IL-33 ExpandsSuppressive CD11b+ Gr-1int and Regulatory T Cells, including ST2L + Foxp3 + Cells, and Mediates Regulatory T Cell-Dependent Promotion of Cardiac Allograft Survival

Heth R. Turnquist, Zhenlin Zhao, Brian R. Rosborough, Quan Liu, Antonino Castellaneta, Kumiko Isse, Zhiliang Wang, Megan Lang, Donna Beer Stolz, Xin Xiao Zheng, A. Jake Demetris, Foo Y. Liew, Kathryn J. Wood and Angus W. Thomson

J Immunol published online 26 September 2011
http://www.jimmunol.org/content/early/2011/09/25/jimmunol.1100519

Supplementary Material http://www.jimmunol.org/content/suppl/2011/09/27/jimmunol.1100519.DC1
Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription
Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html
Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
IL-33 Expands Suppressive CD11b+ Gr-1int and Regulatory T Cells, including ST2L+ Foxp3+ Cells, and Mediates Regulatory T Cell-Dependent Promotion of Cardiac Allograft Survival


IL-33 administration is associated with facilitation of Th2 responses and cardioprotective properties in rodent models. However, in heart transplantation, the mechanism by which IL-33, signaling through ST2L (the membrane-bound form of ST2), promotes transplant survival is unclear. We report that IL-33 administration, while facilitating Th2 responses, also increases immunoregulatory myeloid cells and CD4+ Foxp3+ regulatory T cells (Tregs) in mice. IL-33 expands functional myeloid-derived suppressor cells, CD11b+ cells that exhibit intermediate (int) levels of Gr-1 and potent T cell suppressive function. Furthermore, IL-33 administration causes an S2-dependent expansion of suppressive CD4+ Foxp3+ Tregs, including an ST2L+ population. IL-33 monotherapy after fully allogeneic mouse heart transplantation resulted in significant graft prolongation associated with increased Th2-type responses and decreased systemic CD8+ IFN-γ responses. However, IL-33 administration markedly increased intragraft Foxp3+ cells. Whereas control graft recipients displayed increased in systemic CD11b+ Gr-1hi cells, IL-33-treated recipients exhibited increased CD11b+ Gr-1int cells. Enhanced ST2 expression was observed in the myocardium and endothelium of rejecting allografts, however the therapeutic effect of IL-33 required recipient ST2 expression and was dependent on Tregs. These findings reveal a new immunoregulatory property of IL-33. Specifically, in addition to supporting Th2 responses, IL-33 facilitates regulatory cells, particularly functional CD4+ Foxp3+ Tregs that underlie IL-33-mediated cardiac allograft survival. The Journal of Immunology, 2011, 187: 000–000.

*Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; †Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; ‡Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; ††Transplant Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 9DU, United Kingdom; §Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; ¶Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8TA, United Kingdom

Received for publication February 23, 2011. Accepted for publication August 24, 2011.

This work was supported by National Institutes of Health Grants R01 AI60994 and P01 AR56178 (to A.W.T.); B.R.R. was supported by National Institutes of Health Training Grant T32 AT44940 and by an American Heart Association predoctoral fellowship (7007020). A.C. was supported by a Basic Science fellowship from the American Society of Transplantation and a Sunflowers for Holli fellowship from the American Liver Foundation. This work was also supported by a National Institutes of Health Pathway-to-Independence Career Development award (K99/R00 HL97155) and a Starzl Transplantation Institute Young Investigator grant (to H.R.T.).

Address correspondence and reprint requests to Dr. Angus W. Thomson, Departments of Surgery and Immunology, University of Pittsburgh School of Medicine, Thomas E. Starzl Transplantation Institute, 200 Lothrop Street, Biomedical Science Tower, W1540, Pittsburgh, PA 15213. E-mail address: thomsonaw@upmc.edu

The online version of this article contains supplemental material.

Abbreviations used in this article: B6, C57BL/6; BM, bone marrow; DC, dendritic cell; FIR, B6 Foxp3-ires-mRFP; Flt3L, fms-like tyrosine kinase-3 ligand; int, intermediate; mDC, myeloid dendritic cell; MDSC, myeloid-derived suppressor cell; MST, mean survival time; nTreg, naturally occurring regulatory T cell; Qdot, quantum dot; sST2, soluble form of ST2; ST2L, signaling transmembrane form of ST2; Treg, regulatory T cell; WT, wild-type.

Copyright © 2011 by The American Association of Immunologists, Inc. 0022-1767/11/$16.00

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1100519
instrumental in Th2-mediated responses to helminths (20, 21). Overall, studies on ST2-deficient animals and use of either ST2-specific Ab or sST2 to block IL-33 activity support a role for IL-33 in the facilitation of Th2 responses (2).

It is now evident that the immunological activities of IL-33 and ST2L are more diverse than proposed originally. Recently, functional analysis of IL-33-deficient mice has suggested that IL-33 amplifies both Th1 and Th2 responses, particularly by targeting innate immune cells in mucosal tissues (22). Moreover, IL-33 can augment inflammatory cytokine production, particularly TNF-α, IL-1β, and IL-6 by mouse macrophages (23). During sepsis, IL-33 administration does not facilitate a Th1-to-Th2 shift, but reduces systemic proinflammatory cytokines and targets ST2L-expressing neutrophils to facilitate their antibacterial responses (24). In addition, NK cells and NKT cells express ST2L and respond to IL-33 by producing IFN-γ (25). Furthermore, IL-33, highly expressed by epithelial and endothelial cells, may act as an “alarmin,” or endogenous danger signal that, during inflammation and tissue damage, is released to function as a general inflammatory mediator (22, 26). Thus, depending on the environment and cells targeted, IL-33 may act as a potent type 2 signal or generalized proinflammatory signal.

Notably, bone marrow (BM)-derived myeloid dendritic cells (mDCs) and endogenous CD11c+ dendritic cells (DCs) also express ST2L, especially when exposed to the antiproliferative/immunosuppressive agent rapamycin (27). IL-33 induces MAPK signaling in BM-derived mDCs (5) and facilitates their support of IL-4 and IL-13 production by Th cells in vitro (28). Mayuzumi et al. (29) reported recently that exogenous IL-33 promotes the generation of CD11c+CD11b+ mDCs in BM cell cultures. DCs from these IL-33–treated cultures were phenotypically and functionally immature and failed to respond to inflammatory stimuli, such as LPS (29). However, the impact of IL-33 on myeloid APC generation and function, especially in vivo, has not been well defined.

Although recognized as a potent facilitator of Th2-mediated inflammatory diseases, especially allergic hypersensitivity and arthritis (2, 30, 31), IL-33 also exhibits cardiovascular protective properties. Cardiac hypertrophy after pressure overload is worsened significantly when IL-33 activity is blocked or ST2 is absent (8). Likewise, systemic administration of IL-33 limits cardiovascular disease by inhibiting atherosclerosis development in apolipoprotein E–/– mice (32). Inhibition of atherosclerosis is mediated through the potent instigation of a Th1-to-Th2 switch (32). Recently, IL-33 delivery after experimental cardiac transplantation was shown to promote allograft survival, an effect presumed to result from a Th2 shift in immune reactivity (33). This interpretation would be consistent with past reports suggesting that reduction of Th1 responses by systemic administration of neutralizing IL-12 mAb prolongs allograft survival (34). However, there is also strong evidence that IL-4 and Th2 cytokines can promote graft dysfunction and rejection (35). Thus, the role of ST2 or IL-33 in immune responses to transplanted organs is unclear and warrants further examination.

We report the novel observation that IL-33, given to normal or cardiac-transplanted mice, while facilitating Th2 responses also expands suppressive CD4+ Foxp3+ regulatory T cells (Tregs), including a newly identified ST2L+ subset. In addition, our data reveal the ability of IL-33 to modulate both CD11c+ DCs and particularly expand CD11b+ Gr-1+ myeloid-derived suppressor cells (MDSCs). Specifically, IL-33 increases CD11b+ cells expressing intermediate (int) levels of Gr-1 (Gr-1int) that exhibit potent T cell suppressive capacity. Expansion of Tregs and MDSCs depends on recipient expression of ST2, but not host mast cells. Likewise, IL-33–mediated prolongation of graft survival requires recipient ST2 gene expression and Tregs, but not Gr-1+ cells. As such, these findings establish a new immunomodulatory mechanism, beyond Th2 polarization, and involving Tregs, that underlies the immunosuppressive and heart graft-protective properties of IL-33.

Materials and Methods

Animals and cytokine administration

Male C57BL/6 (B6; H2Kb), BALB/c (H2Kk), and C57BL/6J (H2Kb; H2Ld) mice were purchased from The Jackson Laboratory (Bar Harbor, ME). B6 Kitl+/Kitl+/+ mice were kindly provided by Dr. Adriana T. Larregina (Department of Dermatology, University of Pittsburgh). BALB/c ST2+/– mice (7) were bred for experimental use at the University of Pittsburgh. B6 Foxp3-IREs-mRFP (FIR) mice (36) were provided by Dr. Fadi Lakkis (Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh). All mice were housed in the specific pathogen-free facility of the University of Pittsburgh School of Medicine with access to food and water ad libitum and used at 8–12 wk of age. Experiments were conducted under an institutional animal care and use committee-approved protocol and in accordance with National Institutes of Health guidelines.

Mice were injected i.p. for 10 consecutive days with recombinant mouse IL-33 (0.5 µg/d) or recombinant human Fms-like tyrosine kinase-3 ligand (Flk2L; 10 µg/d) (37); Amgen. Thousand Oaks, CA). Recombinant mouse IL-33 was produced as described (12). On day 11, positive selection of CD11c+ cells was performed on spleen cell preparations, as described (27). Splenic Ly6C+ cells or Ly6G+ cells were enriched as reported (38) by positive selection after staining with FITC-conjugated anti-Ly6C (clone X5/1.8) and anti-Ly6G (clone 1A8) followed by magnetic purification using anti-PE or FITC microbeads (Miltenyi Biotec, Auburn, CA).

BM cell culture

BM cells were differentiated from freshly isolated or cryopreserved cells for 8 d in the indicated combinations of recombinant mouse GM-CSF (1000 U/ml; R&D Systems, Minneapolis, MN), recombinant mouse IL-4 (1000 U/ml; R&D Systems), and recombinant mouse IL-33 [25 ng/ml (29)]. Every 2 d, 75% of the culture supernatant was replaced with fresh cytokine-containing media. On day 4, nonadherent cells were discarded. Where indicated, 100 ng/ml TLR-grade LPS from Citrobacter rodentium (Enzo Life, Plymouth Meeting, PA) was added on day 7 for 18 h prior to cell harvesting. Nonadherent cells were then harvested on day 8 and assessed phenotypically by flow cytometry and functionally in MLR.

Flow cytometric analyses

Surface Ag expression by leukocytes was analyzed by flow cytometric analysis as described (5). Briefly, fluorophore-conjugated mAbs obtained from BD Biosciences (San Jose, CA) or BioSource (San Diego, CA), unless otherwise indicated, were used to stain splenocytes or BM-derived cells for CD3 (17A2), CD4 (L3T4), CD8 (53-6.7), CD11c (HL3), CD11b (M1/70), CD45 (30-F11), CD45R/B220 (RA3-6B2), CD68 (GL-1), F4/80 (BM8), Gr-1 (RB6-8C5), I-A/I-E (M5/114.15.2), Ly6G (1A8), Ly6C (HK.1.4), NK1.1 (PK136), or T1/ST2 (D8; MD Bioproducts, St. Paul, MN). After surface staining of freshly isolated splenocytes, fixation/ permeabilization and intracellular staining with fluorochrome-conjugated mAb to Foxp3 (FJK-16a) was also completed where indicated. Where designated, 4- to 5-h stimulation of splenocytes with PMA and ionomycin (Sigma) in the presence of GolgiPlug (BD Biosciences) was followed by permeabilization and intracellular staining controls. Data were acquired with an LSR II or LSR Fortessa flow cytometer (BD Biosciences) and analyzed using FlowJo 8.8.6 (Tree Star, Ashland, OR). Total splenocyte numbers were calculated by counting live cells, identified via trypan blue dye exclusion, and then multiplying the number of total live cells by the frequency of the indicated population falling in the appropriate gates, including live cell singlet and overall total live cell gates based off side scatter and forward scatter profiles.

Vascularized heart transplantation

Heterotopic (intra-abdominal) heart transplantation was performed with transfer of wild-type (WT) B6 hearts to WT or ST2+/– BALB/c mice, as described (39, 40). Briefly, hearts were transplanted into recipients through

Downloaded from http://www.jimmunol.org/ by guest on April 13, 2017
anatomosis of the donor ascending aorta and pulmonary artery and re- 
cipient abdominal aorta and inferior vena cava (recombinant mouse IL-33 
(0.5 μg/d) in PBS or an equal volume of PBS alone was administered i.p. 
on days 0, 1, 3, 6, 10, 13, 15, and 17. All groups included four to eight 
mouse. Where indicated, WT BALB/c recipients were administered anti- 
CD25 mAb (PC-61; BioXcell, West Lebanon, NH; 0.5 mg i.p. on day –4 
and day 0 (41–43), or rat IgG isotype control (BioXcell; 0.5 mg i.p. on 
day 0, 1, 3, 6, 10, 13, and 15)). Theraft procedure was assessed daily by ab- 
palpation and rejection defined by the complete cessation of cardiac 
contraction. Additional transplanted mice (n = 4) were euthanized at day 11 
posttransplant and serum, allograft, native heart, and splenocytes har- 
vested and analyzed by Luminex, histological/immunohistological stain- 
ing, ELISPOT assay, and flow cytometric analysis. 

Histological and immunofluorescent assessment of heart 
allografts

Hearts were harvested, bisected, and either embedded and snap frozen in 
OCT medium (Sakura Finetek USA, Torrance, CA) or fixed in 10% neutral 
buffered formalin. Formalin-fixed sections were processed, embedded in 
paraffin wax, and sections cut (5 μm) and stained with H&E or by standard 
immunohistochemical staining to distinguish CD3+ cells, as described 
(45). For confocal analysis, OCT-embedded tissue was sec- 
tioned (8 μm), adhered to slides, washed in PBS, then fixed in 2% paraformaldehyde in PBS. After washing in PBS, fixed tissue was per- 
meabilized in 0.1% Triton X-100 (Sigma-Aldrich), washed, and blocked 
with 2% BSA in PBS. Staining was accomplished by first labeling sec- 
tions with purified rat anti-mouse ST2 (D18; MB Bioproducts) and 
subsequent probing with Cy3-conjugated goat anti-rat IgG (Jackson 
Immunoresearch). After overnight blocking with unconjugated goat anti- 
rat Ab (Jackson ImmunoResearch), sections were stained with polyclonal 
rabbit anti-Foxp3 (Novus Biologicals, Littleton, CO) then Alexa Fluor 
488-conjugated goat anti-rabbit IgG (Molecular Probes/Invitrogen) as a 
secondary Ab to detect Foxp3. Samples were counterstained with 1% 
bisbenzamide (Hoechst; Sigma-Aldrich). Optical sections (0.4 μm) were 
generated using an Olympus Fluoview 1000 scanning confocal micro- 
scope (Olympus America, Lehigh Valley, PA). Images were all taken with 
a 40× oil objective lens (Olympus UPLSAPO; NA = 1.24). The ImageJ pro- 
gram (National Institutes of Health) and image analysis software 
(Qdot specific filters (Omega Optical, Brattleboro, VT). Digital images were captured using Panoramic Viewer 
(Version 1.14; 3D Histech).

MLR and assay of MDSC suppressor function

BALB/c CD11c+ splenocytes were isolated as described earlier and allo- 
geneic (B6) splenic CD3+ T cells isolated by negative selection completed 
by cell labeling with rat anti-mouse CD11b (M1/70), CD45R (30H4), 
Leu-M3 (3I12), and H-2Kd (2C7) mAbs (from BD Biosciences) and removal of bead-bound cells with Mouse 
Depletion Dynabeads (Dynal Biotech, Oslo, Norway) and magnetic iso- 
lation. MLRs were performed using graded numbers of gamma-irradiated 
(20 Gy) BALB/c CD11c+ cells to stimulate 2 × 10^6 B6 T cells for 72 h. In 
a similar fashion, nonadherent cells from B6 BM cell cultures were har- 
vested on day 8, irradiated, and graded numbers used to stimulate 1 × 10^5 
B6 T cells. Over the last 18 h of culture, 1 μCi [3H]thymidine (NEN Life 
Science Products) was added. After cell harvesting, radioisotope in- 
corporation was determined using a TopCount (PerkinElmer, Waltham, 
MA) scintillation counter. 

MDSC suppressor function was ascertained (described) with minor modifications. Bulk normal B6 T cell responders were isolated by negative selection as described earlier and 2 × 10^6 cells stimulated with 2 × 10^5 
gamma-irradiated CD11c+ splenocytes (BALB/c; 20 Gy) alone or with 
Ly6G- or Ly6C-enriched cells (2 × 10^5). Ly6G/C cells were isolated from the pooled splenocytes of treated BALB/c mice (n = 2 to 3) as described 
earlier. Percent suppression is presented and calculated by the equation 
1 - [(cpm of T cells + stimulators + Ly6G/C cells)/(cpm of T cells + 
stimulators alone)] × 100.

ELISPOT assay

CD4+ cells from transplanted and naive BALB/c mice were isolated by 
negative depletion as described earlier, but with the addition of rat anti- 
mouse CD80 mAb (53-6.7; Becton Dickinson). Purified CD4+ T cells were 
icubated with CD3-depleted, gamma-irradiated B6, BALB/c, or C3H 
splenocytes (0.1 × 10^6 to 1 × 10^6 T cells × 2.5 × 10^6 APCs/well) in 96- 
well nitrocellulose-based plates (Millipore, Bedford, MA) precoated with 
anti–IFN-γ, anti–IL-4, or anti–IL-5 mAb (BD Pharmingen). After 3 d, 
ELISPOT plates were developed by washing the wells and subsequent 
incubation with biotinylated anti–IFN-γ, anti–IL-4, or anti–IL-5 mAb 
secondary Ab, streptavidin–HRP, and AEC Substrate Solution (BD 
Biosciences). The spots were counted using an ELISPOT plate reader 
(CTL, Cleveland, OH).

Luminex

Serum levels of basic fibroblast growth factor, GM-CSF, IFN-γ, IL-1α, IL- 
1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12(p40/p70), IL-13, IL-17, IFN- 
γ-induced protein 10 (CXCL10), keratinocyte-derived chemokine, MCP-1 
(CCL2), monokine induced by IFN-γ (CXCL9), MIP-1α (CCL3), TNF-α, 
and VEGF were assessed via the Mouse Cytokine 20-Plex Panel 
(Invitrogen) and analyzed with a Bio-Plex reader by the University of 
Pittsburgh Cancer Institute Biomarkers Facility.

Treg suppression assay

FJR reporter mice were administered PBS or recombinant mouse IL-33 (0.5 
μg/d, i.p., day 0 to day 10) and splenocytes isolated on day 11. After RBC 
lysis, CD4+ cells were isolated by negative depletion as described earlier. 
The CD4+ cells were blocked in 10% normal goat serum and then surface 
stained with allopolycoyocin-conjugated Ab to CD4 and FITC–anti-ST2. 
A Becton Dickinson FACSAria was used for fluorescence detection and 
cell sorting of CD4+ Foxp35 (RFP+) ST2L+ or ST2L− cell populations. 
The capacity of graded numbers of sorted Foxp3+ populations to suppress 
CD3/CD28-stimulated proliferation was assessed as described (48). 
Briefly, 1 × 10^5 CFSE-labeled B6 CD4+ CD25- effector T cells were 
stimulated with 5 × 10^5 anti-CD3/CD28-coated beads (Dynal) in round-bottom, 
96-well plates alone or in the presence of varied numbers (1 × 10^4 to 
4 × 10^5) of sorted Foxp35 (RFP+) cells. Differences in proliferation of 
effector T cells after 3-d coculture were determined by flow cytometric 
analysis and FlowJo software.

Statistical analyses

Results are expressed as means ± 1 SD. The significance of differences 
between means was determined using Student t test and Prism (GraphPad 
Software, La Jolla, CA) where p < 0.05 was considered significant. 
GraphPad Prism 5.0C software package (GraphPad Software) was used 
to generate survival curves, and the significance of differences in graft sur- 
vival between groups was determined by Kaplan–Meier analysis and the 
log-rank test.

Results

IL-33 promotes the expansion of poorly stimulatory CD11b+ 
cells

Given the recent demonstration (29) that addition of IL-33 to 
mouse BM cell cultures results in the generation of “immature” 
mdcs that are unresponsive to TLR ligation, we first sought to 
define the influence of IL-33 on the differentiation and expansion of 
myeloid APCs in vivo. We examined WT or St2−/− BALB/c 
mice for modulation of CD11b+ and CD11c+ cell populations after 
administration of mouse recombinant IL-33 (0.5 μg/d i.p. for 
10 d). In addition, we compared the influence of IL-33 on these 
populations to that of Flt3L (10 μg/d i.p. for 10 d), a potent he- 
matopoietic growth factor that increases CD34+ stem cells and 
multiple myeloid cell populations, including mdcs in vivo (49). 
Consistent with the report of Mayuzumi et al. (29), IL-33 ad-

Downloaded from http://www.jimmunol.org/ on April 13, 2017
CD11b^+ CD11c^- cells. CD11b^-CD11c^- cells in IL-33–treated mice were phenotypically less mature than corresponding populations from PBS- or Flt3L-treated mice (Fig. 1D). Consistent with this finding, purified CD11c^- splenocytes from IL-33–treated mice were poorer stimulators of normal allogeneic CD3^+ T cells than those from PBS-treated animals (data not shown). These data are consistent with the capacity of IL-33 to promote the generation of poorly stimulatory CD11c^- cells in vitro (29).

We also observed a profound increase in CD11b^+ CD11c^- cells in response to IL-33 administration (Fig. 1A, Supplemental Fig. 1). Expansion of CD11b^+ CD11c^- cells by IL-33 was observed in both B6 and BALB/c mice and was dependent on S2^+ gene expression as it was not observed in S2^-/- mice (Fig. 1B). However, lack of S2 did not result in global defects in myeloid lineage cell expansion, as Flt3L treatment of S2^-/- mice facilitated the expansion of CD11b^-CD11c^- CD11b^-CD11c^- CD11b^-CD11c^- CD11b^-CD11c^- and CD11b^-CD11c^- Gr-1^-Ly6C^-Ly6G^- cells (Fig. 1B). Notably, although IL-33 and Flt3L elicited a similar increase in frequency and overall number of CD11b^- cells (Fig. 1A, 1C), IL-33 preferentially increased CD11b^-Gr-1^- cells, whereas Flt3L selectively augmented CD11b^-Gr-1^- cells in both WT mice (Fig. 1A) and S2^-/- mice (Fig. 1B). The promotion of CD11b^-Gr-1^- cells by IL-33 did not require mast cells, which constitutively express high levels of ST2L (Supplemental Fig. 1). Specifically, after IL-33 treatment of Kit^-/- Kit^-/- mice that lack skin and tissue mast cells (50), the increased incidence of CD11b^-Gr-1^- cells remained prominent (Supplemental Fig. 1).

In vitro, we replicated the reported (29) capacity of IL-33 to facilitate the generation of immature (MHC II^-CD86^-) CD11b^- CD11c^- mDCs that resist TLR4 ligation-induced maturation (Supplemental Fig. 2A, 2B). Addition of IL-33 together with GM-CSF and IL-4 to BM cell cultures also resulted in immature, maturation-resistant mDCs (Supplemental Fig. 2). mDCs from both IL-33 alone or IL-33 plus GM-CSF and IL-4 culture conditions did not upregulate surface CD86 after exposure to LPS (Supplemental Fig. 2B). Likewise, cells generated in IL-33–containing cultures exhibited poor T cell allostimulatory capacity, both before and after stimulation with LPS (Supplemental Fig. 2C). Notably, and similar to our in vivo observations, CD11b^- CD11c^- Gr-1^- cells were increased in BM cell cultures exposed to IL-33 (Supplemental Fig. 2A). Thus, both in vitro and in vivo, IL-33 promoted the expansion of CD11b^- CD11c^- cells that were phenotypically immature and poorly stimulatory. In addition, IL-33 enhanced CD11b^- Gr-1^- cells.

**IL-33 expands Ly6C^- and Ly6G^- myeloid cells**

As we observed a significant increase in CD11b^- Gr-1^- cells concordant with an increase in poorly stimulatory CD11c^- cells, we hypothesized that IL-33 might also increase the generation of MDSCs in vivo. MDSCs are a rare, heterogenous population of incompletely differentiated, immature myeloid and myeloid progenitor cells (reviewed in Refs. 51–53). Although heterogenous, MDSCs are globally defined as CD11b^- Gr-1^-. The Gr-1 epitope is shared by both the cell surface glycoproteins Ly6C and Ly6G, and at least two subpopulations of MDSCs are recognized and defined by their levels of expression of these molecules (52). More specifically, monocytic MDSCs are CD11b^- Ly6G^lo Ly6C^- and granulocytic MDSCs are CD11b^- Ly6G^hi Ly6C^- (2). In tumor models, monocytic MDSC populations have been described as F4/80^- and granulocytic MDSCs as F4/80^hi, thus distinguishing them from Gr-1^- F4/80^- monocyte/macrophages (52). These MDSC subsets are thought to use different mechanisms to suppress T cell function (52).

Compared with control mice, those given IL-33 exhibited increases in several CD11b^- and F4/80^-expressing subsets (Fig. 2A). CD11b^- F4/80^- CD11b^- F4/80^- and CD11b^- F4/80^- cells were all increased substantially after IL-33 administration. CD11b^- F4/80^- cells splenocytes from control mice were Ly6G^-C^- and CD11c^-/-, consistent with macrophages and mDCs (Fig. 2B). IL-33 administration promoted CD11b^- F4/80^- cells, but also increased presumptive monocytes or DC precursors expressing CD11c and Ly6C (Fig. 2B). IL-33–treated mice also demonstrated a large increase in CD11b^- F4/80^- splenocytes (Fig. 2A). Assumption of Ly6G^-C^- and CD11c- expression (Fig. 2B) revealed that these cells were very similar to those from PBS-treated mice, consisting of Ly6G^- Ly6C^-/- CD11c^-/- cells. This phenotype is indicative of granulocytes and neutrophils and consistent with previous reports that IL-33 promotes their in vivo and in vivo expansion (2). A prominent population of CD11b^- F4/80^- cells was also increased profoundly after IL-33 administration (Fig. 2A). This population was composed of both Ly6G^- and Ly6C^- cells that differed from those in PBS-treated mice (Fig. 2B). Specifically, the CD11b^- F4/80^- cells in IL-33–treated mice displayed a greater proportion of Ly6G^- cells, but had prominent populations of Ly6G^-Ly6C^- and Ly6G^-Ly6C^- cells (Fig. 2B), potentially granulocytic or monocytic MDSCs, respectively. Thus, IL-33 administration modulates splenic myeloid populations favoring the expansion of CD11b^- CD11c^- F4/80^- Ly6G^- and Ly6C^- cells, a phenotype associated with MDSCs (52).

**IL-33–expanded Ly6C^- and Ly6G^-expressing cells exhibit increased suppressive function**

Flt3L is known to expand MDSCs (51, 54, 55). To establish whether IL-33 could expand functional MDSCs, the two Gr-1^-expressing populations, Ly6G^- and Ly6C^- cells, were enriched (Supplemental Fig. 3) from control, IL-33–treated, or Flt3L–treated BALB/c mice and assessed for their capacity to inhibit BALB/c CD11c^- spleenocytes-induced proliferation of CD3^+ allogeneic T cells (Fig. 2C). Both Ly6G^- and Ly6C^-expressing populations from IL-33–treated or Flt3L–treated mice potently suppressed T cell responses compared with the minimal suppression exhibited by those from control mice (Fig. 2C). In total, these data indicate that IL-33 administration increases CD11b^- Gr-1^-, particularly Gr-1^- cells with potent T cell suppressive capacity.

---

**FIGURE 1.** IL-33 promotes the expansion of CD11b^-CD11c^- MHC^- and CD11b^-Gr-1^ cells in vivo. WT (S2^-/- A) or S2^-/- BALB/c (B) mice were given IL-33 (0.5 μg/d) or Flt3L (10 μg/d) i.p. for 10 d (day 0 to day 10). On day 11, total splenocytes were isolated, stained as described in Materials and Methods, and analyzed by flow cytometric analysis. A and B, S2^-/- dependent increase in CD11b^-CD11c^- and CD11b^-Gr-1^ cells after IL-33 administration. In A and B, data represent CD45^-gated (left panels) or CD45^-CD11b^-CD11c^- gated (right panels) cells from WT BALB/c or S2^-/- (A) or S2^-/- (B) mice, and numbers on dot plots indicate percentage of gated cells. Data are from one experiment representative of three performed and depict one animal representative of the indicated treatment group. C, Mean incidence (top panels) for the indicated populations calculated across three independent experiments (n = 7 to 9 per group). Total splenic numbers (bottom panels) for the indicated populations from one experiment representative of the three independent experiments performed (n = 2 to 3 per group). Error bars indicate 1 SD. *p < 0.05 (Student t test). D, Decreased MHC class II and CD86 on CD11c^- and CD11b^- cells from mice treated with IL-33 or Flt3L. Freshly isolated total splenocytes were assessed for CD86 and MHC class II (I-A^b/I-E^b). Shaded histogram depicts isotype control. Data depict one experiment representative of three experiments performed.
IL-33 exhibits potent ability to increase suppressive CD4+ Foxp3+ cells, including a ST2L+ subset

The influence of IL-33 on lymphocyte populations was assessed 24 h after 10-d treatment of BALB/c and B6 mice with IL-33. IL-33 facilitates Th2 responses (56), and ST2L is a proposed marker of Th2 but not Th1 cell polarization (9). This is consistent with the significant enhancement of ST2L expression on both B6 and BALB/c CD4+ T cells after IL-33 administration (Fig. 3A, 3C, 3E). When the influence of IL-33 on CD4+ Foxp3+ cells was assessed, a previously unreported augmentation of both the incidence (Fig. 3A, 3C) and overall number of CD4+ Foxp3+ cells was observed (data not shown). This effect was dependent on

FIGURE 2. IL-33 preferentially expands CD11b+ F4/80int cells containing Ly6G+ and Ly6C+ populations that potently inhibit allogeneic T cell responses. IL-33 facilitates the expansion of several CD11b and F4/80 expressing cell populations in the spleen. A, Flow cytometry plots, representative of at least three experiments performed, depict CD45+-gated total splenocytes from IL-33–treated or PBS-treated WT BALB/c mice. B, Panels present the incidence of Ly6G+ and Ly6C+ cells in CD11blo F4/80hi (top panels), CD11b+ F4/80int (middle panels), and CD11bhi F4/80- gated cells. Data are representative of more than three experiments performed. C, Ly6G or Ly6C cells were enriched from splenocytes pooled from each treatment group (n = 2 mice per group) and tested as suppressors (1:1) of purified B6 CD3+ T cell responders in MLR using CD11c+ BALB/c splenocytes (1:5) as stimulators. Data are from one experiment representative of three performed and are plotted as mean percent suppression + 1 SD and significance of differences determined by Student t test. *p < 0.05 (versus T cells + stimulators only or versus T cells and CD11c+ APCs only), †p < 0.05 (versus PBS group), ‡p < 0.05 (versus IL-33 group). The cpm measured for wells containing T cells only was 189 ± 125 and for those with T cells and CD11c+ stimulators was 9823 ± 2684. The cpm for MLR containing indicated Ly6C or Ly6G enriched suppressors were as follows: PBS Ly6G (9181 ± 1434), IL-33 Ly6G (3197 ± 47), Flt3L Ly6G (3157 ± 528), PBS Ly6C (6934 ± 601), IL-33 Ly6C (2637 ± 199), and Flt3L Ly6C (834 ± 79).
**FIGURE 3.** St2-dependent increase in suppressive CD4+ Foxp3+ cells, including a prominent ST2L+ subset, after IL-33 administration. IL-33–treated mice display an St2-dependent increase in splenic Foxp3+ CD4+ cells. A and B, Flow cytometric analysis of surface ST2L or intracellular Foxp3 expression by WT BALB/c St2+/+(A) or BALB/c St2−/− (B) CD4+ T cells after treatment with PBS or IL-33 (0.5 μg/d: day 0 to day 10). Data depict the percentage of CD45+ CD3+ CD4+-gated cells expressing ST2L and intracellular Foxp3 on day 11. Flow cytometric plots are from one experiment representative of three performed. C, Mean incidence for the indicated population after IL-33 (0.5 μg/d: day 0 to day 10) or Flt3L (10 μg/d: day 0 to day 10) administration to WT BALB/c mice. Data are from one experiment (n = 2 to 3 mice per group) that is representative of three performed. Error bars indicate mean ± 1 SD. *p < 0.05 (Student t test). D, Coexpression of ST2L by BALB/c splenic CD4+ CD25+ T cells. Data represent the percentage of splenic CD45+ CD3+ CD4+-gated cells expressing CD25+ (left panels) and CD4+ CD25+-gated (right panels) cells expressing ST2L and intracellular Foxp3 on day 11 after PBS or IL-33 treatment. Representative flow cytometric plots from one experiment representative of four performed. E and F, IL-33 expands B6 CD4+ Foxp3+ ST2L+ and ST2L− T cells displaying suppressive capacity. E, Flow cytometric analysis of B6 splenic CD3+ CD4+ T cells after treatment with PBS or IL-33 as above. Data depict the percentage of CD45+ CD3+ CD4+-gated cells and are representative of three independent experiments performed. F, FACs was used to isolated viable ST2L− and ST2L+ CD4+ Foxp3+ (RFP+) cells from PBS-treated or IL-33–treated B6 Foxp3-reporter mice. Graded numbers of Foxp3+ (RFP+) cells were assessed for their capacity to suppress CD3/CD28-stimulated proliferation of CFSE-labeled B6 CD4+ CD25− T cells. Data depict the Foxp3+ CD4+-gated cell proliferation profile, percent divided, and division index as calculated via FlowJo Proliferation Platform. Data are from one experiment representative of two performed.
ST2L expression, as it was not observed in St2−/− mice (Fig. 3B). It also did not depend on the presence of mast cells (Supplemental Fig. 4). It has been demonstrated recently that administration of Flt3L, which, like IL-33, expands CD11c+ and CD11b+ cells, also expands Foxp3+ Tregs (57). When compared directly, IL-33 exhibited a similar capacity to increase the frequency (Fig. 3C) and absolute number (data not shown) of CD4+ Foxp3+ cells that of Flt3L. Upon further examination, we also found that a prominent subset of CD4+ Foxp3+ cells in IL-33–treated mice that expressed ST2L, or membrane-bound ST2 (Fig. 3A, 3C, 3D, 3E). Notably, the largest subset of CD4+ CD25+ cells in PBS-treated mice was Foxp3+ and ST2L+ (Fig. 3D), indicating that a significant proportion (40–50%) of naturally occurring regulatory T cells (nTregs) are ST2L+. Viable Foxp3+ cells were isolated by FACS from PBS-treated or IL-33–treated FIR mice and assessed for their capacity to suppress T cell proliferation. Both CD4+ Foxp3+ ST2L− and CD4+ Foxp3+ ST2L+ cells from IL-33–treated mice demonstrated suppressive activity (Fig. 3F). ST2L+ Foxp3+ cells from PBS-treated mice were similarly suppressive (data not shown). Thus, these data identify a previously unreported capacity of IL-33 to expand suppressive CD4+ Foxp3+ T cells in vivo. Likewise, our data reveal that ST2L, in addition to being expressed on Th2 cells (9), is found on an IL-33–expanded subset of suppressive nTregs.

**Increased expression of ST2 by cardiac allografts**

As described above, St2 gene products, particularly ST2L, are increased in cardiac hypertrophy and, with IL-33, may limit cardiovascular pathology (8, 58). Using an mAb detecting both sST2 and ST2L, we examined whether mouse cardiac allografts displayed modulation of ST2 by Qdot-based immunostaining of cryostat sections and observed profound upregulation of ST2 expression during rejection (Fig. 4). Specifically, 10 d after their transplantation into unmanipulated BALB/c recipients, B6 cardiac allografts exhibited strongly ST2+ myocardium and CD31+ endothelium (Fig. 4). This contrasted with normal B6 hearts and with BALB/c recipient native hearts, both of which stained only weakly for ST2 in the myocardium and did not express ST2 on CD31+ endothelium (Fig. 4). Thus, upregulated ST2 in rejecting grafts is consistent with the reported upregulation of ST2 during vascular pathology and suggests a potential target by which IL-33 may facilitate cardiac allograft survival.

**Prolongation of graft survival by IL-33 requires host ST2 expression**

To determine the influence of IL-33 and ST2 on cardiac allograft survival, groups of WT or St2−/− BALB/c mice were given heterotopic B6 heart transplants (day 0) and either remained untreated or received IL-33 (0.5 μg i.p. on days 0, 1, 3, 6, 10, 13, 15, and 17). Allografts harvested from WT BALB/c recipients treated with IL-33 exhibited markedly reduced mononuclear cell infiltration and greater areas of normal myocardium (Fig. 5A, 5B). IL-33–treated mouse grafts were also less infiltrated by CD3+ T cells (Fig. 5C). Likewise, B6 allografts in WT BALB/c mice were given heterotopic B6 heart transplants (day 0, 1, 3, 6, 10, 13, 15, and 17). Allografts harvested from WT BALB/c recipients treated with IL-33 exhibited markedly reduced mononuclear cell infiltration and greater areas of normal myocardium (Fig. 5A, 5B). IL-33–treated mouse grafts were also less infiltrated by CD3+ T cells (Fig. 5C). Likewise, B6 allografts in WT BALB/c mice were given heterotopic B6 heart transplants (day 0, 1, 3, 6, 10, 13, 15, and 17). Allografts harvested from WT BALB/c recipients treated with IL-33 exhibited markedly reduced mononuclear cell infiltration and greater areas of normal myocardium (Fig. 5A, 5B). IL-33–treated mouse grafts were also less infiltrated by CD3+ T cells (Fig. 5C).

**Not only Th2-type responses, but also intragraft Foxp3+ cells, are increased by IL-33 monotherapy after cardiac transplantation**

Administration of IL-33 has been associated with enhanced systemic Th2 cytokine levels and the functional activation of ST2L-expressing cells, including Th2 cells, basophils, mast cells, and eosinophils (2). Consistent with these observations, IL-33 treatment after cardiac transplantation significantly increased serum levels of IL-5 and IL-13 compared with those of naive BALB/c mice and control graft recipients (Fig. 6A). IL-33 administration also led to a significant decrease in circulating IL-6. Although there was a trend toward increased IL-4 and decreased IFN-γ levels in the circulation, the difference between IL-33–treated and control mice was not significant (Fig. 6A). There was also no significant difference, at day 11 posttransplant, in systemic CD4+ cell expression of IL-4 or IFN-γ determined by flow cytometry (Fig. 6B) or ELISPOT analysis (data not shown). However, increases in alloreactive CD4+ IL-5+ cells in IL-33–treated animals were detected (Fig. 6C). A significant reduction in the incidence of splenic CD3+ CD8+ and CD8+ IFN-γ+ T cells was also observed (Fig. 6D, 6E). Notably, although splenic numbers of CD4+ Foxp3+ T cells did not differ between control and IL-33–treated allograft recipients (Fig. 6B), transplants from IL-33–treated animals displayed a marked increase in Foxp3+ cells (Fig. 6F). This increase was evident despite the overall decrease in graft-infiltrating cells, including CD3+ T cells (Figs. 5A–C, Fig. 6F). A trend toward increased ST2+ cells was also observed in IL-33–treated grafts, although differences between PBS-treated and
IL-33–treated grafts did not reach significance. Overall, IL-33 administration facilitated increased Th2-type cellular and systemic responses and increased Foxp3+ cells within cardiac allografts.

**IL-33 treatment increases CD11b+ Gr-1int cells in heart graft recipients**

Given our findings that IL-33 promoted the expansion of CD11b+ Gr-1int cells comprising Ly6G+ and Ly6C+ populations with the ability to suppress allogeneic T cell proliferation (Fig. 2C), we assessed whether IL-33 administration could promote a similar effect after cardiac transplantation. Both control and IL-33–treated graft recipients displayed an increase in splenic CD11b+ cells compared with naive BALB/c mice (Fig. 7A). However, whereas control graft recipients displayed a significant increase in the incidence of CD11b+ Gr-1int cells (Fig. 7A, 7B), IL-33–treated hosts displayed large increases in Gr-1int cells among CD11b+ cells (Fig. 7A, 7B, 7D). As such, whereas both control and IL-33–treated graft recipients exhibited a significant increase in the overall numbers of splenic CD45+ CD11b+ cells (Fig. 7A, 7B, 7D) compared with those of naive BALB/c mice, IL-33–treated animals displayed significant increases in CD11b+ Gr-1int cells compared with those of both naive and control graft recipients (Fig. 7A, 7B, 7D). Thus, both when given to normal mice and after cardiac transplantation, IL-33 modulates myeloid populations to enrich for CD11b+ Gr-1int cells.

**IL-33–mediated allograft survival is dependent on CD25+ Tregs**

To define whether IL-33–mediated prolongation of allograft survival depended on the presence of nTregs or MDSCs, BALB/c recipients were administered Abs established to selectively deplete these populations before B6 heart transplantation and subsequent IL-33 administration. IL-33 prolonged cardiac allograft survival significantly in mice treated with IgG or anti–Gr-1 mAb (Fig. 8). However, graft recipients depleted of CD25+ nTregs via anti-CD25 mAb administration displayed no therapeutic benefit from IL-33 administration (Fig. 8). Specifically, nTreg-depleted recipients displayed graft survival comparable with that of BALB/c recipients receiving no mAb and only PBS (Fig. 8). Thus, these data demonstrate the critical importance of nTregs, but not MDSCs, in the capacity of IL-33 to promote cardiac allograft survival.

**Discussion**

To our knowledge, we show for the first time that administering IL-33 to normal or heart-allografted mice facilitates myeloid APC expansion, including immature CD11b+ Gr-1int DCs and to a greater extent suppressive CD11b+ Gr-1int MDSCs. Furthermore, we report the novel finding that IL-33 has the capacity to expand functional CD4+ Foxp3+ Tregs, which mediate the capacity of IL-33 to promote cardiac allograft survival. Our findings thus broaden the range of in vivo immunoregulatory properties of IL-33.

Excluding limited studies on peritoneal macrophages, the in vivo influence of IL-33 on myeloid APCs is poorly understood. IL-33 has been found to be similar to other hematopoietic growth factors, including GM-CSF or Flt3L, in its ability to sustain cell survival and promote CD11c+ mDC generation in BM culture (29). In these studies, IL-33 did not appear proinflammatory, as mDCs generated in IL-33 expressed little MHC or costimulatory molecules, but increased their PD-L1 and PD-L2 expression. IL-33–generated mDCs were poorly stimulatory and also displayed little TLR-induced upregulation of CD86 or proinflammatory cytokines.
In this study, we now demonstrate that IL-33 expands CD11\textsuperscript{blo} CD11c\textsuperscript{+} DCs in vivo. However, whereas IL-33 displays similar capacity to Flt3L to expand mDCs in vitro (29), Flt3L is a more potent facilitator of CD11\textsuperscript{blo} CD11c\textsuperscript{+} and CD11\textsuperscript{bhi} CD11c\textsuperscript{+} DC expansion in vivo. Consistent with the foregoing observation (29) that IL-33 expands poorly stimulatory DCs ex vivo, we show that CD11\textsuperscript{blo} CD11c\textsuperscript{+} cells from IL-33–treated animals display decreased MHC class II and CD86. We did not observe increased plasmacytoid DCs (CD11\textsuperscript{b} CD11c\textsuperscript{lo} B220\textsuperscript{+}) after IL-33 monotherapy, splenocytes were stained and assessed by flow cytometry after stimulation with PMA/ionomycin in the presence of GolgiPlug. The graph depicts mean percent CD45\textsuperscript{+} cells + 1 SD for cells in the indicated gate. n = 2 to 3 per group. *p < 0.05 (Student t test). B, Also on day 11, splenic CD4\textsuperscript{+} cells were purified from BALB/c mice given B6 heart transplants alone (PBS) or with IL-33 monotherapy. The frequency of directly reactive CD4\textsuperscript{+} IL-5–secreting T cells was determined 3 d after stimulation with CD3-depleted BALB/c (donor) or C3H (third party) splenocytes. Data are group means + SD, with n = 3/group. *p < 0.05 (Student t test). C, Assessment of splenic CD45\textsuperscript{+} CD8\textsuperscript{+} T cells in IL-33–treated versus control heart graft recipients revealed reduced incidences of CD3\textsuperscript{+} CD8\textsuperscript{+} T cells, particularly CD8\textsuperscript{+} IFN\textgamma{+} cells. D, Representative flow plots from one animal representative of the three analyzed. E, Graph depicts mean percent CD45\textsuperscript{+} cells + 1 SD for cells contained in the indicated gate. n = 3/group. *p < 0.05 (Student t test). F, Confocal analysis of staining for ST2 (red), Foxp3 (green), and Hoechst (blue) demonstrate that heart grafts from IL-33–treated recipients had increased Foxp3\textsuperscript{+} cells. The graph presents the mean number + 1 SD of Foxp3\textsuperscript{+} cells per \( \times 40 \) field for each condition. Positive cells in five randomly selected \( \times 40 \) fields from four individuals per group were quantified through use of the Image-based Tool for Counting Nuclei and ImageJ software. *p < 0.05 (Student t test).

In this study, we now demonstrate that IL-33 expands CD11\textsuperscript{blo} CD11c\textsuperscript{+} DCs in vivo. However, whereas IL-33 displays similar capacity to Flt3L to expand mDCs in vitro (29), Flt3L is a more potent facilitator of CD11\textsuperscript{blo} CD11c\textsuperscript{+} and CD11\textsuperscript{bhi} CD11c\textsuperscript{+} DC expansion in vivo. Consistent with the foregoing observation (29) that IL-33 expands poorly stimulatory DCs ex vivo, we show that CD11\textsuperscript{blo} CD11c\textsuperscript{+} cells from IL-33–treated animals display decreased MHC class II and CD86. We did not observe increased plasmacytoid DCs (CD11\textsuperscript{b} CD11c\textsuperscript{lo} B220\textsuperscript{+}) after IL-33 administration (data not shown). Thus, both in vivo and ex vivo, IL-33 expands CD11\textsuperscript{blo} CD11c\textsuperscript{+} mDCs.

In addition to CD11\textsuperscript{blo} CD11c\textsuperscript{+} cells, we found that IL-33 mediates a previously unreported capacity to expand CD11\textsuperscript{bhi} CD11c\textsuperscript{+} Gr-1\textsuperscript{hi} cells in vitro and in vivo. Given the growing consensus that CD11\textsuperscript{bhi} Gr-1\textsuperscript{hi} MDSCs play a major role in cancer progression (51, 52, 59) and the importance attributed to MDSCs in tolerance induction (44, 60), these cells have emerged as an immunoregulatory population of great interest. In the current studies, IL-33 preferentially expanded CD11\textsuperscript{bhi} CD11c\textsuperscript{lo} F4/80\textsuperscript{int} Gr-1\textsuperscript{int} cells compared with PBS or Flt3L treatment of mice. Both Ly6G\textsuperscript{+} and Ly6C\textsuperscript{+} suppressive CD11\textsuperscript{bhi} cells were evident in the IL-33–treated animals. Across multiple tumor models, it is the CD11\textsuperscript{bhi} Gr-1\textsuperscript{int} population of MDSCs that consistently exhibits in vitro and in vivo suppressive capacity (61). Eosinophils (CD11\textsuperscript{bhi} Ly6C\textsuperscript{+} Ly6G\textsuperscript{+} F4/80\textsuperscript{lo}) are expanded by IL-33 administration (1), but do not suppress T cell proliferation (61). Furthermore, although IL-33 stimulates mast cells, and these have been implicated in mobilization of MDSCs during tumor development (62), our data suggest that mast cells do not mediate IL-33–induced expansion of CD11\textsuperscript{bhi} Gr-1\textsuperscript{hi} cells, as they were still greatly increased after IL-33 treatment of mast cell-deficient mice.

In addition to CD11\textsuperscript{blo} CD11c\textsuperscript{+} cells, we found that IL-33 mediates a previously unreported capacity to expand CD11\textsuperscript{bhi} CD11c\textsuperscript{+} Gr-1\textsuperscript{hi} cells in vitro and in vivo. Given the growing consensus that CD11\textsuperscript{bhi} Gr-1\textsuperscript{hi} MDSCs play a major role in cancer progression (51, 52, 59) and the importance attributed to MDSCs in tolerance induction (44, 60), these cells have emerged as an immunoregulatory population of great interest. In the current studies, IL-33 preferentially expanded CD11\textsuperscript{bhi} CD11c\textsuperscript{lo} F4/80\textsuperscript{int} Gr-1\textsuperscript{int} cells compared with PBS or Flt3L treatment of mice. Both Ly6G\textsuperscript{+} and Ly6C\textsuperscript{+} suppressive CD11\textsuperscript{bhi} cells were evident in the IL-33–treated animals. Across multiple tumor models, it is the CD11\textsuperscript{bhi} Gr-1\textsuperscript{int} population of MDSCs that consistently exhibits in vitro and in vivo suppressive capacity (61). Eosinophils (CD11\textsuperscript{bhi} Ly6C\textsuperscript{+} Ly6G\textsuperscript{+} F4/80\textsuperscript{lo}) are expanded by IL-33 administration (1), but do not suppress T cell proliferation (61). Furthermore, although IL-33 stimulates mast cells, and these have been implicated in mobilization of MDSCs during tumor development (62), our data suggest that mast cells do not mediate IL-33–induced expansion of CD11\textsuperscript{bhi} Gr-1\textsuperscript{hi} cells, as they were still greatly increased after IL-33 treatment of mast cell-deficient mice.
High-dose GM-CSF subverts immune reactivity by increasing MDSCs (63). Likewise, Flt3L administration increases MDSCs in vivo (51, 54), and spleen cells from Flt3L-treated animals can induce tolerance across MHC barriers (64). Our findings provide new evidence that both Flt3L and IL-33 expand Ly6G+ and Ly6C+ cells with the capacity to suppress alloreactive T cells. However, it is currently unclear how IL-33 acts to promote several distinct myeloid cell populations. Potentially, by stimulating BM cell GM-CSF production (29, 65), IL-33 can act indirectly to promote mobilization of myeloid precursors. However, our current data demonstrate that IL-33 administration also facilitates immature mDCs and MDSCs in vivo. Likewise, we find that IL-33–stimulated BM cell cultures display expansion of immature mDCs, as previously observed (29), and also CD11b+ Gr-1+ cells. Notably, our data also show that addition of IL-33 to GM-CSF plus IL-4–stimulated cultures also generates mDCs with reduced maturity and resistance to proinflammatory stimuli. Thus, IL-33 also may impede full myeloid cell differentiation.

As discussed earlier, MSDCs have been established as mediators of immune tolerance (44, 60), and we find IL-33 administration greatly increases splenic CD11b+ Gr-1+ cells. On day 11, spleen cells from BALB/c mice given B6 heart grafts alone or with IL-33 monotherapy were compared by flow cytometry with normal animals or heart graft recipients receiving only PBS. A, The left panels depict the incidence of total CD45+ cells, and the right panels indicate the incidence of those from the CD11b+ CD11c+ gate. Data are representative flow plots from one animal representative of the three to four assessed for each group. B, Data represent the mean frequency of the indicated population in CD45+ CD11b+ CD11c+ gated cells (n = 3 to 4 per group). Error bars indicate 1 SD. *p < 0.05 (Student t test). C and D, IL-33 increases the number of splenic CD11b+ CD11c+ F4/80+ Gr-1+ cells. Data indicate the calculated total splenic numbers for the indicated populations (n = 3 to 4 per group). Error bars indicate 1 SD. *p < 0.05 (Student t test).

FIGURE 8. Depletion of CD25+ Tregs, but not Gr-1+ cells, before transplantation prevents prolongation of cardiac allograft survival by IL-33. Groups of WT BALB/c mice received anti-CD25 Ab to deplete CD4+ CD25+ Tregs (n = 8), anti-Gr-1 Ab to deplete Gr-1+ myeloid cells (n = 4), or rat polyclonal IgG (n = 8) before receiving a B6 heterotopic heart transplant and IL-33 monotherapy as above. As a control, a fourth group received PBS only after transplantation (n = 8).

High-dose GM-CSF subverts immune reactivity by increasing MDSCs (63). Likewise, Flt3L administration increases MDSCs in vivo (51, 54), and spleen cells from Flt3L-treated animals can induce tolerance across MHC barriers (64). Our findings provide new evidence that both Flt3L and IL-33 expand Ly6G+ and Ly6C+ cells with the capacity to suppress alloreactive T cells. However, it is currently unclear how IL-33 acts to promote several distinct myeloid cell populations. Potentially, by stimulating BM cell GM-CSF production (29, 65), IL-33 can act indirectly to promote mobilization of myeloid precursors. However, our current data demonstrate that IL-33 administration also facilitates immature mDCs and MDSCs in vivo. Likewise, we find that IL-33–stimulated BM cell cultures display expansion of immature mDCs, as previously observed (29), and also CD11b+ Gr-1+ cells. Notably, our data also show that addition of IL-33 to GM-CSF plus IL-4–stimulated cultures also generates mDCs with reduced maturity and resistance to proinflammatory stimuli. Thus, IL-33 also may also impede full myeloid cell differentiation.

As discussed earlier, MSDCs have been established as mediators of immune tolerance (44, 60), and we find IL-33 administration greatly increases splenic CD11b+ Gr-1+ cells. On day 11, spleen cells from BALB/c mice given B6 heart grafts alone or with IL-33 monotherapy were compared by flow cytometry with normal animals or heart graft recipients receiving only PBS. A, The left panels depict the incidence of total CD45+ cells, and the right panels indicate the incidence of those from the CD11b+ CD11c+ gate. Data are representative flow plots from one animal representative of the three to four assessed for each group. B, Data represent the mean frequency of the indicated population in CD45+ CD11b+ CD11c+ gated cells (n = 3 to 4 per group). Error bars indicate 1 SD. *p < 0.05 (Student t test). C and D, IL-33 increases the number of splenic CD11b+ CD11c+ F4/80+ Gr-1+ cells. Data indicate the calculated total splenic numbers for the indicated populations (n = 3 to 4 per group). Error bars indicate 1 SD. *p < 0.05 (Student t test).
rejection and dysfunction (35). In particular, IL-5–secreting CD4+ T cells and eosinophils promote rejection of fully MHC-mismatched heart allografts in recipients depleted of CD8+ T cells (66). Also, whereas IL-4 and IL-13 are necessary for neonatal tolerance (67), they are not required for transplant tolerance in adult animals (68). Notably, IL-13 is implicated in tolerance, particularly by targeting myeloid cells (69) and activating the suppressive function of MDSCs (13, 51). Thus, although MDSCs do not appear fundamental to IL-33 protection of cardiac allografts, the role of IL-13 in IL-33–mediated increases in functional MDSCs and poorly stimulatory mDCs warrants further examination.

Most consistent with the capacity of IL-33 to prolong cardiac allograft survival is our demonstration of its capacity to increase suppressive CD4+ Foxp3+ cells, including a prominent ST2L+ subset. Heart grafts from IL-33–treated animals have increased Foxp3+ cells compared with those from control animals, and depletion of nTregs from recipients prior to transplantation ablated any therapeutic benefit of IL-33 monotherapy. From our findings, it follows that, although IL-33 supports Th2 responses, it targets nTregs to mediate protection of cardiac allografts during acute rejection.

To date, the impact of IL-33 has focused mainly on CD4+ Th2 cells. Polarized Th2 cells express ST2L and migrate to IL-33, which stimulates their IL-5 and IL-13 expression (1, 12). Th2 polarization in the presence of Ag and IL-33 results in Th2 cells that express IL-5, but not IL-4 (31). We now demonstrate that a significant subset (40–50%) of CD4+ CD25+ nTregs express ST2L, the membrane-bound form of ST2, and both ST2L+ and ST2L– CD4+ Foxp3+ are significantly expanded by IL-33. CD4+ Foxp3+ cells from IL-33–treated mice exhibited suppressive capacity, thus, IL-33 not only supports the induction of Th2 responses but also mediates the capacity to expand functional Foxp3+ Tregs.

Numerous transplant models have shown the importance of nTregs in limiting alloreactivity and supporting tolerance-inducing regimens (42, 70). It has been proposed that Tregs may traffic to the graft site and inhibit inflammatory responses (42), although definitive evidence for this mechanism is lacking. It is well understood that Tregs can directly suppress CD4+ and CD8+ T cell function, or indirectly through their actions on DC/APC function (42, 70). It will be of interest to establish the environment in which IL-33–expanded CD4+ Foxp3+ cells mediate their protective role. Likewise, future study is warranted to establish if nTregs, which mediate IL-33 protection of cardiac allografts, are expanded directly via their expressed ST2L or indirectly through interaction with IL-33–influenced mDCs and/or MDSCs.

Finally, our findings indicate that the therapeutic effect of IL-33 in cardiac transplantation is dependent on recipient expression of ST2, presumably ST2L on recipient nTregs. This was despite increased ST2 detected in rejecting graft endothelium and myocytes. Thus, graft expression of ST2, potentially including ST2L on the endothelium, is not necessary for IL-33–mediated prolongation of cardiac allograft survival in a completely MHC-mismatched model. However, it will be important to further investigate the function of cardiac graft ST2 expression in models of chronic heart allograft rejection.

In summary, our data show that, in addition to facilitating Th2 responses, IL-33 expands functional MDSCs and suppressive CD4+ Foxp3+ Tregs, including those expressing ST2L. Importantly, we also establish that the prolongation of cardiac allograft survival by IL-33 requires recipient Tregs. As such, these findings reveal previously undefined functions of this IL-1 family member and identify a specific mechanism whereby IL-33 targets recipient nTregs to prolong organ allograft survival.

Acknowledgments
We acknowledge Lisa Mathews for excellent technical assistance and Miriam Freeman for assistance in manuscript preparation. We also acknowledge Dr. Giorgio Raimondi for valuable advice on completion of the head-based Treg suppression assay.

Disclosures
The authors have no financial conflicts of interest.

References