P2X7 Is a Scavenger Receptor for Apoptotic Cells in the Absence of Its Ligand, Extracellular ATP

Ben J. Gu, Bernadette M. Saunders, Steven Petrou and James S. Wiley

J Immunol published online 5 August 2011
http://www.jimmunol.org/content/early/2011/08/03/jimmunol.1101178

Supplementary Material http://www.jimmunol.org/content/suppl/2011/08/05/jimmunol.1101178.DC1

Subscription Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
P2X7 Is a Scavenger Receptor for Apoptotic Cells in the Absence of Its Ligand, Extracellular ATP

Ben J. Gu,*† Bernadette M. Saunders,‡ Steven Petrou,† and James S. Wiley*†

Phagocytosis of apoptotic cells is a physiological process common to all tissues removing aged or redundant cells in a regulated manner in the absence of inflammation (1). A number of receptors in effector cells have been shown to play a role in the recognition of epitopes exposed on the surface of apoptotic cells and participate in the internalization of apoptotic bodies. Phosphatidylserine (PS) exposed on the surface of apoptotic cells is a key “eat me” signal for the recognition and engulfment of apoptotic cells by mononuclear phagocytes (2). Several classes of receptors have been shown to bind PS on the surface of apoptotic cells. A family of type-I single transmembrane proteins, T cell Ig and mucin-domain containing molecule (Tim)-1 and Tim-4, have been identified as PS receptors and shown to be important for the binding and engulfment of apoptotic cells by macrophages (3–5). Subsequent studies have confirmed this role of Tim-4 in the uptake of PS-exposed apoptotic cells and shown that the cytoplasmic tail of this molecule is required for the uptake process (6). Other phagocytic receptors with different structures have been shown to bind PS and promote engulfment of apoptotic cells. A seven-transmembrane protein belonging to an adhesion-type G protein-coupled receptor family termed brain-specific angiogenesis inhibitor-1 binds PS and promotes internalization of apoptotic cells (7). Brain-specific angiogenesis inhibitor-1 is expressed in human monocytes and macrophages as well as in the brain, and although no physiological ligand has yet been reported, the molecule contributes both to the binding and engulfment of carboxylate-modified beads as well as apoptotic cells. Stabilin-2, a large multifunctional scavenger receptor (SR), has also been reported as a PS receptor that can mediate engulfment of apoptotic cells and aged RBCs (8). Stabilin-2 has a restricted expression in endothelial cells and macrophages, and activation of stabilin-2 with mAb stimulates production of TGF-β, an anti-inflammatory cytokine (8).

Other PS-dependent receptors for apoptotic cells include Mer receptor tyrosine kinase (9) and αVβ3 integrin, which bind PS through soluble bridging molecules such as growth arrest-specific factor-6 (10) and milk fat globule-EGF factor 8 protein (11), respectively (1). In contrast, PS-independent pathways are not well defined, except the calreticulin/low-density lipoprotein receptor-related protein-dependent pathway, which involves tumor cells removal by dendritic cells (12). Because redundancy is a prominent feature of apoptotic cell clearance in the body, other PS-independent pathways are likely to exist. Furthermore, whereas defects in clearance of apoptotic cells predispose to autoimmune disease (11, 13), excessive phagocytosis activity usually triggers

*Sydney Medical School Nepean, University of Sydney, Nepean Hospital, Penrith, New South Wales 2750, Australia; †Florey Neuroscience Institutes, University of Melbourne, Parkville, Victoria 3010, Australia; and ‡Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, New South Wales 2006, Australia.

Received for publication April 26, 2011. Accepted for publication June 28, 2011.

This work was supported by the Cure Cancer Australia Foundation, the Leukemia Foundation of Australia, and the National Health and Medical Research Council of Australia.

B.J.G. was responsible for the design, most of the experimental work, analyzing data, and writing; B.M.S. was responsible for the in vivo study and discussion; S.P. was responsible for discussion; and J.S.W. was responsible for design, discussion, and writing.

Address correspondence and reprint requests to Dr. James S. Wiley, Florey Neuroscience Institutes, University of Melbourne, Level 3, Alan Gilbert Building, 161 Barry Street, Parkville, VIC 3010, Australia. E-mail address: james.wiley@florey.edu.au

The online version of this article contains supplemental material.

Abbreviations used in this article: 7-AAD, 7-aminoactinomycin D; BODIPY 630/650-SE, 6-(((4,4-difluoro-5-(2-thienyl)-4-bora-3a,4a-diaza-s-indacene-3-yl)styryloxy)acetyl)aminohexanoic acid, succinimidyl ester; CMTMR, 5-(and-6)-(((4-chloro-methyl)benzoyl)amino)tetramethylrhodamine; CyD.D, cytochalasin D; GSH, reduced glutathione; NMMHC, nonmuscle myosin H chain; OxATP, oxidized ATP; PI, phosphatidylinositol; PS, phosphatidylserine; P2X−/−, P2X gene-deficient mice; P2X−/−ED, recombinant P2X gene-deficient domain; SR, scavenger receptor; SSC, side scatter; Tim, T cell Ig and mucin-domain containing molecule; YG, Yellow-Green.

Copyright © 2011 by The American Association of Immunologists, Inc. 0022-1767/11/$16.00

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1101178
inflammation. Understanding how a phagocytic pathway is regulated may suggest its role in certain organs and tissues; for example, pathways that are active in the absence of serum may have particular relevance in the CNS.

Recent findings from our group and others (14, 15) have suggested a direct involvement of the purinergic P2X7 receptor in phagocytosis of nonopsonized particles and bacteria. We showed that overexpression of the P2X7 receptor generally augmented the phagocytosis of nonopsonized beads and heat-killed bacteria by transfected HEK-293 cells, whereas blocking P2X7 expression by small interfering RNA significantly reduced the phagocytic ability of human monocytic cells. The P2X7 receptor has other unique features consistent with that of an SR. First, P2X7 on the surface of monocytic cells is tightly associated with nonmuscle myosin H chain (NMHC)-IIA (16), the ATPase of which provides the energy for cytoskeletal rearrangements required for particle engulfment; second is the diversity of foreign particles recognized by P2X7–expressing cells, such as latex beads and live and heat-killed bacteria, all in the absence of serum (14); and third is the ability of extracellular ATP to terminate P2X7–mediated phagocytosis and change the role of P2X7 from silent removal of particles to activation of well-recognized proinflammatory pathways (14, 17, 18).

We have extended these studies to show that under serum-free conditions, P2X7 on the monocyte/macrophage surface mediates the uptake of apoptotic cells through a pathway not only involving recognition of exposed PS, but also involving thiol-disulfide reactions with cysteines in the extracellular domain of P2X7 (P2X7-ED). Thus, thiol-reactive compounds inhibited uptake of apoptotic cells, whereas short peptides mimicking P2X7–ED bound to the apoptotic cell surface. Extracellular ATP inhibited P2X7–mediated phagocytosis and switched the downstream signaling events from phagocytic cup formation to the well-recognized secretion of proinflammatory cytokines.

Materials and Methods

Materials

ATP, BzATP, oxidized ATP (OxATP), cytochalasin D (CytD; a classic inhibitor of F-actin polymerization and phagocytosis), tetramethylammonium hydroxide, polyosinic acid, and 7-aminooctanocinmycin D (7-AAD) were purchased from Sigma-Aldrich (St. Louis, MO). Oligonucleotides and peptides were synthesized by Sigma-Genosys. The recombinant human IFN-γ and Mini-complete Protease Inhibitor mixture were from Roche Applied Science (Mannheim, Germany). For use as an agonist in vitro, ATP was dissolved in KCl buffer (145 mM KCl, 5 mM KOH, and 10 mM HEPES [pH 7.5]) at a stock concentration of 100 mM and neutralized with 18% (w/v) tetramethylammonium hydroxide to pH 7. For in vivo studies, ATP was dissolved in 0.5 M Na2HPO4 at a stock concentration of 100 mM, diluted to 5 mM working concentration with 100 mM NaCl, and passed through a 0.22-μm filter. CellTracker Orange 5-((4-chloromethyl)benzoyl)-6-(((4,4-difluoro-5-(2-thienyl) -3-indacene-3-yl)styryl)aminohexanoic acid, succinimidyl ester (BODIPY D360/350-SE) were from Invitrogen (Carlsbad, CA). Vector pAcGFP-N1 and pDsRed-monomer-N1 were from Clontech (Mountain View, CA). Wild-type P2RX7 construct was originally a gift from Dr. Gary Buell (Glaxo Institute for Molecular Biology, Geneva, Switzerland) and was reconstructed into vectors in our laboratory. MatTek culture dishes with collagen coated, 1.0-mm slides were from MatTek (Ashland, MA). Marine anti-human P2X7 receptor mAb (clone L4; kindly provided by Dr. Gary Buell and Ian Chessell, Glaxo Institute for Applied Pharmacology, Cambridge, U.K.) (19) and IgGm isotype control mAb (clone WMD7; kindly provided by Dr. Linda Bendall, Millennium Institute, Westmead, NSW, Australia) were purified from clone L4 hybridoma supernatants by chromatography on Protein A Sepharose Fast Flow (GE Healthcare) as described previously (20). The 6xHis-tagged recombinant P2X7-ED (pP2X7-ED) was prepared as previously described (14). Sheep anti-human P2X7 polyclonal Ab against a nonhomologous extracellular epitope of the human P2X7 receptor has been described (21). Fluoresbrite yellow-green carboxylate microspheres (1 μm Yellow-Green [YG] beads) and 25-kDa linear poly-ethyleneimine were from Polysciences (Warrington, PA). Membrane Lipid Strips were from Echelon, Frontier Scientific (Logan, UT). The Quick Change Site-Directed Mutagenesis Kit was purchased from Stratagene. The Capto Q and Con A Sepharose 4B columns were from GE Healthcare.

Sources of cells

Human PBMC were separated by density gradient centrifugation over Ficoll-Hypaque, washed once in RPMI 1640 medium, and resuspended in HEPES-buffered NaCl medium (145 mM NaCl, 5 mM KCl, 10 mM HEPES [pH 7.5], plus 5 mM glucose, 0.1% BSA, and 0.1 mM CaCl2). Human embryonic kidney cell line HEK-293 was cultured in RPMI 1640 medium containing 10% FCS and 5 μg/ml gentamicin. For treatment with Abs, cells (2-4 × 10^6) were incubated with Ab in a 100 μl NaCl medium at various concentrations followed by dilution to 1 ml and the addition of beads. The study was approved by the Human Research Ethics Committee of Sydney West Area Health Service (06/058) and Eastern Health, Melbourne (E05-101). Informed consent was provided according to the Declaration of Helsinki.

Phagocytosis of YG beads in vitro

Phagocytosis of beads was assessed by a flow cytometry method as previously described (14). Briefly, PBMC (4 × 10^6/ml) or HEK-293 cells (2 × 10^6/ml) were resuspended in 1.0 ml Na medium with 0.1 mM CaCl2. All samples were stirred and temperature controlled at 37˚C using a Time Zero module. Five-microliter YG beads were added, and cells were analyzed at 1500 events/s on an FACSCalibur flow cytometer (BD Biosciences) and gated by forward and side scatter (SSC) and by cell type-specific Abs (CD14 for monocytes) or DsRed intensity. The linear mean channel of fluorescence intensity for each gated subpopulation over successive 10-s intervals was analyzed by WinMDI software and plotted against time. The area under the YG bead uptake curve in the first 6.5 min was calculated using a Microsoft Excel function (Microsoft) and taken as the phagocytosis ability.

Phagocytosis of apoptotic lymphocytes or SH-SY5Y cells in vitro

Phagocytosis was assayed as previously described (22). Briefly, human mononuclear cells were isolated from 400 ml peripheral blood by centrifugation over Ficoll. The monocytes were further separated from lymphocytes by plastic adhesion and cultured in RPMI 1640 medium plus 10% FCS and 100 U/ml IFN-γ overnight. Cell were washed twice with Na medium (145 mM NaCl, 5 mM KCl, 1 mg/ml BSA, 5 mM glucose, 0.5 mM CaCl2, and 10 mM HEPES [pH 7.5]); macrophages (1.5 × 10^6 in 1 ml) were treated with various reagents or fixed with 2% paraformaldehyde. The autologous lymphocytes were kept in RPMI 1640 medium plus 10% FCS or autologous serum before labeling with 5 μM CFSE for 2 h. Cells were washed once and incubated in complete medium with 1.0 μM staurosporine overnight. Viable lymphocytes were then separated by centrifugation over Ficoll and washed twice with Na medium. The proportion of apoptotic cells was assayed using Annexin V and 7-AAD dual staining and ranged from 60–85% of the total cell population (data not shown). SH-SY5Y cells were kept in RPMI 1640 medium plus 20% FCS before labeling with 5 μM CFSE for 2 h and then induced into apoptosis with 0.2 μM staurosporine overnight. After three washes with Na medium, apoptotic autologous lymphocytes or apoptotic SH-SY5Y cell suspension was added to pretreated adherent macrophages with a target cell/phagocyte ratio of 1:1. The cell mixture was incubated at 37˚C for 2 to 3 h with gentle shaking, and cells were collected by trypsin/EDTA digestion. Samples were vortexed thoroughly and fixed at 4˚C before analysis of CMTMR-^-labeled macrophages by flow cytometry. During this process, any targets attached to macrophages do not remain attached, although attached cells can be enumerated by static microscopic examination (22). In addition, cell doublets were also excluded by SSC-A and SSC-H gating. For measuring P2X7 surface expression, cells were collected before and after phagocytosis of apoptotic lymphocytes and resuspended in PBS with 0.1% NaN3 followed by incubation with Alexa 647-conjugated anti-P2X7 mAb (clone L4) at 4˚C for 30 min. Cells were vigorously stirred and fixed before analyses by flow cytometry on CMTMR^-^-labeled macrophages.

Changes of P2X7 surface expression during phagocytosis of YG beads

Fresh isolated PBMC (1 × 10^6/ml) were collected before and after phagocytosis of 1 μm YG (5 μl/ml cells) beads and resuspended in PBS with 0.1% NaN3 followed by incubation with Alexa 647-conjugated anti-
P2X7 mAb (clone L4) at 4°C for 30 min. Cells were vigorously stirred and fixed for flow cytometric analysis. The linear mean channel fluorescence intensity of Alexa 647 was measured on gated CFSE+ monocytes.

Transfection of HEK-293 cells

HEK-293 cells do not express P2X receptors in subconfluent cultures. A total of 10 μg plasmid DNA or 3 μg plain vector was incubated in serum-free Opti-MEM I medium for 5 min followed by incubation with 25-kDa linear polyethylenimine (20 μl 1 mg/ml stock, diluted with Opti-MEM I medium) (23) for 20 min at room temperature. The solution was transfected into subconfluent monolayers of HEK-293 cells (~1.5 × 10⁶ in 3 ml Opti-MEM I with 5% FCS). After 72 h, transiently transfected cells were collected by mechanical scraping, or stably transfected cells were maintained in complete RPMI 1640 medium containing 0.8 mg/ml G-418. For imaging studies, HEK-293 cells were cultured and transfected on collagen-coated 27-mm MatTek culture dishes (MatTek).

Phagocytosis of apoptotic HPB cells in vitro

Human T leukemia cell line HPB cells were incubated with 10 μM CFSE for 2 h followed by two washes and further incubation with 1 μM staurosporine overnight in serum-free RPMI 1640 medium. Cells were washed once and resuspended in Na medium with 0.5 mM Ca²⁺ at 5 × 10⁸/ml. Subconfluent HEK-293 cells (~0.5 × 10⁶) stably transfected with pDsRed-monomer-N1 or hP2X7-pDsRed-N1 were incubated with 5 μM BODIPY 630/650-SE overnight in RPMI 1640 medium with 10% FCS and 0.8 mg/ml G-418 in six-well plates. Cells were washed three times and covered with 1 ml Na medium containing 0.5 mM Ca²⁺. HEK-293 cells were then incubated with ATP (1 mM) or CytD (20 μM) for 15 min followed by the addition of 0.5 ml CFSE-labeled apoptotic HPB cell suspension. The cell mixture was incubated at 37°C for 4 h with gentle shaking, after which 1 ml trypsin/EDTA solution was added to each well. Cells were collected, vigorously stirred, and fixed with 2% paraformaldehyde at 4°C before analysis by flow cytometry on gated BODIPY+/DsRed+ HEK-293 cells.

Phagocytosis of apoptotic thymocytes in vivo by resident murine peritoneal macrophages

P2X7 gene-deficient mice (P2X7−/−) were a kind gift from Dr. Chris Gabel (Pfizer, Groton, CT) (24); they were backcrossed 10 times onto a C57BL/6 background and maintained under specific pathogen-free conditions in the Centenary Institute Animal Facility. The wild-type control specific

FIGURE 1. In vitro phagocytosis of apoptotic lymphocytes by autologous macrophages. A, A bright field image and a series of Z-stack confocal images (1–4) showing a CMTMR-labeled macrophage (red) phagocytosed three CFSE-labeled lymphocytes (green, indicated with arrows). The Z-stacks were captured from top to bottom with a 2-μm interval by an Olympus IX81 confocal microscope (Olympus) (original magnification ×600). B, A typical flow cytometry histogram showing phagocytosis of apoptotic lymphocytes. Macrophages were labeled with CMTMR and pretreated with 1 mM ATP, 0.1 mM BzATP for 15 min, or 20 μM CytD for 30 min prior to the addition of CFSE-labeled apoptotic autologous lymphocytes. Mixed cells were incubated for 3 h at 37°C or at 4°C (as indicated) before being fixed and assayed by flow cytometry on gated CMTMR+ macrophages. C, The composite values for phagocytosis of apoptotic lymphocytes by macrophages from 15 randomly selected human subjects. Values for uptake are percent of CFSE/CMTMR+ macrophages of total CMTMR+ macrophages. *p < 0.01 versus basal by paired t test. D, Phagocytosis of apoptotic lymphocytes by macrophages pretreated with 0.2–1.0 mM ATP, 0.1 mM BzATP, 0.3 mM OxATP, 0.2 mM UDP, 0.2 mM UTP, and 20 μM CytD for 15–30 min at 37°C or fixed with 2% paraformaldehyde. For treatment with rP2X7-ED, the apoptotic lymphocytes were incubated with 1–5 μg/ml rP2X7-ED for 30 min before seeding onto the macrophage monolayer. Results are presented as mean ± SD (n = 3–6). *p < 0.01, #p < 0.05 versus basal.
pathogen-free C57BL/6 were purchased from the Animal Research Centre (Perth, WA, Australia). Genotype was confirmed by PCR analysis. All experiments were conducted with ethical approval from the Sydney University Animal Ethics committee. The thymuses were removed from C57BL/6 mice and dispersed on a soft mesh. The single cells were resuspended in RPMI 1640 medium with 10% FCS and cultured overnight with 0.5 µM staurosporine and 5 µM CFSE. Cells were washed three times and resuspended in PBS at 1.0 × 10^6/ml. The apoptotic rate was assayed using Annexin V and 7-AAD dual staining. Mice were injected i.p. with either 1 ml PBS or 5 mM ATP followed 30 min later by injection of 1 ml apoptotic thymocyte suspension. Mice were sacrificed after 60 min, and peritoneal exudates were collected. Cells were immediately fixed with 2% paraformaldehyde at 4˚C and stained with PE-Cy5.5-conjugated anti-mouse GR-1 mAb and Alexa Fluor 700-conjugated anti-mouse CD11b mAb at 4˚C and washed twice. Cells were vigorously stirred before analysis on a BD LSR II flow cytometer (BD Biosciences). Cell doublets were excluded by SCA-A and SSC-H gating.

Peptide screen
Short peptides identical in sequence to the P2X7-ED were synthesized by Sigma-Aldrich and tagged with biotin on N termini. The peptides were first gated on the low 7-AAD staining population, and subsequently with FITC-conjugated goat anti-mouse IgG, mAb, and peritoneal exudates were collected. Cells were immediately fixed with 1 ml apoptotic thymocyte suspension. Mice were sacrificed after 60 min, and peritoneal exudates were collected. Cells were immediately fixed with 2% paraformaldehyde at 4˚C and stained with PE-Cy5.5-conjugated anti-mouse GR-1 mAb and Alexa Fluor 700-conjugated anti-mouse CD11b mAb at 4˚C and washed twice. Cells were vigorously stirred before analysis on a BD LSR II flow cytometer (BD Biosciences). Cell doublets were excluded by SCA-A and SSC-H gating.

Peptide and P2X7-ED binding assay
SH-SY5Y, HPB, and human lymphocytes were induced to apoptosis with 0.2–0.5 µM staurosporine for 6 h. Cells were resuspended in Na+ medium with 2 mM CaCl2 and incubated with biotin-tagged short peptides mimicking the P2X7-ED at a concentration of 10 µg/ml for 30 min, followed by two washes and incubation with FITC-conjugated streptavidin, allophycocyanin-conjugated Annexin V, and 7-AAD (5 µg/ml). All events were gated on the low 7-AAD staining population. For binding assay with P2X7-ED, apoptotic cells were incubated with P2X7-ED at a concentration of 15 µg/ml for 30 min, followed by two washes and incubation with anti-5xHis mAb, and subsequently with FITC-conjugated goat anti-mouse IgG, allophycocyanin-conjugated Annexin V, and 7-AAD. All events were gated on the low 7-AAD staining population.

Membrane lipid-binding assay
The assays were performed according to the manufacturer’s instruction. Briefly, Membrane Lipid Strips were blocked with 0.1% BSA and 1% skim milk in PBS for 2 h. Twenty-four peptides (500 µg/ml, 150 µl each) mimicking P2X7-ED were added to 5 ml PBS containing 0.1% BSA to cover the strips. After 1 h incubation, the membranes were washed three times with PBS containing 0.05% Tween-20, followed by incubation with streptavidin-HRP (1:2000) in PBS with 0.1% BSA for 1 h. After three washes, SuperSignal West Pico (Pierce) was added, and the chemiluminescence was measured by a Glo 2020 luminometer (Promega).

Site-directed mutagenesis
To remove nine consecutive amino acids in sequential regions of the P2X7-ED, the Quick Change Site-Directed Mutagenesis Kit (Stratagene) was used to perform the PCR, and the full-length hP2X7-DsRed-monomer-N1 (16) was used as the template. The P2RX7 deletions were constructed using pairs of complementary mutagenic primers. The PCR was performed according to the manufacturer’s instruction except the annealing temperatures were set at 43˚C, 52˚C, and 58˚C instead. After digestion of the template DNA with Dpn I, intact newly synthesized DNA containing the desired deletion was transformed into XLBlue competent cells. All deletions were confirmed by sequencing.

Results
Extracellular ATP inhibits the phagocytosis of apoptotic cells
Our previous studies have shown that P2X7 has a tight molecular association with NMMHC-IIA in monocytes (16), and this complex regulates phagocytosis of nonopsonized beads and live and dead bacteria (14). These data suggested a nonspecific scavenger role for this receptor, and we investigated whether P2X7 is also involved in phagocytosis of apoptotic cells. Monocytes were isolated from fresh blood by multiple cycles of plastic adhesion and differentiated to macrophages, which greatly upregulates P2X7 (25). Lymphocytes from the same donor were induced into apoptosis with staurosporine. After seeding the apoptotic lymphocytes on top of macrophage layer, macrophages started to engulf the apoptotic lymphocytes. The z-stack confocal images in Fig. 1A showed three lymphocytes within a macrophage, indicating the intracellular location of engulfed lymphocytes. The phagocytosis of apoptotic lymphocytes by autologous macrophages was confirmed by multicolor flow cytometry. Following a 3-h coculture, 40–70% of macrophages became positive for CFSE, confirming the engulfment of CFSE-labeled lymphocytes by these macrophages. The number of lymphocytes phagocytosed varied from one to five per macrophage (Fig. 1B). However, this marked uptake was inhibited by pretreatment of macrophages with CytD, a classical phagocytic inhibitor, OxATP (an irreversible antagonist for P2X7 receptors), or by fixation (Fig. 1B–D).

ATP also showed an inhibitory effect on the phagocytosis of apoptotic cells. Pretreatment of macrophages with 1 mM ATP for 15 min significantly reduced phagocytosis of apoptotic lymphocytes to the low levels observed with CytD or OxATP pretreatment in 15 randomly selected normal subjects (p < 0.01, paired t test) (Fig. 1B, 1C). Because ATP and CytD gave similar reductions in phagocytosis as observed at 4˚C (Fig. 1B), we conclude that ATP...
like CytD is inhibiting the engulfment process rather than adhesion of lymphocyte to macrophage (26). Polyninosic acid, a conventional inhibitor for class A SR, did not alter the phagocytosis of apoptotic lymphocytes by macrophages (data not shown).

Inhibitory effect of ATP on phagocytosis of apoptotic cells is mediated via P2X7

Our previous study has shown that activation of P2X7 by ATP leads to dissociation of NMMHC from the P2X7 membrane complex and subsequent attenuation of phagocytosis of beads and bacteria by monocytes (14, 16). In this study, the inhibitory effect of ATP on phagocytosis of apoptotic cells was dose dependent with significant inhibition of phagocytosis at 0.5–1.0 mM ATP. However, low concentrations of ATP (0.2 mM) failed to show a significant inhibitory effect, as shown in a previous study (27). BzATP, a more potent P2X7 agonist, at a concentration of 0.1 mM showed a similar effect to 1 mM ATP (Fig. 1B). In contrast, pretreatment of macrophages with 0.2 mM UDP or UTP did not affect the phagocytosis of apoptotic lymphocytes (Fig. 1D). Pretreatment of apoptotic cells with the rP2X7-ED also inhibited the phagocytosis of these cells by macrophages (Fig. 1D), suggesting the direct involvement of P2X7 in this process.

P2RX7−/− mice do not show ATP inhibition of phagocytosis

Injection of apoptotic thymocytes into the peritoneal cavity of mice leads to their phagocytosis in vivo by resident peritoneal macrophages (Fig. 2A). When ATP was infused into the peritoneal cavity 30 min prior to the thymocytes, the highly phagocytic macrophage population reduced to half that in wild-type C57BL mice (Fig. 2B). This dramatic effect contrasted with the results in P2RX7−/− mice. In these gene-deleted mice, the highly phagocytic population comprised most of the macrophages present, and ATP had little effect in removing this population (Fig. 2B). This result shows that ATP can inhibit phagocytosis of apoptotic cells both in vivo and in vitro, and this inhibitory effect is mediated via the P2X7 receptor.

P2X7 expression on HEK-293 cells confers the ability to phagocytose apoptotic cells

We have previously shown that transfection with P2X7 constructs conferred increased phagocytic ability on HEK-293 cells, a kidney cell line with poor phagocytic ability. In this study, we transfected HEK-293 cells with DsRed-tagged P2X7 and incubated these cells for 3 h with apoptotic HPB cells, a human leukemic T cell line. The confocal images in Fig. 3A show that DsRed-tagged P2X7

FIGURE 3. Phagocytosis of apoptotic HPB cells by HEK-293 cells transfected with P2X7. A, Confocal images showing a HEK-293 cells transfected with DsRed-tagged P2X7 (red) phagocytosed two CFSE-labeled HPB cell and captured another one. Images were acquired by an Olympus IX81 confocal microscope (Olympus) (original magnification ×600). B, A typical flow cytometry histogram showing phagocytosis of CFSE-labeled HPB cells by DsRed mock (left panel) and P2X7–DsRed–transfected (right panel) HEK-293 cells. HEK-293 cells were labeled with BODIPY 630/650-SE first and pretreated with 1 mM ATP or 20 μM CytD for 15 min prior to incubation with HPB cells. BODIPY+/DsRed++ HEK-293 cells were gated for analysis.
was expressed on the surface and intracellular organelles of a transfected HEK-293 cell, as well as the phagosome membrane surrounding two CFSE-labeled HPB cells engulfed by this HEK-293 cell (Fig. 3A, yellow arrows). Phagosome localization of P2X7 has been shown by others (15). In our study, accumulation of P2X7 is clearly seen at the point of attachment between a captured HPB cell and the HEK-293 cell (Fig. 3A, blue arrow), strongly supporting a role of P2X7 in recognition of apoptotic cells. The phagocytic ability of P2X7-transfected HEK-293 cells was confirmed by flow cytometry assay. Following a 3-h coculture of CFSE-labeled apoptotic HPB cells with BODIPY 630/650-SE–labeled HEK-293 cells, a significant increase of CFSE-positive HEK-293 cells was found in cells transfected with P2X7–DsRed but not in mock-transfected cells (Fig. 3B). CytD completely inhibited the phagocytosis by P2X7-transfected HEK-293 cells to the same level observed with mock-transfected cells (Fig. 3B). Pretreatment of P2X7-transfected HEK-293 cells with ATP also abolished the engulfment of apoptotic HPB cells (Fig. 3B).

Upregulation of P2X7 surface expression on monocytes and macrophages during phagocytosis

Although phagocytosis of nonopsonized beads by monocytes is rapid, engulfment of apoptotic cells is slower, and incubations of 3 to 4 h were chosen to study the changes in expression of P2X7 on the monocyte surface. A ≥2-fold increase of P2X7 surface expression was found in the subpopulation of monocytes after these cells had phagocytosed five or more beads, as compared with the basal value or monocytes with only weak phagocytic ability (Fig. 4A–C). This increase was apparent as soon as 15 min after phagocytosis commenced and persisted for at least 4 h (Fig. 4C).

Deletions in the P2X7-ED alter phagocytosis of apoptotic cells

To confirm the involvement of P2X7 extracellular motifs in phagocytosis, we made eight deletion constructs of P2X7 tagged with DsRed in the C terminus, in each of which nine contiguous amino acids in P2X7-ED were deleted. The deletion constructs, together with pDsRed-monomer vector and DsRed-tagged full-length P2X7, were transfected into HEK-293 cells, and the phagocytic ability of these P2X7-transfected cells was examined. The surface expression of these deletion constructs was confirmed because cells expressing high density of deletion constructs showed similar phagocytic ability to YG bead as cells transfected with full-length P2X7 (Supplemental Fig. 1). Among the eight constructs of P2X7, deletion of residues 117–125 and 306–314 showed significant effects, both reducing the phagocytosis of apoptotic HPB cells to 20–30% of wild-type values (Fig. 5). These results provide further supportive evidence for the involvement of P2X7-ED in phagocytosis of apoptotic cells.

Peptides with unique P2X7 sequences bind apoptotic cells

To further explore which region of P2X7 could directly interact with particles, a total of 24 biotin-labeled peptides mimicking the...
short sequences of the extracellular domain were synthesized (Sigma-Aldrich; peptide library, Supplemental Table 1). The binding profile of these peptides to a range of targets (beads, heat-killed *S. aureus* and *E. coli*, and live *S. aureus* and *E. coli*) as well as apoptotic HPB cells was assessed using a chemiluminescent method. Results showed that peptide 22 (aa 306–320), which was extremely positively charged (pI = 11.5), bound strongly and nonselectively to all particles tested (Supplemental Fig. 2), whereas peptides 11 (aa 181–195) and 23 (aa 327–341) also bound to nonapoptotic targets. In contrast, peptides 5 (aa 115–128), 7 (aa 129–143), and 8 (aa 150–162) showed strong and selective binding only to apoptotic cells but not to other particles or bacteria tested (Fig. 6A, Supplemental Fig. 2).

Peptides in the 115–162 region of P2X7-ED bind to apoptotic cells but not viable cells

To evaluate whether P2X7 could directly recognize different apoptotic cells, we measured the binding of the short peptides to three different apoptotic cell types. These target cells included human neuroblastoma cells SH-SY5Y, T-lymphoblastoid HPB cells, and unfractionated human lymphocytes from peripheral blood. Peptides 5, 7, 8, 11, 22, and 23, which have shown binding to apoptotic HPB, were chosen, and peptide 24 was used as the negative control. Peptides 5, 7, and 8 bound to the surface of all three types of early apoptotic cells (7-AAD negative, Annexin V positive) but not to Annexin V-negative viable cells (Figs. 6C, 7A).

In contrast, peptides 11, 22, and 23 only showed weak or absent binding to these three types of apoptotic cells (Fig. 6C). It is notable that none of the 24 peptides bound to Annexin V-negative live cells. Moreover, the rP2X7-ED also bound to apoptotic SH-SY5Y cells but not viable cells (Fig. 6D), demonstrating that P2X7 motif responsible for binding of apoptotic targets is accessible in this 300-residue recombinant protein. The importance of the P2X7 115–162 region was confirmed by binding studies of shorter peptides (9 or 10 residues) with P2X7 sequences that covered segments of this region. Three of these short peptides containing P2X7 sequence 117–125, 125–133, and 134–143 showed strong binding to apoptotic cells, whereas peptides 151–159 and 147–156 showed moderate binding to apoptotic targets (Fig. 6E). Each of these five short peptides contained a cysteine residue, whereas no binding was observed for peptide 138–147, which contained no cysteine (Fig. 6E). It is noteworthy that like peptides 5, 7, and 8, those 9- or 10-mer short peptides that bound to Annexin V-positive apoptotic cells did not bind to Annexin V-negative viable cells.

A P2X7 extracellular motif recognizes cell membrane lipids

Phospholipids, in particular PS exposure on the exterior membrane, are a hallmark of apoptotic cells. To assess whether different P2X7 extracellular motifs can recognize cell membrane lipids, each of the 24 peptides was incubated with membrane lipid strips. The result showed that peptide 22 bound strongly to phosphatidylinositol (PI), PI (4)-phosphate, PI (4,5)-bisphosphate, and PI (3,4,5)-triphosphate, with moderate binding to 3-sulfogalactosylceramide (sulfatide), cardiolipin, phosphatidylglycerol, triglyceride, diacylglycerol, phosphatidic acid, and PS (Fig. 6B). The other 23 peptides, including the three peptides that bound uniquely to apoptotic cells, did not show binding to any of the lipid species (Fig. 6B).

FIGURE 5. P2X7 extracellular motifs involved in phagocytosis. HEK-293 cells were transfected with DsRed (mock), DsRed-tagged wild-type P2X7, or P2X7 deletion constructs. Left panel: typical uptake curves showing phagocytosis of apoptotic HPB cells by transfected HEK-293 cells with high DsRed intensity. Right panel: the composite values for phagocytosis of apoptotic HPB cells by transfected HEK-293 cells. Data were normalized according to the basal phagocytosis level of cells transfected with wild-type P2X7 and presented as mean ± SD (n = 3).

Intermolecular disulfide bonds are critical for P2X7 to recognize apoptotic cells

Because each of the three binding peptides (5, 7, and 8) contains one or two cysteine residues, it is possible these peptides form intermolecular disulfide bonds with newly expressed protein on the surface of apoptotic cells. This possibility was supported by the effect of 5 mM DTT, which almost completely abolished the binding of peptides 5, 7, and 8 to the apoptotic cell surface (Fig. 7A). In contrast, the binding of the cysteine-free peptide 22 to the apoptotic cell surface was not affected by DTT (Fig. 7A). To further assess the role of disulfide bonding in recognition of apoptotic cells, the cysteine residues in peptides 5, 7, and 8 were replaced with alanine. Alanine substitution in peptide 5 completely abolished binding to apoptotic cells, whereas for peptides 7 and 8, which contain two cysteines, replacement of either cysteine did not significantly alter the binding capacity (Fig. 7B). However, replacement of both cysteines by alanine completely abolished the binding of these two peptides to apoptotic SH-SY5Y or HPB cells (Fig. 7B). The effect of small thiol-reactive compounds on the phagocytosis of apoptotic lymphocytes or SH-SY5Y cells by human monocyte-derived macrophages was then studied. Pretreatment of macrophages with either 5 mM reduced glutathione (GSH) or 1 mM N-acetyl-L-cysteine (a precursor of GSH) almost completely abolished the phagocytosis of apoptotic lymphocytes or SH-SY5Y cells by macrophages (Fig. 7C). As shown above for apoptotic lymphocytes (Fig. 1), P2X7 on macrophages directly mediated phagocytosis of apoptotic neuronal SH-SY5Y cells: pretreatment of macrophages with ATP or OxATP inhibited this phagocytosis to a similar extent as observed with pretreatment with CytD (Supplemental Fig. 3).
Discussion

In a previous study, we showed that the P2X7–NMMHC-IIA complex expressed endogenously on monocyctic cells or following transfection of HEK-293 cells regulates the engulfment of both bacteria and latex beads in the absence of serum. In this study, we show that the range of nonopsonized targets recognized by P2X7 includes apoptotic lymphocytes that are engulfed by autologous macrophages in the absence of added ATP and without serum present. Multiple lines of evidence point to the vital role of P2X7 in phagocytosis in vitro and in vivo, but not in P2X7 knockout mice. These results reveal a direct role of P2X7 in phagocytosis of apoptotic cells, in addition to its role in regulating uptake of nonopsonized beads and heat-killed and live bacteria (14).

The present data also suggest that P2X7, in the unactivated state, can function as an SR. SR must attach to the cytoskeleton to allow internalization of the attached particle, and it is notable that the P2X7 membrane complex contains multiple cytoskeletal proteins including nonmuscle myosin and actin (16, 28) required for membrane blebbing (29) and internalization of a wide variety of nonopsonized particles including apoptotic cells. P2X7 receptors have a similar topology and tissue distribution as class B SR (SR-BI and CD36) (30), with two transmembrane domains and intracellular amino and C termini, but there is little or no sequence homology between P2X7 and either CD36 or SR-BI (31). Astrocytes express SR-BI, whereas microglia express low levels of surface of the target cell. Pretreatment of apoptotic lymphocytes or neuronal cells with P2X7-ED inhibited the phagocytosis of these apoptotic cells by macrophages. A third line of evidence is that pretreatment of phagocytes with ATP inhibited further phagocytosis in vitro and in vivo, but not in P2X7 knockout mice. These results reveal a direct role of P2X7 in phagocytosis of apoptotic cells, in addition to its role in regulating uptake of nonopsonized beads and heat-killed and live bacteria (14).
CD36, and both of these molecules have been proposed to play a role in the clearance of apoptotic cells in the CNS (31, 32). P2X7 also has a similar distribution in the nervous system with expression in astrocytes and neurons of spinal cord, and a particularly high expression in microglia (33–36). This novel phagocytic function for the P2X7 membrane complex may represent a previously unidentified mechanism of removing apoptotic cells within specialized compartment of the body such as the CNS.

Extracellular ATP inhibits P2X7-mediated phagocytosis

Exposure of human macrophages to extracellular ATP for 15 min greatly reduced the subsequent phagocytosis of apoptotic cells by monocyte-derived macrophages, as well as by P2X7-transfected HEK-293 cells. ATP is a physiological ligand for several purinergic receptors, but our data with the murine peritoneal macrophages showed that the reduction of phagocytosis of apoptotic thymocytes in vivo following i.p. infusion of ATP was observed only in wild-type mice but not in P2X7 gene-deleted animals. However, the total phagocytic ability of peritoneal macrophages was similar for wild-type and P2X7 knockout animals, presumably due to upregulation of other SR, an effect that was also observed in CD204 (class A SR type I, II)-deficient mouse and CD36 knockout mouse (32, 37).

Moreover, the inhibitory effect of ATP was dose dependent because 0.1 mM BzATP (a potent P2X7 agonist) was equally potent to 1.0 mM ATP in inhibiting P2X7-mediated phagocytosis of apoptotic cells. We propose that the mechanism by which ATP inhibits phagocytosis of nonopsonized particles, including apoptotic cells, is due to the slow dissociation of myosin IIA from the P2X7 membrane complex as described in our previous studies (14, 16). Fig. 1C and 1D also shows that OxATP inhibits phagocytosis of autologous apoptotic lymphocytes. OxATP is the only antagonist we found that effectively inhibits both P2X7 channel/pore function and phagocytosis of apoptotic cells. The mechanism is unknown, but it presumably attaches in the ATP binding pocket of P2X7 and causes conformational change and/or blocks the recognition of particles. However, any OxATP-induced conformational change is insufficient to open the P2X7 ionic channel because this analog is an irreversible inhibitor of P2X7-mediated permeability changes. It is noteworthy that the P2Y6 receptor agonist UDP, which increases phagocytosis of beads (38), had no effect on phagocytosis of apoptotic lymphocytes by macrophages.

Upregulation of P2X7 surface expression after phagocytosis

We and others have shown that most cellular P2X7 receptors are located intracellularly rather than on the cell surface (15, 20, 39). In this study, an increase of P2X7 surface expression on phagocytes was observed following phagocytosis of either apoptotic cells or beads, similar to the upregulation of the P2X7 receptor on THP-1 cells after phagocytosis of beads (40). Endoplasmic reticulum membrane is known to contain significant amounts of P2X7 (41), so the observed increase of P2X7 surface expression may occur via a general process of direct association and fusion of endoplasmic reticulum membrane to the surface membrane of macrophages during early phagocytosis (41). Meanwhile, this upregulation of P2X7 would further enhance the P2X7-mediated phagocytosis as the recognition of nonopsonized particles by

FIGURE 7. Intermolecular disulfide bonding is critical for P2X7 to recognize apoptotic cells. A, Peptide binding assay. DTT (5 mM) was added immediately before apoptotic SH-SY5Y, or HPB cells were incubated with cysteine containing peptides (5, 7, and 8) and cysteine-free peptide (22). B, Flow cytometry density plots showing the binding of cysteine replaced peptides to apoptotic cells. C, Typical flow cytometry histogram showing phagocytosis of apoptotic lymphocytes or SH-SY5Y cells by macrophages. Lymphocytes and SH-SY5Y cells were labeled with CFSE and induced to apoptosis with 1.0 and 0.2 mM staurosporine overnight, respectively. Macrophages were labeled with CMTMR and pretreated with 5 mM GSH or 1 mM N-acetyl-L-cysteine (NAC) for 15 min prior to the addition of apoptotic SH-SY5Y cells. Mixed cells were incubated for 3 h before fixing and assayed by flow cytometry on gated CMTMR+ macrophages.
P2X7 shows strong dependence on the density of P2X7 expressed on the surface of phagocytes.

Peptide screen to examine interaction of P2X7 with apoptotic targets

To explore the initial interaction between P2X7 and apoptotic epitopes, we measured the binding of a series of peptides (12–16 residues mimicking regions of P2X7–ED) to the surface of three different apoptotic cell types. Four peptide sequences showed binding to the surface of apoptotic cells (peptides 5, 7, 8, and 22), but only peptide 22 showed binding to cell membrane lipids including PS. Moreover, peptide 22 also showed binding to a wide variety of nonopsonized particles (latex beads, live and dead bacteria, and apoptotic cells), which are recognized targets for SR. Peptide 22 has a high positive charge (pl 11.5), and modeling suggests that it is in part on the surface of the P2X7 molecule, thus allowing interactions of an electrostatic nature with adjoining surfaces. The binding assay also suggests that P2X7 may recognize different particles via more than one motif in the extracellular domain, and the region around residues 306–320 seems critical for recognition of particles of many types. Moreover, deletion of the peptide 22 region from a wild-type P2X7 construct greatly impaired phagocytosis of apoptotic HPB cells by transfected HEK-293 cells, confirming the importance of this extracellular region of P2X7 for apoptotic recognition.

Three other peptides (5, 7, and 8) also showed binding to apoptotic cells but not to viable cells, suggesting these sequences contain a second interacting region between P2X7 and the apoptotic cell. Modeling based on the crystal structure of zP2X4 (42) shows these three peptides are located on an exposed nose of the molecule. However, none of these three peptides showed binding to the membrane lipid strip, suggesting that this region (115–162) does not recognize PS on the apoptotic cell surface. Purified Annexin V, which does bind to exposed PS, did not affect the phagocytosis of apoptotic lymphocytes by autologous macrophages (data not shown), suggesting this second interacting region has a major role in the initial interaction between apoptotic cell and phagocyte. This result supports the concept that P2X7 may interact with a second region on apoptotic cell surface, which is different to the newly exposed PS. We also found that one or more disulfide bonds in the P2X7–ED played an important role in attaching the phagocyte to the target cell surface because breaking disulfide bonds by DTT, GSH, or N-acetylcysteine abolished the binding of peptides 5, 7, and 8 to the apoptotic cell surface. However, not all the cysteine-containing peptides bind to the apoptotic cell surface, suggesting other nearby residues confer specificity to the recognition. Recent studies of platelet biology have revealed that thiol-disulfide isomerization involving protein disulfide isomerase is an essential step in the firm attachment of activated platelets to endothelial cells during thrombus formation (43). The potential role of this enzyme or a similar thoredoxin molecule will be the subject of further studies exploring the interaction of P2X7 with apoptotic cells.

A variety of SR have been shown to participate in the phagocytosis of apoptotic cells, and this redundancy may reflect the importance of this process. We have previously demonstrated that P2X7 regulates phagocytosis of nonopsonized beads and bacteria by monocytes in the absence of ATP. Our present data demonstrate that P2X7 on the phagocytic cell as well as P2X7-γ-transfected HEK-293 cells directly participates in the recognition and engulfment of a range of apoptotic target cells, both in vitro and in vivo. When compared with other phagocytic pathways, this P2X7-mediated phagocytosis is unique in several aspects: first, the P2X7 membrane complex can mediate the phagocytosis of a broad range of nonopsonized particles, from beads and live and dead bacteria to apoptotic cells, suggesting P2X7 has an important role in innate immunity. Second, P2X7 is a regulatory target of extracellular ATP, a ubiquitous signaling molecule, with autocrine and paracrine effects to promote inflammation and inhibit phagocytosis. Finally, our data suggest that certain conserved disulphide bonds in the P2X7–ED are critical for the initial firm attachment of apoptotic cells to phagocytes. Removal of apoptotic cells during tissue remodeling is a continual process that in most organs and tissues occurs in the absence of serum. Our data suggest that P2X7 is an important addition to the small number of receptors that participate in this process in serum-poor settings.

Acknowledgments

We thank Dr. Steven Fuller for collecting blood samples, Dr. Kay Richards for assistance with confocal microscopy, Kristy Skarratt for genotyping, and Chun Sun and Li Li for technical assistance.

Disclosures

The authors have no financial conflicts of interest.

References

17. Mariathasan, S., and D. M. Monack. 2007. Inflammasome adaptors and sen-
43. Jasuja, R., B. Furie, and B. C. Furie. 2010. Endothelium-derived but not platelet-