Analysis of the Role of IL-21 in Development of Murine B Cell Progenitors in the Bone Marrow

Nathalie Simard, Danijela Konforte, Anne H. Tran, Jessica Esufali, Warren J. Leonard and Christopher J. Paige

J Immunol published online 23 March 2011
http://www.jimmunol.org/content/early/2011/03/21/jimmunol.1004040
Analysis of the Role of IL-21 in Development of Murine B Cell Progenitors in the Bone Marrow

Nathalie Simard,*†,1 Danijela Konforte,*† Anne H. Tran,* Jessica Esufali,* Warren J. Leonard,‡ and Christopher J. Paige,*†,§

IL-21 plays a key role in the late stage of B cell development, where it has been shown to induce growth and differentiation of mature B cells into Ig-secreting plasma cells. Because IL-21R has also been reported on bone marrow (BM) B cell progenitors, we investigated whether IL-21 influenced earlier stages of B cell development. IL-21R is functional as early as the pro-B cell stage, and the strength of receptor-mediated signaling increases as cells mature. The addition of IL-21 to B cell progenitors in cell culture resulted in the accelerated appearance of mature B cell markers and was associated with the induction of AID, Blimp1, and germline transcripts. We also found that stimulation of both IL-21R and CD40 was sufficient to induce the maturation of early B cell progenitors into IgM- and IgG-secreting cells. Consistent with a role for IL-21 in promoting B cell differentiation, the number of B220⁺CD43⁻IgM⁻ pro-B cells was increased, and the number of mature IgM⁺IgD⁺ cells was decreased in BM of IL-21R-deficient mice. We also report in this paper that IL-21 is expressed by BM CD4⁺ T cells. These results provide evidence that IL-21R is functional in B cell progenitors and indicate that IL-21 regulates B cell development.

The Journal of Immunology, 2011, 186: 000–000.

The generation of mature, Ag-responsive B cells from pluripotent stem cells is directed by signals provided by the supportive microenvironment in the bone marrow (BM). Some of these signals are mediated by the action of soluble cytokines. At each developmental stage, B cells express a distinct profile of cytokine receptors on their cell surface to sense these signals. In mice, one critical phase of B cell development in the BM is regulated by the cytokine IL-7. It has been established that IL-7 promotes proliferation, survival, and development of pro-B cells toward the pre-B cell stage (1–4). Furthermore, our laboratory has previously shown that once the pre-BCR is expressed at the cell surface, integrated signals from both the IL-7R and the pre-BCR allow cells to proliferate in reduced concentrations of IL-7 (5).

IL-7 is a member of the common γ chain-dependent cytokine family, which includes IL-2, IL-4, IL-9, IL-15, and IL-21 (6). Like IL-7, IL-21 has also been shown to play a key role in B cell development. However, in contrast to IL-7, current data show that IL-21 exerts its effects at later stages when B cells differentiate into plasma cells (6–8). The first evidence for the importance of IL-21 in B cell differentiation was provided by studies carried out on IL-21R-deficient (IL-21R⁻/⁻) mice (9). IL-21R⁻/⁻ mice exhibited a severe defect in IgG1 production, whereas the secretion of IgE was augmented, both at a steady state and following immunization with T cell-dependent Ag. Using human EBV-infected B cell lines, we have demonstrated that IL-21–mediated signaling through the JAK/STAT pathway was required for the differentiation of B cells into late plasma blasts/early plasma cells (10). In mature B cells, binding of IL-21 to the IL-21R induces activation of STAT1, STAT3, and to a lesser extent STAT5 (10, 11).

Multiple studies have demonstrated that the effects of IL-21 stimulation of B cells depend on the cell signaling context (12–14). For instance, in the presence of signaling through both the BCR and CD40, IL-21 promotes growth and differentiation of murine splenic B cells into Ig-secreting cells (12, 13). Conversely, growth arrest and apoptosis occur following addition of IL-21 to B cells stimulated with LPS, CpG, or anti-IgM in the absence of T cell help (12, 14). These and other results have led to a consensus that the IL-21–IL-21R system is context dependent and plays an important role in maintaining B cell homeostasis. One consequence of a breakdown in this system could be impaired elimination of autoreactive B cells and the subsequent development of Ab-mediated autoimmune diseases like systemic lupus erythematosus (SLE). In this regard, lupus-prone BXSB.B6-Yaa⁺/J mice showed elevated levels of serum IL-21 (13). In addition, a recent study has shown that BXSB-Yaa⁺/J mice deficient for IL-21R failed to develop the disease (15).

To date, the majority of IL-21 studies have focused on its role in the final stage of B cell differentiation. However, IL-21R has also been reported to be expressed on early B cells progenitors in the BM (12), although it is not known whether it is functional and involved in the regulation of B cell development in the BM. One study reported that IL-21R⁻/⁻ mice have normal numbers and phenotypes of B cells in the BM (9), although several specific populations of B cell progenitors, of interest to us, were not examined. Although this study shows that IL-21 does not have an essential, nonredundant role in B cell development, more recent data show that IL-21 can contribute to early hematopoiesis. It has
been found that murine hematopoietic progenitor c-Kit+ sca+ lin−/low (KSL) cells express low levels of IL-21 (16). When grown in vitro with a mixture of c-Kit ligand, Flt-3L, and IL-7, the proliferation of KSL cells is enhanced in the presence of IL-21 (16). In addition, overexpression of IL-21 in vivo increased the number of KSL cells in the spleen (16). Another study showed that IL-21 did not have any mitogenic effect on total murine BM cells. However, apoptosis of BM CD11b+ lymphoid cells that expressed IL-21R was delayed when the cells were cultured in the presence of IL-21 (17). On the basis of this information and the fact that very few B220+ cells express IL-21 (17), the authors hypothesized that IL-21 acts mainly on lymphoid B220+ B cell subsets in mice.

In this study, we show that IL-21 message is constitutively expressed in murine BM CD4+ T cells. IL-21R is expressed and is functional on all subsets of B cell progenitors, including pro-B, pre-B, and immature/mature B cells. In vitro culture of B cell progenitors with IL-21 is sufficient to induce expression of Aid and Blimp1 and germline transcripts (GLTs) in these cells and to accelerate their development into mature B cells. A role for IL-21 in promoting B cell maturation is further supported by data that show an increase in the number of pro-B cells and a decrease in number of mature B cells in BM of IL-21−/− mice. Finally, stimulation of the IL-21R and CD40 on B cell progenitors results in the formation of Ig-secreting cells.

Materials and Methods

Mice

Female C57BL/6 mice were obtained from The Jackson Laboratory (Bar Harbor, ME) at 6–8 wk of age. IL-21−/− mice were provided by Dr. W. J. Leonard (Laboratory of Molecular Immunology, National Health, Lung, and Blood Institute, National Institutes of Health). Mice were bred at the Ontario Cancer Institute and sacrificed according to a protocol approved by the animal care committee of the Ontario Cancer Institute.

Culture of BM B cell progenitors

Single-cell suspension from BM was prepared by crushing and gently grinding both femurs and tibiae using a mortar and pestle. Cells were pelleted and resuspended in RBC lysis buffer (150 mM NH4Cl, 100 mM NaHCO3, and 1 mM EDTA [pH 8]) for 1 min on ice. Recovered cells were filtered through a 40-μm cell strainer and cultured in freshly reconstituted OptiMEM supplemented with 10% non–heat-inactivated FCS, 50 μM 2-ME, 2.4 g/l NaHCO3, and 100 μg/ml penicillin-streptomycin and grown at 37°C in a 5% CO2 atmosphere. Supernatant from the stably transfected J558 line was used as a source of IL-7 (supplied by Dr. A. Cumano, Institut Pasteur, Paris, France). A total of 30 ng/ml IL-21 and/or 2 ng/ml IL-6 were added to the culture where indicated.

BM cells were isolated by gently grinding both femurs and tibiae using a mortar and pestle. The cells were then flushed with MACS buffer (150 mM NH4Cl, 100 mM NaHCO3, and 1 mM EDTA [pH 8]) for 1 min on ice and washed in PBS/FCS. To isolate the CD4+ population, BM cells were enriched for CD4+ cells by negative magnetic selection using EasySep (StemCell Technologies). Sorted BM CD4+ T cells were culture for 3 d with anti-CD3 (10 ng/ml) with or without human IL-6 (100 ng/ml). At d 3, the supernatants were collected, and the presence of IL-21 was detected by cytometric bead array according to the manufacturer’s protocol (BD Biosciences). With the following modification: 75 μl supernatant was added to 25 μl beads.

Isolation of BM B cell progenitors

BM cells were isolated by gently grinding both femurs and tibiae using a mortar and pestle. The cells were then flushed with MACS buffer (PBS (25–250 mM NaCl, 1 mM EDTA, and 0.2% BSA). BM cell progenitors were isolated directly using anti-B220 Ab coupled to beads (clone RA3-6B2; Miltenyi Biotec). A VarioMACS magnet with an LS adapter was used to positively select the cells. Cells were washed three times with MACS buffer and eluted in OptiMEM (Life Technologies). Typically, 8–10×10^6 B220+ cells are recovered from BM (two femurs and two tibiae) of a mouse.

Sorting of BM cells

BM cell populations. B220+ cells isolated by MACs were cultured with IL-7 for 4 d (day 4−) as described above. On day 4, cells were labeled with appropriate Abs and sorted using a FACSaria (BD Biosciences) to a greater than 98% purity. To stain pro-B (CD222+), pre-B (CD222−), and immature/mature (CD222−/low) BM B cells, rat anti-mouse CD22-PE (RM2-2; eBioscience), rat anti-mouse CD44-FITC (Southern Biotechnology Associates), and rat anti-mouse CD69-PE (Southern Biotechnology Associates) were used.

Other populations. For experiments presented in Fig. 1, freshly isolated BM or BM B220+ cells were stained with rat anti-mouse-B220-allophycocyanin (RA3-6B2), -CD3-FITC (145-2C11), -CD4-biotin (K1.5), -CD8-PE (53-6.7), -CD44-allophycocyanin (IM7), -CD69-PE, and NK1.1-allophycocyanin (PK136) (BD Biosciences). Cells were then sorted into CD4+ T cells (CD3+CD4−NK1.1−), CD8 T cells (CD3−CD8+ NK1.1−), NK cells (NK1.1+), and B cells (B220+) (Fig. 1B). To sort naive CD4 T cells (CD3+CD4+CD44−/CD69−) and memory CD4 T cells (CD3+CD4+CD44+/CD69+) (Fig. 1C), BM from 10 mice was first enriched for CD4+ cells by negative selection using EasySep (StemCell Technologies) according to the manufacturer’s instructions.

FACS analysis

Cells were washed with ice-cold PBS containing 3% FCS (v/v) and then incubated for 30 min on ice with predetermined concentration of FACS Abs in a total volume of 100 μl. The following Abs were used: IgM-biotin (33.60), B220-FITC, B220-allophycocyanin (RA3-6B2; eBioscience), CD19-allophycocyanin (MB19-1), CD2-PE (RM2-5; eBioscience), CD43-PE (S7-5; BD Biosciences), IgD-FITC (clone SBA1; Southern Biotechnology Associates), IL-21R-biotin (eBio4A9; eBioscience), k-FITC (Southern Biotechnology Associates), λ-FITC (Southern Biotechnology Associates), IgM (clone M1; made in-house), and rat IgG1-biotin (R35-95; BD Pharmingen). For indirect staining, cells were washed twice after binding of the primary Ab and incubated with streptavidin-PerCP (BD Biosciences) for 15 min on ice. Samples were kept at 4°C in the dark and analyzed using a FACSCalibur (BD Biosciences). A total of 10,000 cellular events were analyzed for each sample.

Detection of IL-21 protein

BM cells from 10 mice were incubated in RBC lysis buffer (150 mM NH4Cl, 100 mM NaHCO3, and 1 mM EDTA [pH 8]) for 1 min on ice and washed in PBS/FCS. To isolate the CD4+ T cell population by negative selection using EasySep (StemCell Technologies) according to the manufacturer’s instructions and then labeled with an anti-CD4-PE Ab for sorting on a FACSaria (BD Biosciences). Sorted BM CD4+ T cells were culture for 3 d with anti-CD3 (10 μg/ml) and anti-CD28 (2 μg/ml) with or without human IL-6 (100 ng/ml). At d 3, the supernatants were collected, and the presence of IL-21 was detected by cytometric bead array according to the manufacturer’s protocol (BD Biosciences) with the following modification: 75 μl supernatant was added to 25 μl beads.

Real-time PCR and CR

Total RNA was isolated from total BM of C57BL/6, Rag2−/−, and TcRβ−/− mice or from BM B cell progenitors from C57BL/6 mice using the TRIzol reagent (Life Technologies) or RNeasy kit (Qiagen) according to the manufacturer’s instructions. First-strand cDNA was prepared from 0.5 to 3 μg total RNA in a 20-μl reaction volume using the Superscript II (Life Technologies). After reverse transcription, I21, Blimp1, and Aid were amplified by real-time PCR according to the manufacturer’s instructions (Applied Biosystems). Amplification of actin was used for sample normalization. The following PCR primers were used: I21, 5′-GGCCCTCGATTAGA-CTTGCA-3′ (sense) and 5′-TGCGGTGTTCTTCTTCTACAG-3′ (antisense); Blimp1, 5′-TACGTCTCAAGTACGGAGGG-3′ (sense) and 5′-GATGCTCT-GCCAACACACAGCA-3′ (antisense); Aid, 5′-CGGGACATTTTGAATGGTA-3′ (sense) and 5′-TGGCGCTAAGGTTGGAGG-3′ (antisense); and β-Actin, 5′-GCCACGGTAAAAGATGACCCAG-3′ (sense) and 5′-ACGGACAGGCTAAGGGACAG-3′ (antisense).

Semi-quantitative RT-PCR for I21 and actin was performed on three serial dilutions of cDNA extracted from BM cells sorted into pro-B (CD222+), pre-B (CD222−), and immature/mature (CD222−/low) B cell populations. PCR products were amplified using the following conditions: for I21, annealing temperature (Ta) = 67°C, 34 cycles, and for β-Actin, Ta = 58°C, 22 cycles. Amplification of β-Actin was used as a CDNA loading control. The β-Actin–specific primers were 5′-TCTCCGAAAGAGCT-ACGAG-3′ (sense) and 5′-TGGGAAAC-3′ (antisense). Primers for I21 were 5′-AATCCCCGCGGGCCTAGG-3′ (sense) and 5′-CACGACATGGGTCCTGAGTTC-3′ (antisense).

Class switch recombination

BM from C57BL/(6 was cultured for 4 d in IL-7 and then sorted into pro-B (B220+CD222+), pre-B (B220−CD222+), and immature/mature (B220−CD222−).
CD4(+) B cells. Cells were then cultured without supplements (ctr), with IL-21 (30 ng/ml), with anti-CD40 (2 μg/ml), or with anti-CD40/IL-21 for 24 h prior to RNA extraction. After CDNA synthesis, samples were analyzed for class switch recombination (CSR). Primers for GLT2b were described previously (18). Amplification of GLT2b was done using the following conditions: Ta = 62°C, 40 cycles.

Western blot analysis

Sorted BM B cell progenitors or B220+ BM cells day 4(−)− were stimulated with 50 ng/ml IL-21 or IL-7 for 15 min and then lysed in 1% Nonidet P-40, 150 mM NaCl, 20 mM Tris-HCl (pH 7.4), 10 mM NaF, 1 mM sodium orthovanadate, 5 mM sodium pyrophosphate, 1 mM NAD, and 5 μg/ml aprotinin and leupeptin (Roche) on ice for 30 min. Equal amounts of cell lysates were separated onto a 4–12% gradient NuPAGE gel and then transferred to a polyvinylidene difluoride membrane. Membranes were blocked with 5% milk in PBS/0.05% Tween 20% BSA (TBST) for 1 h at room temperature and then probed overnight at 4°C for pSTAT3, pSTAT1, pSTAT5 (Cell Signaling Technology), or actin (NeoMarkers). After several washes in TBST, membranes were subsequently probed with an HRP-coupled goat anti-rabbit IgG Ab or peroxidase-coupled goat anti-mouse IgG diluted 1/10,000 in TBST containing 5% milk for 45 min. Detection was performed using the ECL substrate (Amersham Biosciences) as described by the manufacturer.

ELISA

Enzyme immunoabsorbant plates (no. 3590; Costar) were coated with 5 μg/ml goat anti-mouse IgM (Jackson Immunoresearch Laboratories). IgG1, IgG2α, IgG2b, IgG3, or IgA (Sigma-Aldrich) overnight at 4°C. Plates were washed with distilled water several times and blocked for 40 min at room temperature with 3% FCS/PBS. After washing, 50 μl culture supernatant was added, and plates were incubated at room temperature for 40 min. A standard curve was established using purified mouse IgM (BD Pharmingen), IgG1 (Sigma-Aldrich), IgG2a, IgG2b, IgG3, and IgA k, λ, and κ isoforms standards (BD Pharmingen). Plates were washed several times with distilled water. Plate-bound Abs were detected after a 40-min incubation with anti-mouse IgM, anti-mouse IgG, or anti-mouse IgG conjugated to peroxidase (Sigma-Aldrich). After washing, BD OptEIA substrate (BD Biosciences) was added to the plates, and the absorbance was read according to the manufacturer’s instructions.

Statistical analysis

Statistical significance was assessed by two-tailed Student t test, and the level of significance was established at p = 0.05.

Results

IL-21 is expressed and secreted by CD4+ T cells in BM

To determine whether B cell progenitors could encounter IL-21 during development in the BM, we performed RT-PCR on BM cells isolated from WT mice kept in pathogen-free conditions. Our results show that Il21 mRNA was expressed in the total BM of WT mice (Fig. 1A). To further define the source of IL21 message, we analyzed the BM of RAG−/− mice, which lack mature B and T cells but contain normal numbers of stromal cells and other hematopoietic cells, as well as the BM of TCRβ−/− mice, which lack mature μβ T cells. We failed to detect the expression of IL21 mRNA in either RAG−/− and TCRβ−/− BM (Fig. 1A). These results suggest that IL21 message is expressed by BM lymphocyte subsets, most likely T cells. To establish whether BM T cells produce IL21, we sorted different populations of BM cells including CD4+ and CD8+ T cells. We found expression of IL21 mRNA only in the CD4+ T cell population (Fig. 1B). To further characterize which subpopulation of T cells is producing IL21, we performed real-time PCR on sorted naive and memory BM T cells (Fig. 1C). We found that IL21 mRNA was produced mainly by memory T cells.

It has been reported that IL-21 protein is secreted by splenic CD4+ T cells activated with anti-CD3, -CD28, and -IL-6 (18). Therefore to determine whether IL-21 protein was secreted by BM CD4+ T cells, we cultured BM CD4+ T cells with anti-CD3, anti-CD28 with or without IL-6. Data collected by cytometric bead array assay show that CD3- and CD28-mediated signals were sufficient to induce IL-21 secretion by BM CD4+ T cells (Fig. 1D). The greater number of cells observed in wells containing IL-6 likely explains the higher level of IL-21 detected in these wells.

IL-21R is expressed on BM B cell progenitors

The developmental stages of B lymphopoiesis can be characterized by different profiles of cell surface proteins. We have previously shown that CD2 and μ H chain, or CD2 and κ + λ chains, constitute reliable developmental markers to follow the progression of progenitors from pro-B to pre-B to immature and mature B cell stages in vitro culture (19). To analyze the expression of IL-21R on different BM B cell subsets, B220+ BM cells were isolated and grown in day 4(−)− cultures. We used a combination of Abs that recognize CD2 and μ chain (anti-μ chain to select different B cell populations, including CD2+ LC− (pro-B), CD2− LC+ (pre-B), and CD2− LC− (immature/mature B cells). Semi-quantitative RT-PCR results show that Il21r mRNA was present at low levels in pro-B cells and at higher levels in pre-B and immature/mature B cells (Fig. 2A). As expected, Il21r mRNA was not expressed in S17 stromal cells but was expressed in total spleen cells (Fig. 2A). Next, FACS analysis was performed on day 4(−)−B220+ BM cells isolated from WT and IL-21R−/− mice to determine the expression of IL-21R on the cell surface of B cell progenitors. We found that IL-21R expression progressively increased with the developmental stage of B cell progenitors. IL-
IL-21 induces tyrosine phosphorylation of STAT1, STAT3, and STAT5 in B cell progenitors

To determine whether IL-21R was functional, we carried out signaling experiments on different subsets of B cell progenitors. Day 4 IL-7/B220+ BM cells were sorted for pro-B (CD2+LC+), pre-B (CD2+LC+), and immature/mature (CD2+LC+) B cell populations. RNA was extracted, and semiquantitative RT-PCR was performed on serial dilutions of cDNA (undiluted, 1/5 dilution, and 1/10 dilution) using primers specific for IL-21R and actin as described in the Materials and Methods. The stromal cell line S17 was used as a negative control, and spleen (Sp) cells were used as positive control. Semiquantitative RT-PCR was performed on four independent sample sets with similar results. B, Surface expression of IL-21R on B cell progenitors. Top panels, Day 4 IL-7/B220+ BM cells from WT mice and IL-21R−/− mice were stained with anti-CD2, -κ, -λ LC, -λ LC, and -IL-21Ra. Bottom panels, Freshly isolated BM cells from WT mice and IL-21R−/− mice were stained with anti-CD2, -κ, -λ, and -IL-21Ra Abs and analyzed by FACS. Open and closed histograms represent binding of anti-mouse IL-21Ra Ab in WT and IL-21R−/− mice, respectively. Data are representative of two independent experiments. LC, L chain.

FIGURE 2. IL-21R expression on BM B cell progenitors. A, Day 4 IL-7/B220+ BM cells were stained with anti-CD2, -κ, and -λ Abs and sorted into pro-B (CD2+LC+), pre-B (CD2+LC+), and immature/mature (CD2+LC+) B cell populations. RNA was extracted, and semiquantitative RT-PCR was performed on serial dilutions of cDNA (undiluted, 1/5 dilution, and 1/10 dilution) using primers specific for IL-21R and actin as described in the Materials and Methods. The stromal cell line S17 was used as a negative control, and spleen (Sp) cells were used as positive control. Semiquantitative RT-PCR was performed on four independent sample sets with similar results. B, Surface expression of IL-21R on B cell progenitors. Top panels, Day 4 IL-7/B220+ BM cells from WT mice and IL-21R−/− mice were stained with anti-CD2, -κ, -λ LC, -λ LC, and -IL-21Ra. Bottom panels, Freshly isolated BM cells from WT mice and IL-21R−/− mice were stained with anti-CD2, -κ, -λ, and -IL-21Ra Abs and analyzed by FACS. Open and closed histograms represent binding of anti-mouse IL-21Ra Ab in WT and IL-21R−/− mice, respectively. Data are representative of two independent experiments. LC, L chain.

IL-21 stimulation increases tyrosine phosphorylation of STAT1, STAT3, and STAT5 in B cell progenitors

Pro-B cells, Because the purity of the sorted pro-B cell fraction was 99.98%, this result indicated that the source of the phosphorylated STAT3 was an IL-21–stimulated pro-B cell and not a contaminating pre-B cell. To further test this finding, we isolated B220+ BM cells from RAG−/− mice, which have a B cell developmental block at the pro-B cell stage. We found that IL-21 treatment of day 4 RAG−/− B220+ BM cells activated phosphorylation of STAT3 (Fig. 3C). To exclude the possibility that a receptor other than the IL-21R was involved in the activation of STAT3, we stimulated pro-B, pre-B, and immature/mature B cells from WT and IL-21R−/− mice with IL-21. Our results show that
phosphorylation of STAT3 occurred only in WT cells (Fig. 3D). Finally, we showed that phosphorylation of STAT3 could be induced by IL-7 but not by IL-21 in IL-21R−/− cells, indicating that STAT3 signaling is functional in IL-21R−/− cells (Fig. 3E). Taken together, these results clearly indicate that the IL-21R is expressed on the surface of pro-B, pre-B, and immature/mature B cells is functional and that its stimulation can result in the phosphorylation of downstream proteins.

IL-21 accelerates the transition of pro-B cells toward the pre-B cell stage and the transition of pre-B cells toward the immature/mature B cell stage

To examine whether IL-21–mediated signals affect development of B cell progenitors, day 4IL-7/B220+ BM B220+ cells isolated from WT and IL-21R−/− mice were sorted into pro-B, pre-B, and immature/mature B cell populations as previously described and cultured with or without IL-21 for 48 h. Absolute numbers of viable cells for each population were determined by using trypan blue exclusion. No significant difference in total cell numbers was observed between the control and IL-21–containing cultures (data not shown). However, FACS analysis showed that IL-21 treatment affected the percentages of maturing cells that arose from WT pro-B and WT pre-B cultures. In the cultures initiated from CD220LC− pro-B cells, there were more pre-B cells and fewer pro-B cells in the presence of IL-21 after 48 h (Fig. 4A, 4B). Similarly, we observed a trend toward increased percentages of immature/mature B cells and fewer pre-B cells in cultures initiated from CD220LC+ pre-B cells in the presence of IL-21 (Fig. 4C, top panel, 4D, top panel). Further analysis showed that the percentage of immature/mature B cells expressing high levels of L chain tended to be higher in the IL-21–containing wells than in the control wells (Fig. 4C, top panel, CD220LCα population, and 4D, lower panel). We hypothesized that this population (CD220LCα) likely represents cells that express both IgM and IgD on the surface. In agreement with this, FACS analysis showed that the percentage of IgM+IgD+ mature B cells was higher in cultures grown with IL-21 than the percentage observed in the control cultures (Fig. 4C, lower panel). In support of the finding that the increase in percentages of maturing B cells is IL-21 mediated, we did not observe an increase in B cell development with IL-21 treatment in cultures initiated with IL-21R−/− cells (Fig. 4). Taken together, these results show that IL-21 accelerates the transition of pro-B toward the pre-B cell stage and of pre-B cells toward the mature B cell stage.

To determine whether IL-21 affects B cell development in a similar way in vivo, we performed FACS analysis on BM B cell progenitors freshly isolated from WT and IL-21R−/− mice. In agreement with the in vitro analysis, we found that IL-21R−/− mice have increased proportion of B220+CD220− IgM− pro-B cells (p = 0.0376) and smaller proportion of B220+CD220+IgM+ immature/mature B cells (p = 0.0131) than WT mice (Fig. 5A, top panel). We confirmed this result using a different set of B cell development markers and found that both the percentages and absolute numbers of B220+CD220+IgM+ pro-B cells were increased (p < 0.0001 and p = 0.0021, respectively), and the percentages and absolute numbers of B220+CD220+IgM+ mature B cells were decreased (p = 0.0232 and p = 0.0756, respectively) in IL-21R−/− (Fig. 5A, 5B, middle panel). The decrease in IgM+ cells was due to a decrease in the IgM+IgD+ mature B cell population, more specifically in the IgM+IgDα cell population (percentage, p = 0.0355; absolute number, p = 0.0053) (Fig. 5A, 5B, bottom panel). These results confirm that IL-21 accelerates the maturation of B cell progenitors.

IL-21 regulates the expression of Blimp1 and Aid, and induces the expression of GLT2b in B cell progenitors

In mature B cells, stimulation of the IL-21R has been shown to induce the expression of B lymphocyte-induced maturation protein 1 (Blimp1) (13, 20). BLIMP1 is a DNA-binding zinc finger protein that can associate with certain methyl transferases and is important in the regulation of plasma cell differentiation (21). IL-21 also induces the expression of AID, an enzyme essential for CSR and somatic hypermutation, when costimulated with anti-CD40 or anti-CD40 and anti-IgM (22-24). Although no evidence of somatic hypermutation has been reported, CSR to IgG and IgA has been observed in human cord blood and mature B cells in response to IL-21 and anti-CD40 (22, 24, 25). Because BLIMP1 and AID are typically expressed by the peripheral B cells, it was of interest to determine whether IL-21 can activate a similar pattern of genes in B cell progenitors from the BM. For this purpose, day 4IL-7/B220+ BM cells were stimulated with IL-21 for 24 h prior to being sorted into pro-B, pre-B, and immature/mature B cells. Real-time PCR results showed that IL-21 increased expression of Blimp1 in pre-B cells (Fig. 6A). In contrast, we did not observe any changes in Blimp1 expression in pro-B or immature/mature B cells. In addition, IL-21 clearly induced Aid expression in pre-B cells and immature/mature cells, but no significant effect was observed in the cultures initiated with pro-B cells (Fig. 6B).

In mature B cells, IL-21–induced expression of Aid has been associated with the initiation of CSR (25). CSR begins with the initiation of transcription of the GLTs from the promoter of a specific isotype. Therefore, we measured this early hallmark of CSR by RT-PCR. We searched for GLTs in unstimulated B cells and B cells stimulated with anti-CD40, IL-21, or anti-CD40 and IL-21. For this purpose, day 4IL-7/B220+ BM cells were sorted into pro-B, pre-B, and immature/mature B cells and then stimulated for 24 h. Interestingly, IL-21 treatment of sorted pre-B and sorted immature/mature B cells resulted in increased levels of GLT2b compared with the untreated cells (Fig. 7A). Given that B cell progenitors continuously mature when cultured in vitro, we wanted to determine whether IL-21 exposure resulted in increased transcription of GLTs in the pre-B cells themselves or in immature/mature B cells that develop from pre-B cells. We treated bulk BM B220+ day 3IL-7 cultures with IL-21 for 24 h and then sorted the pre-B, pro-B, and immature/mature B population. Although there was a trend for increased GLT2b expression in IL-21–treated cells, we did not observe a significant difference between stimulated versus unstimulated cells in progenitor populations that were treated with IL-21 prior to sorting (data not shown). Under these conditions, we also examined later hallmarks of CSR and did not observe IL-21–induced differences in postswitch transcripts and circular transcripts (data not shown). Collectively, our data show that IL-21 induces Aid in pre-B cells but suggest that IL-21–initiated CSR occurs at later stages of B cell development.

Ig-secreting cells are generated from B cell progenitors stimulated with IL-21 and anti-CD40

It is known that IL-21 induces plasma cell differentiation and Ig secretion of human cord blood and CD19+ peripheral blood and splenic B cells when used in combination with anti-CD40 (22, 24). IL-21–mediated induction of Blimp1, Aid, and GLTs described above is consistent with the hypothesis that IL-21 can drive the differentiation of BM B cell progenitors into Ig-secreting cells. To test this, we plated day 4IL-7/B220+ BM cells with IL-7 and a combination of IL-21 and anti-CD40. In this experiment, IL-7 was included in the culture to allow for continued expansion of a pro-B
subset, which kept maturing and replenishing pre-B and immature/mature subsets. This extended the survival of the overall cell culture, thereby giving it sufficient time to respond to IL-21 and anti-CD40. ELISAs were performed on supernatants collected on day 7 of culture. Fig. 7B, left panel, shows that both IL-21 and anti-CD40 were required to induce secretion by B220+ cells. In these cultures, we detected mostly IgM and IgG3 but also IgG1 and IgG2b and some IgG2a Isgs. However, we did not detect IgA (data not shown).

To determine whether early B cell progenitors can differentiate into Ig-producing cells, we sorted day 4IL-7B220+ BM cells into pro-B (CD2+LC+), pre-B (CD2+LC+), and immature/mature B CD2+LC+ cell populations. Each population was plated with or without IL-21 (30 ng/ml) for 48 h. Control and IL-21–containing cell cultures initiated with pro-B (A, B) and pre-B (C, D) cells from IL-21R−/− and WT mice were harvested on day 2 of culture and analyzed by FACS using CD2-LC and IgM-IgD Ab combination. A and C, Percentages of cells in each population are shown on the plots of a representative experiment. B and D, Scatter plot of cell population percentages from separate experiments. Lines connect pairs of experiments performed. Statistical analysis of percentage of pre-B and immature/mature B cells obtained in control and IL-21–treated WT cell cultures was assessed by two-tailed paired Student t tests. The analysis shows that there were a significant increase percentage of pre-B cells in IL-21–containing culture started with pro-B cells compared with control (B, lower panel, *p < 0.0001) and a trend toward an increase percentage of immature/mature B cells in IL-21–containing culture initiated with pre-B cells (D, lower left panel, percentage of CD2+LC+, p = 0.09; D, lower right panel, percentage of CD2+LC+, p = 0.08). LC, L chain.
natants harvested on day 9 of culture. We show that IL-21 and CD40 signals induced differentiation of pro-B cells into cells that secreted mostly IgG3 but also IgM, IgG1, IgG2a, and IgG2b in the presence of IL-21 and anti-CD40. IgA was below detection level of our assay (Fig. 7B, right panel).

Discussion

It is well established that IL-21 strongly influences the differentiation of murine and human B cells. To date, this has been demonstrated at the end stages of B cell development where IL-21 induces the transition from fully mature B cells to Ig-secreting plasma cells. In this report, we significantly extend the role of IL-21 by showing that IL-21 accelerates the maturation of murine B cell progenitors. Such cells are induced to express Blimp1 and Aid, genes normally expressed in peripheral mature B cells. In addition, we show that IL-21 induces the first step of CSR in B cell progenitors by inducing GLTs and, together with anti-CD40, enables cells to differentiate into Ig-secreting cells.

Careful analysis of expression of IL-21R on different BM B cell progenitors revealed a gradual increase of cell surface IL-21R from pro-B cells to immature/mature B cells, consistent with the previous observations reported by Jin et al. (12). We extend these findings by showing that IL-21R is functional on these populations of B cell progenitors. The intensity of IL-21–induced STAT phosphorylation signals correlated with the level of IL-21R expression. The signals were the weakest in pro-B cells and the strongest in the immature/mature B cells. Even though we and others (12) failed to detect IL-21R protein at the surface of pro-B cells by FACS, the results from both RT-PCR and functional signaling experiments clearly show that IL-21R is also expressed on these cells. Given the unexpected nature of this finding, it was important to ensure that the observation was not based on contaminating pre-B cells. To examine this question, we used an IL-21–unresponsive pro-B cell line to which we added different numbers of FACS-sorted IL-21–responsive pre-B cells. We found that a contamination level of at least 10% pre-B was required to attain the level of STAT3 phosphorylation observed in sorted pro-B cells stimulated with IL-21. This threshold is much higher than the 0.5–1% contamination levels we routinely achieve when we enrich for pro-B cells. Furthermore, we found that IL-21 stimulation of BM B cells isolated from RAG2−/− mice, where B cell development is blocked at the pro-B cell stage, also induces phosphorylation of STAT3. Finally, IL-21 stimulation failed to induce phosphorylation of STAT3 in IL-21R–deficient pro-B cells, confirming that the phosphorylation of STAT3 in IL-21–stimulated pro-B cells occurs through the IL-21R.

We also found that Il21 message is constitutively expressed in murine BM, providing evidence that B cell progenitors may well encounter IL-21 during development. Activated Th17, T follicular
 helper, and NKT cells are thought to be the main sources of IL-21 in the periphery (26–29). Consistent with a T cell origin of the Il21 transcript detected in the BM, we detected Il21 message specifically in CD4+ T cells. Furthermore, we showed that BM CD4+ T cells require fewer stimuli to secrete IL-21 protein than splenic CD4+ T cells. In contrast to splenic naive and memory CD4+ T cells, which require stimulation through CD3, CD28, and IL-6R (18), IL-6R stimulation was not required to induce secretion of IL-21 protein in BM CD4+ T cells.

One of the main findings of our study is that IL-21 promotes the development of B cell progenitors. This is supported by in vivo data showing that IL-21R−/− mice have more pro-B cells, which is likely a consequence of slower maturation. These mice also have fewer mature B cells in their BM than WT mice, although based on current models (30–32), we cannot distinguish whether this difference in IgMhiIgDhi cells comes from the newly arising B cells or from the recirculating B cells.

In further support of our in vivo observation, in vitro stimulation of sorted pro-B and pre-B progenitors by IL-21 accelerates their development. The increased percentage of B cells at a more advanced developmental stage is unlikely to be a consequence of enhanced proliferation or survival in response to IL-21. This is supported by the finding that the total number of cells recovered after 48 h of culture is similar between IL-21–treated and control wells. Moreover, after 48 h of treatment with IL-21, annexin V and 7-aminoactinomycin D staining showed variable cell survival with no observable trend in cultures initiated with pro-B or pre-B cells (data not shown). It should be noted that although the experiments reported in this paper show an effect of IL-21 on purified B cell progenitors in tissue culture, it may be the case that other factors are involved in vivo. For example, it has been shown that IL-21 synergizes with Flt3L and IL-15 to increase proliferation and promote differentiation of NK cells from BM progenitors (33).

Several lines of evidence show that IL-21 can induce Blimp1 and, when used in combination with anti-CD40 or anti-IgM, IL-21

FIGURE 6. IL-21 regulates gene expression of Blimp1 and Aid in B cell progenitors. B220+ BM cells were grown in IL-7. On day 3, IL-21 (30 ng/ml) was added for 24 h to half of the culture. Cells were sorted on day 4 into pro-B (CD2+LC−), pre-B (CD2+LC−), and immature/mature B (CD2+LC−) cells, and total RNA was extracted. Real-time PCR analysis using Blimp1 (A)- and Aid (B)-specific primers was performed on cDNA as described in Materials and Methods. Figures show normalized values from a single experiment (left panel) and fold change over untreated from two independent experiments (right panel). LC, L chain.

FIGURE 7. IL-21R stimulation induces the expression of GLT-γ2b. A, Day 4IL-7 BM cells were sorted into pro-B (B220+CD2+LC−), pre-B (B220+CD2+LC−), and immature/mature B (B220+CD2+LC−) cells. Each population was plated with IL-21 (30 ng/ml), anti-CD40 (2 μg/ml) or anti-CD40 and IL-21. After 24 h, total RNA was extracted, and RT-PCR analysis was performed to detect GLT-γ2b. β-Actin was used to normalize for cDNA input. Band intensity was measured and normalized to β-Actin using Quantity One software. The figure shows one representative experiment that has been performed at least three times with similar results. In pre-B cells stimulated with IL-21 only, the fold increase in GLT levels ranged from 1.12- to 3.11-fold; in immature/mature B cells, the fold increase ranged from 1.23 to 6.25. Statistical analysis of quantitated and normalized band intensity for pre-B cells was performed using the Wilcoxon test demonstrating that there was a significant fold increase with IL-21 treatment in pro-B (CD2+LC−)–sorted cells (p = 0.032; n = 6). B, IL-21 in combination with anti-CD40 induces the formation of Ig-secreting cells from cultures initiated from B cells progenitors. Left panel, Day 4IL-7 B220+ BM cells were plated with IL-7 in combination with anti-CD40, IL-21, or both. Supernatants were harvested on day 7, and ELISA was performed as described in Materials and Methods. Right panel, Day 4IL-7 B220+ BM cells were sorted into pro-B cells (CD2+LC−) and plated with IL-7 and anti-CD40 with or without IL-21. Culture supernatants were collected on day 9, and ELISA was performed as described in Materials and Methods. Results are representative of three independent experiments. LC, L chain.
can induce Aid in different populations of mature B cells (13, 22–24). We show that IL-21 increases expression of Blimp1 in developing B cells, and in particular, in pre-B cells. It is possible that the increase in Blimp1 expression contributes to the acceleration of maturation of pre-B cell progenitors observed in presence of IL-21 by inducing genes normally found in mature B cells and repressing genes associated with early B cell progenitors. We also show that IL-21 alone induces Aid as early as the pre-B cell stage. This result contrasts with data obtained on other type of B cells where anti-CD40 or anti-CD40 and anti-IgM are required. Although this is not the first report of early B lineage cells expressing Aid and Blimp1 (34–36), to our knowledge, it is the first study to suggest a method of induction in early B cell progenitors.

Importantly, our study shows that IL-21 alone was sufficient to initiate early stages of CSR in BM B cell progenitors. This is in contrast to what has been reported for human cord blood B cells in which both IL-21 and anti-CD40 are required for GLTs to occur (24, 25). However, similar effects on GLTs have been observed in bulk human CD19+ spleen cells, even though Aid expression was absent (24). Although expression and function of Aid is generally associated with the germinal center reaction in the secondary lymphoid organs, a recent study has shown that aid message is expressed in early pro-B/pre-B cell progenitors in vivo and is responsible for the CSR observed in these cells (34). Moreover, other studies have shown that CSR can occur in some of the Abelson-transformed pre-B cell lines (37–39).

We believe it is highly unlikely that IL-21R, Aid, Blimp1, GLT2b messages come from the contaminating BM plasma cells and BM memory B cells. First, BM B cells used in our study were selected using an anti-B220 Ab, a molecule absent from BM plasma cells (40). Second, we used anti-κ and anti-λ Abs instead of anti-μ to negatively select pro-B and pre-B cells and thereby avoid possible contamination of these populations with memory cells expressing IgM or any other H chain isotype.

Our results show that pro-B cells differentiate into plasma cells secreting IgM, IgG1, IgG2a, IgG2b, or IgG3 lgs when costimulated with IL-21 and anti-CD40. Seagal et al. (41) have proposed that isotype-switched B cell precursors are deleted under normal physiological conditions by a mechanism involving Fas/FasL interaction, presumably to prevent autoimmunity. However, presence of IgA and IgG in μMT mice (42, 43) suggests that at least some isotype-switched cells can bypass this mechanism. Two hypotheses have been proposed to explain the presence of CSR in BM B cell progenitors. One hypothesis is that these cells could be the product of an alternative B cell development pathway (43). Alternatively, signals through BCR and TLRs can induce aid expression, which is involved in CSR observed in some B cell progenitors. Class-switched B cell progenitors could be responsible for enhanced innate immunity by generating IgG- or IgA-producing cells (34).

Having demonstrated that developing B cell progenitors express IL-21R and show accelerated maturation in response to IL-21, it is of critical importance to determine what role the IL-21/IL-21R pathway plays in the life of a B cell. One possibility is that T cell-derived IL-21 contributes to the “normal” development of B cells in the BM. CD8+ and CD4+ mature T cells constitute ~3–8% of total BM-nucleated cells (44). Several studies reported that, at a steady state, most CD4+ T cells in murine BM have an activated phenotype (45, 46). Maintenance of the activation state of BM T cells does not require Ag stimulation but occurs in response to factors produced by the local microenvironment, such as IL-7, IL-15, and 4-1BBL (44, 46–49). There is evidence for interaction between BM T cells and BM B cells through CD40/CD40L that would be required for maintaining bone homeostasis (50). In addition, it has been reported that hematopoiesis is severely impaired in T cell-deficient nude mice and that restoration of the BM CD4+ T cells rescued normal development of the myeloid compartment (46). Our discovery that IL-21 in the murine BM is produced by T cells reinforces the potential importance of a T cell-dependent B cell developmental pathway option.

An alternative, but not mutually exclusive, interpretation is that IL-21 influences B cell development in the context of an inflammatory response. It is known that leukocyte production is affected during infection and inflammation. Experimental inflammation caused by the injection of adjuvants leads to a remarkable decline in BM B cell development and a corresponding onset of extramedullary development in the spleen (51). This phenomenon is mediated by a rapid reduction of CXCL12, which is thought to be involved in the sequestration of developing B cell progenitors in the BM (51). Under these conditions, B cell progenitors might be found in areas with active CD4+ T cells in the spleen. Interaction of B cell progenitors with T cells through CD40–CD40L interaction in the presence of IL-21 could allow B cell progenitors that have been mobilized to the periphery to continue their development outside the BM and participate in the immune response. It has been noted that such extramedullary development might bypass checkpoints that normally eliminate autoreactive cells in the BM (52). Indeed, there is a growing body of evidence linking IL-21 with the development of some autoimmune diseases with strong humoral component. For example, BXS.B6-Yaa+/β mouse model of SLE shows elevated levels of serum IL-21 (13). In contrast, BXS.B6-Yaa− mice deficient for IL-21R do not develop SLE (15).

We do not yet know whether our observations have uncovered a “normal” process that may contribute to the immune response or even a “dangerous” anomaly that may contribute to autoimmunity by allowing immature cells to bypass regulatory mechanisms that normally eliminate autoreactive cells. However, our results clearly suggest that IL-21 regulates maturation of B cell progenitors and, in combination with anti-CD40, can lead to the formation of IgG-secreting cells.

Acknowledgments
We thank Rakesh Nayyar and Francis Tong for help with cell sorting.

Disclosures
The authors have no financial conflicts of interest.

References