The CD6 Multiple Sclerosis Susceptibility Allele Is Associated with Alterations in CD4+ T Cell Proliferation

David M. Kofler, Christopher A. Severson, Narine Mouissian, Philip L. De Jager and David A. Hafler

J Immunol published online 17 August 2011
http://www.jimmunol.org/content/early/2011/08/17/jimmunol.1100626

Supplementary Material
http://www.jimmunol.org/content/suppl/2011/08/18/jimmunol.1100626

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts

Errata
An erratum has been published regarding this article. Please see next page or:
/content/189/4/2063.full.pdf
The CD6 Multiple Sclerosis Susceptibility Allele Is Associated with Alterations in CD4+ T Cell Proliferation

David M. Kofler, Christopher A. Severson, Narine Mousissian, Philip L. De Jager, and David A. Hafler

Genome-wide association studies have revealed a large number of genetic associations with autoimmune diseases. Despite this progress, the mechanisms underlying the contribution of allelic variants to the onset of immune-related diseases remain mostly unknown. Our recent meta-analysis of genome-wide association studies of multiple sclerosis (MS) identified a new susceptibility locus tagged by a single nucleotide polymorphism, rs17824933 ($p = 3.8 \times 10^{-9}$), that is found in a block of linkage disequilibrium containing the CD6 gene. Because CD6 plays an important role in maintenance of T cell activation and proliferation, we examined the biologic phenotypes of the risk-associated allele. In this article, we report that the MS susceptibility allele in CD6 is associated with decreased expression of full-length CD6 in CD4+ and CD8+ T cells. As a consequence, proliferation is diminished during long-term activation of CD4+ T cells from subjects with the risk allele. Selective knockdown of full-length CD6 using exon 5-specific small interfering RNA induces a similar proliferation defect of CD4+ T cells from subjects homozygous for the protective allele. Exon 5 encodes for the extracellular binding site of the CD6 ligand ALCAM, which is required for CD6 stimulation. In CD4+ T cells from subjects with the risk allele, exon 5 is consistently underexpressed, thereby providing a mechanism by which the allele affects proliferation of CD4+ T cells. These findings indicate that the MS risk allele in the CD6 locus is associated with altered proliferation of CD4+ T cells and demonstrate the influence of a disease-related allelic variant on important immunological characteristics. The Journal of Immunology, 2011, 187: 000–000.

CD6 is a 130-kDa type 1 transmembrane glycoprotein expressed on the surface of CD4+ and CD8+ T cells and, to a lesser extent, on B cells. CD6 stimulation plays an important role in the maintenance of T cell activation (12–19) because blocking interactions between CD6 and its ligand activated leukocyte cell adhesion molecule (ALCAM) result in diminished proliferation of T cells (12). The ALCAM-binding site is located at the membrane-proximal scavenger receptor cysteine-rich (SRCR) domain 3 of CD6 and is present in most of the five intracellular and three extracellular isoforms of CD6 that have been described (20–22). The CD6Δ3 splice variant, created by excluding exon 5, is lacking the membrane-proximal SRCR domain 3 with the ALCAM-binding site (23). The MS risk allele rs17824933G is located in intron 1 of the CD6 gene (7) and is found at a frequency of 44% of subjects of European ancestry from the PhenoGenetic Project, a cohort of >1200 healthy subjects recruited from the Greater Boston Metropolitan area that supports the functional characterization of genetic variation; subjects homozygous for the risk allele (with an rs17824933GG genotype) are found at 7.6% frequency in this population.

Materials and Methods

Subjects

The Brigham and Women’s Hospital PhenoGenetic Cohort with a collection of 1200 healthy control subjects served as basis for subject recruitment and sample collection. These subjects were genotyped and had the following characteristics: female/male sex ratio was 62/38%; race distribution was 14% African American, 12% Asian American, 68% white, and 6% Hispanic; smoking history was 82% never smokers, 9% former smokers, and 9% smokers; mean age was 24.3 y (range, 18–50 y); mean body mass index was 22.5 (range, 13–30); and MHC was 51% HLA A2, 20% HLA A3, 23% HLA-DR2, and 20% HLA-DR1 and -DRA. All subjects have been comprehensively genotyped for allelic variants related to susceptibility to autoimmune diseases. The study was conducted in compliance with the Declaration of Helsinki. Approval was obtained from the local ethics committee before study initiation, and written informed consent was obtained from all patients before performing any study procedures.
Primary human lymphocytes were isolated from peripheral blood of healthy donors by Ficoll gradient, and CD4+ and CD8+ T cells were purified by MACS separation. CD4+ and CD8+ T cells were cultured in RPMI 1640 medium, 10% (v/v) FCS (Life Technologies, Paisley, U.K.).

Genotyping
Healthy control subjects of the Brigham and Women’s Hospital Phenogenetic cohort were genotyped on the Affymetrix Genome-wide Human SNP Array 6.0 (Genochip 6.0) at the Broad Institute’s Center for Genotyping and processing for quality control using the PLINK software suite. We applied its standard quality-control pipeline for subjects (genotype success rate >95%, sex concordant, excess interheterozygosity/intra-heterozygosity) and for single nucleotide polymorphisms (SNPs) (Hardy-Weinberg equilibrium \(p > 1 \times 10^{-5} \), minor allele frequency > 0.01, genotype call rate > 0.95; mishap test > 1 \times 10^{-5} \) to these data.

Searchable genome-wide association
The complete results of the genome-wide association analysis are available to search by SNP id, chromosome, or base pair location on the International Multiple Sclerosis Genetics Consortium Web site (http://www.imsgc.org).

Real-time PCR
Full-length CD6 and the CD6\(_{9}\) isoforms were amplified by PCR as previously described (13). The following primers were used for amplification of full-length CD6: 5'-TAGTAGTCTGAGGCCAGAAGCAGCTCCAGAC-3' (forward) and 5'-TAGTAGTCTCAGGAAGATCTTCTTGTCAGTTC-3' (reverse). The CD6\(_{9}\) isoform was amplified using the following primers: 5'-TAGTAGTCTGAGCTGACATCGAGACGCTCC-3' (forward) and 5'-TAGTAGTCTCAGGAAGATCTTCTTGTCAGTTC-3' (reverse). Total CD6 was analyzed using commercial probes (Hs00198752_m1; Applied Biosystems) specific for the exon 1/2 boundary (5'-AGGTCACTCATCTCCAGCCCAACCCTAGAGTCAACACAGCAGGAGAGATCTCAGGATGATCTGCTGTC-3'), and CD6 isoforms containing exons 8 and 9 were analyzed using commercial probes (Hs00945716_m1; Applied Biosystems) specific for the exon 8/9 boundary (5'-AAGAAGATTTTTCATGCTGCCCATCCAGGCCCCGGCCTGGACGACTGACT-3'). Relative fold changes of mRNA expression were calculated by the \(\Delta \Delta CT \) cycle threshold method, and the amount of target gene was normalized to GAPDH (Applied Biosystems).

Small interfering RNA
Full-length CD6 expression in CD4+ T cells was selectively knocked down using a transient direct small interfering RNA (siRNA) delivery by electroporation nucleofection (Amaxa), according to the manufacturer’s instructions. Nonspecific siRNA was used as control. Expression levels of full-length CD6 and the CD6\(_{9}\) isoforms were verified by MACS separation. CD4+ and CD8+ T cells were cultured in RPMI 1640 medium, 10% (v/v) FCS (Life Technologies, Paisley, U.K.).

CD6 T cells were cultured in the presence of the anti-CD3 mAb OKT3 (0.5 \(\mu g/ml \) and anti-CD28 mAb 15E8 (0.5 \(\mu g/ml \)). Where indicated, cells were incubated with 1 \(\mu g/ml \) anti-CD6 mAb M-T605 or 1 \(\mu g/ml \) isotype control. After 3 and 6 d, supernatants were collected and cytokine production was determined by ELISA as previously described (24). Matched pair capture and biotinylated detection Abs for determination of IFN-\(\gamma \) (NIB42, B133), IL-10 (JES3-19F1, JES3-12G8), and IL-13 (JES10-5A2, B69-2) were purchased from BD Bioscience. Recombinant human IFN-\(\gamma \), IL-10, and IL-13 were purchased from Chiron (Ratingen, Germany).

CFSE proliferation assay
Freshly isolated CD4+ T cells were labeled with 5 \(\mu \)M CFSE (Invitrogen, Karlsruhe, Germany) for 10 min and washed five times with PBS/FBS. CFSE-labeled CD4+ T cells (5 \(\times 10^4 \) cells/well) were cultured in the presence of the anti-CD3 mAb OKT3 (0.5 \(\mu g/ml \)) and anti-CD28 mAb 15E8 (0.5 \(\mu g/ml \)). Where indicated, cells were incubated with 1 \(\mu g/ml \) anti-CD6 mAb M-T605 or 1 \(\mu g/ml \) isotype control. After 3 and 6 d, CFSE dilution was analyzed by flow cytometry, and the number of cycling and noncycling CFSE-labeled T cells was determined.

Statistical analysis
Unpaired Student \(t \) test was used to compare RNA expression, cell proliferation, and cytokine production between T cells from donors with CC, CG, or GG genotype. Statistical analysis was performed using GraphPad Prism (GraphPad Software, La Jolla, CA).

Results
In this study, we examined the correlation of the CD6 rs1782493\(_G\) allele with changes in the immune function of healthy subjects. We use healthy subjects to investigate correlations between MS susceptibility alleles and immunophenotype because the phenotype and function of immune cells in patients with autoimmune diseases are likely to be confounded by immunotherapies or by effects of the inflamed state of autoimmune disease. Phenogenetic Project subjects are self-reported to be free of autoimmune diseases or chronic infectious diseases; they were genotyped for rs17824933 and subjects were recalled for blood donation based on their genotype. The characteristics of the donors who were recalled for the functional assays are summarized in Supplemental Table I.

Using real-time PCR, we analyzed the expression pattern of CD6 isoforms in primary CD4+ and CD8+ T cells obtained from the donors. The relative expression of the CD6\(_{9}\) isoform is significantly higher on CD4+ and CD8+ T cells isolated ex vivo from

Flow cytometry

The PE-conjugated and FITC-conjugated anti-CD3, anti-CD4, anti-CD8, and anti-CD6 mAbs were purchased from BD Pharmingen (San Diego, CA). The allophycocyanin-conjugated anti-CD4 mAb was purchased from Dako North America (Carpinteria, CA). The goat anti-human IgG Ab and its biotin-, FITC-, and PE-conjugated F(ab')\(_2\) fragment derivatives were purchased from Dako North America. Living cells were gated using Live/Dead fixable dead cell stain kit (Molecular Probes, Eugene, OR). Labeled cells were analyzed on a FACScanto cytometer equipped with the FACS Diva research software (BD Bioscience, San Diego, CA).

FIGURE 1. Relative expression of full-length CD6 and CD6\(_{9}\) in T cells from subjects with different CD6 alleles. A, Relative expression ratio of full-length CD6 to CD6\(_{9}\) in CD4+ T cells from donors homozygous for either the nonrisk allele (rs1782493\(_C\), \(n = 18 \)) or the MS susceptibility allele (rs1782493\(_G\), \(n = 16 \)) as analyzed by real-time PCR (\(p = 0.0073 \)). B, Relative expression ratio of full-length CD6 to CD6\(_{9}\) in CD8+ T cells from donors with the rs1782493\(_C\) (\(n = 10 \)) and rs1782493\(_G\) (\(n = 8 \)) genotypes (\(p = 0.0018 \)). Unpaired Student \(t \) test was used to compare RNA expression levels between T cells from donors with CC, CG, or GG genotype.

CD6 G allele alters CD4+ T cell proliferation

The presence of the CD6\(_9\) isoform alters CD4+ T cell proliferation compared to the full-length CD6 isoform in both CD4+ and CD8+ T cells. This suggests that CD6\(_9\) may play a role in regulating T cell proliferation in vivo.
CD6 alleles. CD4+ T cells from donors with the nonrisk allele (rs17824933CC genotype, n = 24), the MS risk allele (rs17824933GG genotype, n = 9), and heterozygous donors (rs17824933CG genotype, n = 20) were activated with anti-CD3 and anti-CD28, and proliferation was analyzed at day 6 by measuring CSFE dilution. Mean value and SEM are shown (*p = 0.01). Unpaired Student t test was used to compare proliferation between T cells from donors with CC, CG, or GG genotype.

FIGURE 2. Proliferation of CD4+ T cells from subjects with different CD6 alleles. CD4+ T cells from donors with the nonrisk allele (rs17824933CC genotype, n = 24), the MS risk allele (rs17824933GG genotype, n = 9), and heterozygous donors (rs17824933CG genotype, n = 20) were activated with anti-CD3 and anti-CD28, and proliferation was analyzed at day 6 by measuring CSFE dilution. Mean value and SEM are shown (*p = 0.01). Unpaired Student t test was used to compare proliferation between T cells from donors with CC, CG, or GG genotype.

FIGURE 3. CD6Δd3 phenotype can be induced in CD4+ T cells from donors with the nonrisk allele. A. Specific knockdown of full-length CD6 in CD4+ T cells from donors with CC genotype. Expression of full-length CD6 is significantly inhibited in a concentration-dependent way after transfection with exon 5-specific siRNA. Randomly generated control RNA was used as control. Mean values and SD are shown (n = 3). B. Proliferation of CD4+ T cells after rhALCAM-Fc activation. CD4+ T cells with CD6Δd3 phenotype were obtained by transfection with exon 5-specific siRNA and compared with full-length CD6-expressing CD4+ T cells from the same donor transfected with control siRNA. Cells were activated with rhALCAM-Fc in combination with anti-CD3 and anti-CD28 for 3 d, and proliferation was measured by [3H] incorporation assay. Unpaired Student t test was used to compare RNA expression levels and proliferation between T cells from donors with different genotypes (n = 3 for each group of genotype). Mean value and SEM are shown (*p = 0.0111).
rs17824933 alleles, indicating that proliferation of CD4+ T cells with CG or GG genotype is not influenced by CD6 stimulation (Fig. 4B, 4C). Similar differences were seen in IFN-γ production after blocking CD6 on CD4+ T cells from subjects of the different groups of genotype (Fig. 4D).

Discussion

MS is an inflammatory neurodegenerative disease with complex causative factors. The mechanisms underlying the pathogenesis of MS are not yet completely known. Infiltrations of CD4+ and CD8+ T cells in the CNS white matter are involved in the
autoinflammatory process (2). Recent data suggest a possible role for autoreactive Th1 and Th17 cells in mediating tissue inflammation and demyelination in the CNS (32). Although there is a potential paradox in that the risk allele results in less activation of CD4+ cells, this may be explained by the presence of CD4+ T cell populations that both induce and suppress immune responses. Specifically, there are two major regulatory CD4+ T cell populations: Tregs (FOXP3+CD127lowCD25hi) and the type 1 Treg cell population expressing IL-10. We have described defects in both Tregs and type 1 Treg cells in patients with MS (33, 34). Depletion of the Tregs in either experimental animal models or in humans with FOXP3 gene deletion results in spontaneous autoimmune disease. Tregs bind to stromal tissue via CD6 ligation to CD166 that is overexpressed in the endothelium of patients with MS (35); thus, loss of the ALCAM-binding domain could prevent Tregs from entering the CNS, thereby providing a possible mechanism by which the risk allele may lead to loss of suppressor immune function. However, direct in vivo experiments will be required to understand which effect ultimately dominates.

We currently do not know what the causal variant may be; rs17824933 is simply the best marker for the causal variant in our MS susceptibility analyses. A review of SNPs in linkage disequilibrium with rs17824933 (r2 > 0.5 in HapMap Caucasians of European origin in Utah) did not reveal a variant with a clear potential to affect splicing of exon 5. Dedicated fine-mapping efforts will be needed to identify the set of genetic variation whose effect could be captured by rs17824933. Nevertheless, it is clear that this rs17824933 tags a haplotype of CD6 that is associated not only with susceptibility to MS but also with evidence of variation in the expression of CD6 and downstream function.

The genetic component in MS is indicated by a 20–40% increased relative risk for monozygotic twins of affected individuals (36). Moreover, siblings of affected individuals exhibit a 15–20% increased relative risk for development of MS (37). Although autoimmune diseases are more likely to be triggered by complex genetics than by a single genetic variation, not all genes associated with autoimmune diseases might be causal genes contributing to the onset of disease. Deeper insights into the functional consequences of genetic variations are crucial for the elucidation of how genes contribute to the development of autoimmune diseases. To our knowledge, our results are the first report of a direct relationship between disease-associated CD6 SNP and T cell function. Extension of this approach to other susceptibility alleles is required to enable the elucidation of pathways contributing to the onset of inflammatory diseases.

Acknowledgments
We thank I. Wood for donor coordination and blood sample collection.

Disclosures
The authors have no financial conflicts of interest.

References

Corrections

Some of the funding sources were not included in the grant footnote. The corrected footnote is shown below.

This work was supported by National Institutes of Health Grants P01 AI045757, U19 AI046130, U19 AI070352, and P01 AI039671 (to D.A.H.) and by the Deutsche Forschungsgemeinschaft (Grant KO 4034/1-1 to D.M.K.). D.A.H. is also supported by a Jacob Javits merit award (NS2427) from the National Institute of Neurological Disorders and Stroke and the Nancy Taylor Foundation for Chronic Diseases, Inc.

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1290044
Supplementary Figure 1

A

B

C

Relative Expression

CC GG

rs17824933

Relative Expression

CC GG

rs17824933

Relative Expression

CC GG

rs17824933
Supplementary Figure 2
Supplementary Figure 3
Supplementary Table I

<table>
<thead>
<tr>
<th>Subject statistic</th>
<th>Susceptible allele group</th>
<th>Protective allele group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hom (GG)</td>
<td>Het (CG)</td>
</tr>
<tr>
<td>Donor number</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>Mean age (yr)</td>
<td>29.4</td>
<td>31.4</td>
</tr>
<tr>
<td>Age range (yr)</td>
<td>19 - 43</td>
<td>19 - 50</td>
</tr>
<tr>
<td>Male frequency (%)</td>
<td>33</td>
<td>50</td>
</tr>
</tbody>
</table>
Supplemental Material

Supplementary Figure 1. Differences in mRNA levels of total CD6, full-length CD6, and CD6Δd3. (A) Relative expression of total CD6 ($p = 0.6418$), (B) full-length CD6 ($p = 0.0021$), and (C) CD6Δd3 ($p = 0.001$) were compared in CD4+ T cells from subjects with rs17824933CC ($n = 18$) and rs17824933GG ($n = 16$) genotype.

Supplementary Figure 2. Expression of CD6 on CD4+ T cells. The overall expression of CD6 on the cell surface of CD4+ T cells was analyzed by flow-cytometry and does not differ between subjects with rs17824933CC ($n = 19$) and rs17824933GG ($n = 17$) genotype ($p = 0.3256$). The intensity of fluorescence is depicted as Molecules of Equivalent Fluorescence (MESF).

Supplementary Figure 3. Expression of the isoforms CD6b, CD6c, CD6d, and CD6e in CD4+ T cells. The overall mRNA level of full-length CD6 and CD6Δd3 together was analyzed using primers specific for the Exon 8/9 boundary, which is only expressed in those two isoforms. The mRNA level of total CD6 was analyzed with primers specific for the Exon 1/2 boundary, which is expressed in all known CD6 isoforms. The amount of CD6b, CD6c, CD6d, and CD6e was calculated by the arithmetic equation $\Delta \Delta CT$ (ΔCT Exon 1/2 - ΔCT Exon 8/9). Overall expressions of CD6b, CD6c, CD6d, and CD6e together are compared between CD4+ T cells with rs17824933CC ($n = 4$), rs17824933CG ($n = 4$), and rs17824933GG ($n = 3$) genotype ($p = 0.3185$).
Supplementary Table I. Study subjects. Characteristics of the donors who were recalled for the functional assays.