). By day 7, the control cells possessed predominantly effector T cell characteristics such as elevated expression of CD45RO and low expression of CD62L (Fig. 2A). In contrast, activated T cells treated with TWS119 retained the subset of naive CD45RA+CD62L+ cells in a dose-dependent manner. We selected

![Figure 1](http://www.jimmunol.org/)

FIGURE 1. Treatment with TWS119 causes activation of canonical β-catenin/Wnt signaling. A, Western blot analysis of β-catenin expression in CD3+ T cells cultured with DMSO or 7 μM TWS119 with or without activation for 6 h. 293T cells were used as a positive control for β-catenin expression, and GAPDH served as loading control. Immunoblot data are from one of two independent experiments. B, Quantitative RT-PCR analysis of Wnt target genes in activated CD3+ T cells cultured with DMSO or 7 μM TWS119 for 8 h. Data summarize means ± SD of five independent experiments. C, Time course of Wnt target gene expression in activated T cells treated with DMSO or 7 μM TWS119 for 0, 2, 5, and 8 h analyzed by quantitative RT-PCR. Data are from one of two independent experiments. B and C, Fold change in expression of genes was calculated with respect to 0 h and the data are shown in a log scale.
3 μM TWS119 for our subsequent in vitro experiments because it was the lowest dose that produced an effect on T cell phenotype with minimal toxicity, whereas higher doses (>5 μM) resulted in substantial reduced viability of T cells by day 7 of culture (data not shown).

The increase in the CD45RA+ subset after TWS119 treatment could be the result of a block in the transition of T cells from the naive CD45RA+ to the effector CD45RO+ phenotype or due to reversion of CD45RO+ cells to CD45RA+ cells (19). To determine whether TWS119 treatment blocks CD45RA–CD45RO transition, CD3-selected cells were purified based on the expression of CD45RA prior to treatment with TWS119. As expected, the great majority of CD45RA-selected cells lost CD45RA and expressed CD45RO after activation in the presence of DMSO (75 ± 12% CD45RO+). In contrast, most of the CD45RA+ cells retained expression of CD45RA when activated in the presence of TWS119 (68 ± 23%) (Fig. 2B, upper panels). This indicates that induction of Wnt signaling blocked the transition of CD45RA-selected cells into effector CD45RO+ cells. We wanted to test whether TWS119 treatment also causes reversion of CD45RO+ cells to CD45RA+ cells. CD45RO-selected T cells maintained CD45RO expression by day 7 after activation irrespective of treatment with DMSO (85 ± 21% CD45RO+ or TWS119 (86 ± 10% CD45RO+) (Fig. 2B, lower panels), indicating that TWS119 does not cause reversion of CD45RO-selected cells to CD45RA+ cells. Fig. 2C summarizes the significant differences in CD62L, CD45RA, and CD45RO expression in naive CD45RA-selected T cells in response to TWS119 compared with DMSO-treated control cells. TWS119-treated cells showed higher expression of CD62L (70 ± 13% versus 28 ± 19%, p = 0.03) and CD45RA (68 ± 23% versus 7 ± 4%, p = 0.001) and low expression of CD45RO (11 ± 15% versus 75 ± 12%, p = 0.003) compared with control cells. We also examined the effect of Wnt signaling on the expression of other naive/memory markers such as CD127, activation markers such as 41BB and CD69, and costimulatory molecules such as CD27 and CD28 (Supplemental Fig. 1A). There was a significant decrease in the expression of CD28, 41BB, and CD69 on TWS119-treated T cells compared with control cells. TWS119 treatment also maintained high expression of naive markers CD127 and CD27.

These results were observed in CD3-selected T cells, which include both CD4+ and CD8+ T cells. To test whether Wnt signaling induced similar effects in both CD4+ and CD8+ T cells, CD4 and CD8-selected T cells were further purified based on CD45RA expression, then activated and treated with or without Wnt SIGNALING ARRESTS HUMAN EFFECTOR T CELL DIFFERENTIATION

FIGURE 2. TWS119 treatment blocks transition of CD45RA+ cells into CD45RO+ cells and preserves a subset of phenotypically naive T cells. A, Flow cytometry analysis of naive and effector T cell markers (CD62L, CD45RA, and CD45RO) on freshly isolated CD3+ T cells at baseline (left panels) and after activation and 7 d culture with DMSO or different doses of TWS119 (right panels). Plots are from one of three independent experiments. B, Analysis of CD45RO and CD45RA expression on CD3+ T cells, further selected for CD45RA or CD45RO, activated and cultured with DMSO or 3 μM TWS119 for 7 d. Plots are from one of at least three independent experiments. C, Comparison of CD45RA, CD45RO, or CD62L expression on CD3+CD45RA+ selected cells after activation and culture with DMSO or 3 μM TWS119 for 7 d. Data summarize means ± SD of four independent experiments. D, Comparison of CD45RA, CD45RO, or CD62L expression on CD45RA+ selected cells, further selected for CD4 or CD8, after activation and culture with DMSO or 3 μM TWS119 for 7 d. Data summarize means ± SD of three independent experiments.

by guest on April 14, 2017 http://www.jimmunol.org/ Downloaded from
TWS119 for 7 d. As illustrated in Fig. 2D, induction of Wnt signaling in CD4 and CD8-selected cells produced similar naive phenotypes. We also examined the expression of transcription factors, chemokine receptors, and cytokines associated with the Th1, Th2, Th17, and regulatory T cell (Treg) subsets (Supplemental Fig. 1B, 1C). TWS119-treated cells showed reduced expression of transcription factors, including T-bet, RORγt, Gata-3, and Foxp3, chemokine receptors such as CXCR3 and CCR4, and the cytokines TNF-α, IL-4, and IL-17. Expression of CCR6, which was downregulated by activation in DMSO control cells, was maintained by TWS119. These data suggest that TWS119 does not skew CD4+ T cells to any specific subset (Th1, Th2, Th17, or Tregs), but rather it has a similar inhibitory effect on all the subsets. Our results demonstrate that TWS119 affected both CD4+ and CD8+ T cells equally, preserving a naive subset by blocking the transition of CD45RA+ cells into CD45RO+ cells.

TWS119-induced Wnt signaling impairs acquisition of effector function of T cells

Because TWS119 inhibited naive-to-effector T cell differentiation in terms of phenotype, we wanted to determine whether TWS119 treatment also inhibited the acquisition of effector function of T cells. CD3-selected T cells, activated and expanded for a week with or without TWS119, were stimulated overnight with PMA and ionomycin to elicit a polyclonal effector T cell response measured as IFN-γ and CD107 expression (a marker for degranulation). As shown in Fig. 3A and 3B, control cells that were stimulated with PMA/ionomycin expressed IFN-γ (41 ± 16%) and CD107 (53 ± 10%) compared with unstimulated cells. In contrast, fewer TWS119-treated cells expressed IFN-γ (17 ± 11%, \(p = 0.004 \)) or CD107 (11 ± 10%, \(p = 0.001 \)) in response to PMA/ionomycin. There was a significant decrease in the effector response of TWS119-treated cells in response to PMA/ionomycin compared with control cells (Fig. 3B). These results were further confirmed by ELISA detecting secreted IFN-γ from PMA/ionomycin-stimulated cells. TWS119-treated cells secreted significantly less IFN-γ (22,706 ± 5,815 pg/ml) than did control cells (41,306 ± 3,081 pg/ml, \(p = 0.02 \)) (Fig. 3C).

To study the effect of Wnt signaling on effector function in an Ag-specific setting, CAR CD19-redirected T cells were cocultured with CD19-expressing Raji cells in the presence of DMSO or TWS119 for 5 d. Whereas the DMSO control CAR CD19 cells were able to eliminate the tumor cells from the culture, the TWS119-treated CAR CD19 cells were unable to eliminate the tumor cells (Fig. 3D). Nontransduced (NT) DMSO- or TWS119-treated T cells served as negative controls. D and E, Evaluation of cytokine production of Ag-specific T cells cultured with DMSO or 3 μM TWS119. Data are from one of two independent experiments. E, Cytokines in the 24 h supernatant of coculture of CAR T cells with Raji cells assessed by cytometric bead array. Data summarize mean ± SD of three independent experiments.
tumor cells completely (Fig. 3D). The production of IFN-γ and TNF-α in the coculture of TWS119 CAR CD19 T cells and Raji cells was also significantly lower than in the control DMSO CAR CD19 T cells (Fig. 3E). Therefore, Wnt signaling induced by TWS119 inhibits full acquisition of effector function of T cells.

TWS119-induced Wnt signaling arrests the expansion of polyclonally activated T cells

The transition of naive into effector T cells induced by T cell activation is accompanied by cell proliferation. Because Wnt signaling inhibits naive-to-effector T cell differentiation, we wanted to determine whether Wnt signaling also abrogates concomitant T cell expansion of naive or effector T cells. As shown in Fig. 4A, both CD3+CD45RA+ and CD3+CD45RO+ cells numerically expanded 2- to 3-fold in response to polyclonal activation by day 7 culture. In contrast, TWS119 treatment severely limited expansion of both T cell subsets. To discover whether this TWS119-mediated effect was the result of increased cell death induced by TWS119, impaired cell proliferation, or both, we analyzed apoptosis and cell division by annexin V/7AAD staining and CFSE dilution, respectively. As shown in Fig. 4B, TWS119 treatment did not cause a significant increase in cell death compared with control DMSO-treated cells in either CD3+CD45RO+ (78 ± 6% and 73 ± 6% annexin V−7AAD− for TWS119- and DMSO-treated cells, respectively; p = 0.4) or CD3+CD45RA+ cells (80 ± 10% and 52 ± 8% annexin V−7AAD− for TWS119- and DMSO-treated cells, respectively; p = 0.08). In contrast, in terms of proliferation, whereas control-activated CD3+CD45RA+ and CD3+CD45RO+ cells divided robustly (88 ± 7% and 90 ± 5% diluted CFSE), activated cells treated with TWS119 did not proliferate significantly (27 ± 29% and 6 ± 5% diluted CFSE, p = 0.004 and <0.001, respectively), similar to nonactivated cells (Fig. 4C, 4D).

As expected, proliferating DMSO-treated CD3+CD45RA+ cells lost expression of CD45RA and CD62L, but TWS119-treated cells maintained their CD62L and CD45RA expression (Fig. 4D). Therefore, Wnt signaling reduced the expansion of T cells by causing an arrest in cell division.

To confirm that TWS119 treatment arrested cell division and blocked transition of CD45RA+ to CD45RO+ cells independently of the mode of T cell activation, PHA was used to activate the T cells instead of OKT3/anti-CD28. As expected, TWS119 treatment preserved the CD45RA+ phenotype in PHA-activated T cells compared with control cells and also blocked cell division (Fig. 5A, 5B). We also confirmed that the observed effects on T cell phenotype were the result of induced Wnt signaling and not off-target effects of TWS119. Treatment of PHA-activated cells with physiological canonical Wnt ligand Wnt-3a recapitulated the results seen with TWS119 (Fig. 5C, 5D). In other words, Wnt signaling preserves the naive CD62L+CD45RA+ phenotype and limits cell expansion in activated T cells irrespective of the mode of induction of Wnt signaling or mode of T cell activation.

Based on the observed effect of Wnt signaling in arresting proliferation and naive-to-effector differentiation, we predicted that Wnt signaling impairs T cell activation, which induces proliferation. As expected, proliferating DMSO-treated CD3+CD45RA+ cells lost expression of CD45RA and CD62L, but TWS119-treated cells maintained their CD62L and CD45RA expression (Fig. 4D). Therefore, Wnt signaling reduced the expansion of T cells by causing an arrest in cell division.
and differentiation of T cells. The kinetics of expression of early and late T cell activation markers, CD69 and CD25 (20–23), was examined in cells treated with DMSO or TWS119. As expected, activated control cells rapidly upregulated both CD69 and CD25 (Fig. 6A). However, TWS119-treated cells continuously maintained low expression of CD69 and CD25, indicating that T cell activation is impaired in these cells (Fig. 6A). We also performed immunoblot analysis to examine the effect of TWS119 on the activation status of signaling molecules LAT and PLCγ, which are directly downstream of T cell activation. As illustrated in Supplemental Fig. 1D, the phosphorylation of Y783 in PLCγ and Y132 in LAT was severely impaired in TWS119-treated cells. This is consistent with published observations in mouse T cells in which proximal TCR signaling was inhibited by constitutively active β-catenin (12).

To begin to investigate the mechanism by which Wnt signaling arrests proliferation of T cells, we tested the ability of these cells to produce IL-2, a cytokine that supports T cell expansion upon activation. CD3-selected T cells activated and expanded for a week with or without TWS119 were stimulated overnight with PMA and ionomycin to induce IL-2 production. Intracellular staining showed comparable numbers of IL-2–producing cells in the supernatants of DMSO-treated cells (1890 ± 736 pg/ml) and TWS119-treated cells (2554 ± 1466 pg/ml, p = 0.7) (Fig. 6D). Therefore, a difference in IL-2 production does not seem to account for the observed Wnt-induced arrest in proliferation. However, the ability of these TWS119-treated cells to use IL-2 would be affected by the expression of the IL-2R on activated T cells. As illustrated in Fig. 6A, the expression of the IL-2Rα chain, CD25, was significantly lower in TWS119-treated cells (7 ± 4%) compared with control cells (99 ± 1%, p < 0.001) at day 7 (Fig. 6A, 6E). This indicates that although TWS119-treated cells are able to produce IL-2, they may have reduced ability to use this cytokine for expansion.

The effect of TWS119 on T cell proliferation and differentiation could also be cell-extrinsic. As shown in Fig. 6E, a small subset of T cells express CD25 after TWS119 treatment (7 ± 4%) and this could contain natural Tregs (nTregs), as Wnt signaling has been reported to enhance nTreg survival (24). Because the presence of Tregs may cause the observed arrest in T cell proliferation and differentiation, CD25-expressing cells were depleted prior to CD3 selection to eliminate nTregs. The cells were then activated and cultured in the presence of DMSO or 3 μM TWS119. At the end of 7 d culture, the subset of CD4+CD25+ cells was negligible but comparable in both CD3+ and CD3+CD25-depleted cells after TWS119 treatment (Supplemental Fig. 2A). Furthermore, depletion of CD25+ cells (containing nTregs) did not reverse the impaired expansion of T cells induced by TWS119 treatment (Sup-

FIGURE 5. PHA activation of T cells or induction of Wnt signaling by Wnt-3a produces similar effects as OKT3/anti-CD28–activated, TWS119-treated T cells. A, Expression of CD62L, CD45RA, and CD45RO in T cells activated with 5 μg/ml PHA and cultured with DMSO or 3 μM TWS119 for 7 d. B, Cells were stained with CFSE and cultured with DMSO or 3 μM TWS119 and the extent of proliferation was measured in terms of CFSE dilution by day 7 of culture. C, Expression of CD62L, CD45RA, and CD45RO in T cells activated and cultured with or without Wnt-3a (5 μg/ml) for 7 d. D, Cell counts at the 7 d culture with or without Wnt-3a (5 μg/ml) were determined. Data summarize means ± SD of three independent experiments.
This indicates that the Wnt-induced effects on T cell phenotype, proliferation, and effector differentiation are not mediated by an indirect effect of nTregs.

Cytokines overcome the block in T cell proliferation mediated by TWS119 but also cause a loss of the naive phenotype of T cells

Although reduced IL-2Rα expression may explain how TWS119 impairs T cell proliferation in the presence of physiological levels of IL-2 (25), we wanted to test whether pharmacological doses of growth factors can rescue the arrested expansion of Wnt-activated cells. Addition of exogenous γ-chain cytokines (IL-15, IL-7, or IL-2) in the presence of TWS119 overcame the block in cell proliferation, allowing T cell division as assessed by CFSE dilution assay (Fig. 7A) and numeric expansion similar to control cells (data not shown). However, cytokine-induced proliferation also led to a loss of the TWS119-induced naive phenotype (Fig. 7B). By day 7 culture, the naive CD45RA⁺CD62L⁺ subset was significantly reduced by the addition of cytokines IL-15, IL-7, or IL-2 to the TWS119-treated cells (from an average of 69 ± 12% to 15 ± 6%, 21 ± 12%, and 29 ± 16%; p = 0.015, 0.041 and 0.008, respectively) and was comparable to the DMSO-treated cells (6 ± 3%; p > 0.1). Therefore, addition of cytokines rescued the blocked proliferation of Wnt-arrested T cells and concomitantly led to a loss of the naive T cell phenotype.

Although Wnt signaling induced by TWS119 or Wnt-3a clearly arrests T cell proliferation and naive-to-effector cell differentiation in our in vitro cultures, we wanted to investigate whether these Wnt signaling effects imprint on T cell phenotype and function over a long term. Activated T cells cultured with TWS119 for a week were restimulated with OKT3 and anti-CD28 Abs and cultured for an additional week in the presence of DMSO or TWS119. As illustrated in Supplemental Fig. 3A, TWS119-treated cells that were deprived of the drug for the second week did not retain the naive phenotype and became activated effector cells similar to control DMSO-treated cells. The effector function of these cells as illustrated by production of IFN-γ and degranulation (CD107 expression) was slightly reduced or comparable to control DMSO cells (Supplemental Fig. 3B). In the case of Ag-redirected cells, TWS119-treated CAR CD19 cells that were deprived of this drug upon coculture with the Raji cells were able to recover their cytotoxic function and completely eliminate the tumor cells similar to DMSO-treated CAR CD19 T cells (Supplemental Fig. 3C). We also conducted experiments where the CD3⁺ cells were transiently exposed to DMSO or TWS119 for 24 h following which the drug was washed out of the culture. As shown in Supplemental Fig. 3D and 3E, transient exposure to the TWS119 does not arrest the expansion and activation (CD25, CD69 expression) or preserve the naive phenotype (CD45RA expression) of these T cells. Therefore, the T cells are arrested in expansion and naive-to-effect differentiation.
effector cell differentiation only in the continuous presence of the drug, and upon removal of the Wnt-signaling agonist, the T cells overcome this arrest and become effector cells. These results indicate that TWS119 treatment does not imprint on T cell phenotype and function.

TWS119 treatment of cord blood-derived T cells arrests proliferation and preserves the naive T cell phenotype

To determine whether Wnt signaling impairs proliferation and maintains a naive phenotype in peripheral T cells irrespective of the source of T cells, we repeated these experiments with umbilical cord blood-derived mononuclear cells, a source of phenotypically and functionally immature circulating T cells (15). As shown in Fig. 8A and 8B, activated T cells treated with TWS119 had increased expression of CD45RA (20 ± 11%) and CD62L (68 ± 21%) and reduced CD45RO expression (57 ± 7%) compared with control cells (3 ± 3%, 12 ± 16%, and 87 ± 7%; \(p = 0.005, 0.001, \) and <0.001, respectively) at the end of a week’s culture. TWS119 also impaired proliferation of cord blood-derived T cells (Fig. 8C, 8D). Therefore, TWS119 treatment of T cells derived from umbilical cord blood recapitulated the results seen with T cells isolated from peripheral blood.

Discussion

Although Wnt signaling has been studied extensively in T cell development, its function in peripheral T cells has not been well defined and, to our knowledge, this is the first report evaluating the effects of induction of Wnt signaling on effector T cell differentiation in human T lymphocytes. We found that activation of Wnt signaling blocked the transition of naive T cells (CD45RA+ CD62L+) to effector T cells (CD45RO+CD62L−) but did not cause reversion of CD45RO+ cells to CD45RA-expressing cells. Wnt signaling arrested T cell division and impaired the acquisition of effector function in response to polyclonal stimulation. Similar results were also observed in immature peripheral T cells derived from umbilical cord blood. Our phenotypic and functional in vitro data indicate that Wnt signaling inhibits the naive-to-effector differentiation of human T lymphocytes.
Our findings are consistent with those of Driessens et al. (12) in mice who observed that genetically stabilized β-catenin inhibited mouse T cell activation and proliferation and impaired the function of Th1-, Th2-, and Th17-polarized cells. In particular, those authors demonstrated that β-catenin prevented the activation of the LAT/PLCγ1/Ca2+ pathway by diminishing phosphorylation of a specific residue in LAT, leading to defective recruitment of PLCγ1 to LAT. Consistent with these findings, we observed a similar impairment of phosphorylation in these TCR signaling molecules in TWS119-treated human T cells. We found that TWS119-treated cells had significantly reduced expression of IL-2Rα, and this may partially explain their impaired proliferation. Although the IL-2Rβ- and γ-chains are sufficient for IL-2R signaling in the presence of high levels of IL-2, the IL-2Rα is required to form the high-affinity IL-2R, which can use low physiological doses of IL-2 for expansion (25, 26). Because IL-2Rα is upregulated in T cells as a result of TCR activation (27, 28), and because inhibition of proximal TCR-induced IL-2Rα expression has been shown to be rescued by treatment with protein kinase C activator PMA and a Ca2+ ionophore (29), we speculate that the Wnt-induced inhibition of IL-2Rα expression illustrated in our experiments may be the consequence of inhibition of the LAT/PLCγ1/protein kinase C/Ca2+ pathway by Wnt signaling. Also note that TWS119-mediated inhibition of TCR activation would be expected to reduce IL-2 production (30). Although supernatants of TWS119-treated and control cells showed comparable levels of IL-2, a reduction in IL-2 production from TWS119-treated cells may be obscured due to the high consumption of IL-2 by CD25 expressing control-activated T cells. Further investigation will be required to fully identify the mechanisms by which Wnt signaling arrests T cell activation and proliferation in human cells.

Our results also agree in part with the findings of Gattinoni et al. (11) who reported that differentiation and production of IFN-γ of CD8+ pmel-1 TCR transgenic mouse T cells in response to Ag stimulation were inhibited by TWS119-induced activation of Wnt signaling. Our data show that these inhibitory effects of Wnt signaling can be measured not only in CD8+ T cells but also in CD4+ naive T cells, indicating that this pathway is similar in both CD4+ and CD8+ T cells. However, we found that at the lowest dose of TWS119 (3 μM) that was required to obtain significant and consistent preservation of the naive T cell subset, T cell division was almost completely inhibited. Our experiments examining cell cycle show that most TWS119-treated cells are arrested at the G0/G1 phase in the cell cycle (data not shown). This observation is not in line with Gattinoni’s study in which the CD8+ pmel-1 TCR transgenic mouse T cells retained a significant proliferative capacity while maintaining a naive phenotype at similar TWS119 doses.
This discrepancy may arise from a number of factors including but not limited to differences in culture conditions of mouse versus human T cells, the intrinsic differences in T cells, namely, transgenic TCR T cells compared with polyclonal or CAR-redirected T lymphocytes, and also the magnitude of differences in Wnt target gene expression induced by TWS119 in both cases. The large induction of Wnt target genes such as Fzd7 observed byGattinoni et al. (11) may correlate with a higher level of Wnt signaling activity in the pmel-1 TCR transgenic mouse T cells compared with human T lymphocytes and may explain the divergence in the results. The authors also used APCs for activation of mouse T cells compared with our use of Abs for polyclonal activation of human T cells. However, our overall findings are consistent with conclusions from other studies that Wnt signaling inhibits T cell activation, expansion, and naive-to-effector differentiation.

The Wnt signaling-induced block in expansion and effector function of T cells may play a role in vivo in different situations. For instance, certain tumors, such as prostate cancer cells, secrete Wnt ligands into the tumor microenvironment (31). This could activate Wnt/β-catenin signaling in T cells targeting the tumor and inhibit their expansion and function. Because dysregulation of the Wnt signaling pathway has been implicated in various cancers, several studies are underway to target and inhibit this pathway in tumors (32, 33). Based on our data, inhibition of Wnt signaling at the tumor site may target the tumor in multiple ways—directly by inhibiting the signaling pathway in the tumor cells, and indirectly by reversing the inhibitory effects of Wnt signaling on T cells in the tumor microenvironment.

Another possibility is that activation of Wnt signaling in T cells may be induced in a tolerogenic setting. Macrophages and dendritic cells can produce canonical Wnt ligands (34, 35). It has been shown that constitutive expression of β-catenin in Tregs extends their survival and improves their suppressive function (24). Stable β-catenin expression also induced anergy in CD4+CD25+ cells in terms of reduced proliferation, increased expression of anergy-associated genes (Cblb, GRAIL, Itch), and reduced capacity to induce inflammatory disease in vivo (24). β-catenin signaling in intestinal dendritic cells induced tolerance via Treg induction and suppression of effector cells (36). Therefore, our data in conjunction with the literature support the hypothesis that Wnt signaling may induce a tolerogenic program in immune cells such as dendritic cells and T cells.

In addition to its role in effector T cell differentiation, Gattinoni et al. (11) also reported that Wnt signaling induced a subset of T memory stem cells that possessed a naive phenotype despite undergoing several cycles of cell division in vitro and that were characterized by self-renewal abilities, long-term persistence, and potent anti-tumor function in vivo. Recapitulating these results in Ag-specific human T cells using Wnt signaling would have a major impact on clinical applications of adoptive T cell therapy in cancer patients. A current limitation of this approach is indeed the short-term persistence of ex vivo-expanded Ag-specific T cells upon infusion into the patient, which is likely due to the presence of predominantly effector cells with limited life spans (37–39). The infusion of Ag-specific T cells with high renewal capacity would enhance clinical responses in cancer patients, as has been observed upon infusion of memory or naive T cells (13, 14, 40–42). We tested for the expression of Tscm markers including CD122 and Bcl-2, which were observed in Gattinoni et al. (11) on the TWS119-induced naive subset of T cells, and found no difference in expression of these markers compared with control-activated cells (data not shown). However, our results in vitro were obtained using polyclonally activated T cells, and this precludes us from evaluating whether Wnt signaling can be used to generate Ag-specific human T memory stem cells with potent anti-tumor effects in vivo.

Additionally, human Ag-specific T cells are expanded ex vivo by repeated stimulations of T cells with APCs (43–45), and thus Wnt signaling cannot be induced in this setting because it will inhibit T cell division. However, gene modification of the human T lymphocytes has been implemented to confer them with Ag specificity by the expression of transgenic TCRs or CARs (16, 46–48). Transduction of T cells in the presence of an optimal dose of TWS119 may preserve the naive status of these cells and could enhance their persistence in vivo after adoptive transfer. Examination of the effect of canonical Wnt signaling on Ag-specific human T cells in vivo studies may also show more promising results in terms of generation of Tscm cells for adoptive T cell therapy.

In conclusion, we have identified the role of canonical Wnt signaling as a negative regulator in human peripheral T cell effector differentiation. In the presence of Wnt/β-catenin signaling, the T cells are arrested in their naive phenotype, impaired in the acquisition of effector function, and show inhibited cell proliferation. Because Wnt signaling does not imprint on the T cell phenotype and effector function, the cells should be able to expand and become effectors upon removal of the Wnt agonist. Therefore, Wnt signaling may be useful for the ex vivo maintenance of naive T cells for adoptive immunotherapy for cancer.

Acknowledgments
We are grateful to Reshma Kulkarni for the phenotypic analysis.

Disclosures
The authors have no financial conflicts of interest.

References
Wnt SIGNALING ARRESTS HUMAN EFFECTOR T CELL DIFFERENTIATION

Supplementary Figure Legends:

Figure 1: TWS119 treatment maintains expression of naïve markers and downregulates activation markers and does not cause skewing of CD4+ T cells to a particular subset

(A) Flow cytometry analysis of various T cell markers on CD3+ T cells after activation and 7 days culture with DMSO or 3 μM TWS119. Data summarize mean ± SD of atleast 3 independent experiments. (B) Analysis of expression of transcription factors and chemokine receptors on CD4 selected T cells after activation and 7 days culture with DMSO or 3 μM of TWS119. DMSO-treated cells showed higher expression of T-bet (MFI: 74 vs. 40), Gata-3 (MFI: 38 vs. 14), RORγ (MFI: 68 vs. 34), FoxP3 (MFI: 36 vs. 5), CXCR3 (% positive cells: 24% vs. 13%), CCR4 (% positive cells: 88% vs. 54%) and CD25 (% positive cells: 98% vs. 21%) and lower expression of CCR6 (% positive cells: 19% vs. 42%) compared to TWS119-treated cells. Plots from one of 2 independent experiments. (C) Assessment of cytokine release in supernatant of PMA/ionomycin stimulated CD3 selected T cells that had been treated for a week with DMSO or 3 μM TWS119 by cytometry bead array. Data summarize mean ± SD of atleast 3 independent experiments. (D) Western blot analysis of activation status of TCR signaling molecules LAT and PLCγ in CD3+ T cells cultured with DMSO or 7 μM TWS119 for 24 hours followed by 10 minutes of activation with OKT3 and anti-CD28 antibodies. Phosphorylation of specific residues Y783 in PLCγ and Y132 in LAT was analyzed. Total LAT and PLCγ protein served as loading controls. Immunoblot data from one of 2 independent experiments.

Figure 2: Natural regulatory T cells do not mediate the effects of Wnt signaling on T cell phenotype and expansion
CD3+ T cells were selected and depleted for CD25 expressing cells, activated with OKT3 and anti-CD28 and cultured with DMSO or 3 μM TWS119 for 7 days. (A) Representative dot plot of expression of CD4 and CD25 on CD3+ T cells or CD3+CD25-depleted cells examined by flow cytometry. (B) Assessment of CD45RA and CD62L expression on CD3+CD25-depleted cells on 1 representative donor. (C) Evaluation of cell counts after 7 days of culture with DMSO or TWS119. Data summarize mean ± SD of 3 independent experiments.

Figure 3: TWS119 treatment does not imprint on T cells phenotype and function

(A and B) CD3+ T cells were selected, activated with OKT3 and anti-CD28 and cultured with DMSO or 3 μM TWS119 for 7 days. These T cells were restimulated with OKT3 and anti-CD28 and cultured for an additional 7 days in the presence or absence of TWS119. (A) Representative dot plot of expression of CD45RA, CD62L, CD25 and CD69 on CD3+ T cells treated with DMSO or TWS119 for the 1st week followed by DMSO for the 2nd week (TWS119 → DMSO) or TWS119 for 2 weeks (TWS119 → TWS119). Dot plot from one of 3 independent experiments. (B) Evaluation of IFNγ production and degranulation by these CD3+ cells. Comparison of percentages of DMSO or TWS119 → DMSO treated CD3+ cells that express CD107 and intracellular IFNγ in response to PMA/ionomycin stimulation. Data summarize mean ± SD of 3 independent experiments. (C) Evaluation of cytotoxic function of antigen-specific T cells previously cultured with DMSO or 3 μM TWS119 cells and then deprived of the drug in coculture with CD19+ Raji cells at 5:1 ratio for 5 days. Representative plot of CD20+ residual tumor cells in coculture of CAR CD19 redirected T cells with Raji cells. Data from one of 3 independent experiments. Non-transduced (NT) DMSO or TWS119 treated T cells served as negative controls. (D and E) CD3+ T cells were selected, activated with OKT3 and anti-CD28 and cultured with DMSO or 3 μM TWS119 for 24 hours following which the drug was washed.
out of the culture and the cells were replated on the same OKT3/antiCD28 antibodies. (D) Cell expansion kinetics of these T cells transiently exposed to DMSO or TWS119 was assessed. (E) Expression of CD45RA, CD45RO, CD69 and CD25 was examined by flow cytometry after 7 days of culture.
Suppl. Figure 1
A. CD3+ DMSO CD3+ TWS119 CD3+ CD25depleted DMSO CD3+ CD25depleted TWS119

B. CD45RA CD62L

C. CD3+ CD3+ CD25depleted

Suppl Figure 2
Suppl Figure 3