Protection from RNA and DNA Viruses by IL-32

Jarod A. Zepp, Claudia A. Nold-Petry, Charles A. Dinarello and Marcel F. Nold

J Immunol published online 23 February 2011
http://www.jimmunol.org/content/early/2011/02/23/jimmunol.1000081
Protection from RNA and DNA Viruses by IL-32

Jarod A. Zepp,* Claudia A. Nold-Petry,*† Charles A. Dinarello,* and Marcel F. Nold*†

Several studies have documented a proinflammatory role for IL-32, which induces IL-1α, IL-1β, IL-6, TNF, and chemokines via NF-κB, p38MAPK, and AP-1. However, IL-32 also participates in the responses to infection with viruses such as HIV-1 and influenza. In this study, we explored the antiviral properties of IL-32. Vital staining assays demonstrated that low concentrations (5–10 ng/ml) of rIL-32γ protected epithelial WISH cells from vesicular stomatitis virus-induced cell death. By lactate dehydrogenase assays, treatment with IL-32γ resulted in a 3- to 4-fold decrease in viral load. Specific silencing of IL-32 revealed that the antiviral responses triggered by the synthetic analogs of ssRNA viruses (polyuridine) and dsRNA viruses (polynosinic-polycytidylic acid) were significantly weaker (2- to 3-fold more virus) in WISH cells in the absence of IL-32. Importantly, we discovered that the polynosinic-polycytidylic acid-induced increase in production of IFN-α in human PBMC was nearly completely abolished when IL-32 was silenced. Moreover, we observed that IL-32 antagonizes the DNA virus HSV-2 in epithelial Vero cells as well as in human umbilical cord endothelial cells, as production of HSV-2 increased 8-fold upon silencing of IL-32 (< 0.001). Mechanistically, we found that IL-32 used the PKR-eIF-2α as well as the Mx antiviral pathways. Unexpectedly, a considerable part of the antiviral properties of IL-32 was not dependent on IFNs; specific blockade of IFN activity reduced the antiviral properties of IL-32 only moderately. In conclusion, these data suggest a central role for IL-32 in the immune response to RNA and DNA viruses, which may be exploitable for clinical use in the future.

The Journal of Immunology, 2011, 186: 000–000.

Interleukin-32 has been implicated in several aspects of inflammatory responses through its induction of IL-1β, IL-6, IL-8, and TNF through the p38-MAPK, NF-κB (1, 3), and AP-1 (2) signaling pathways. Also, IL-32 is involved in diseases characterized by inflammation such as rheumatoid arthritis (3) and inflammatory bowel disease (1, 4). Expression and regulation of IL-32 has been described in several cell types including T cells, monocytes, NK cells, endothelial cells, and epithelial cells. In endothelial cells, IL-32 is a major mediator of IL-1β-induced inflammatory responses (5). In the A549 and WISH epithelial cell lines, IL-32 protein levels are markedly increased by treatment with IFN-γ (1, 6). Furthermore, in primary human macrophages, Mycobacterium tuberculosis stimulates IL-32 production via caspase-1, IL-18, and IFN-γ (7).

To investigate the host’s response to virus invasion in vitro, the chemical compounds polynosinic-polycytidylic acid (poly-IC), polyuridine [poly(U)], and polydeoxyadenylic-polydeoxythymidylic acid [poly(dA-dT)] are commonly used to mimic viral pattern-recognized molecules (PAMPs). The compound poly-IC is structurally similar to viral dsRNA (as occurs in the rotavirus) and is recognized by TLR3 and MDA-5. To mimic viral ssRNA (as occurs in the influenza and vesicular stomatitis viruses [VSV]), which is recognized by TLR7/8, poly(U) oligonucleotides can be used. The recognition of DNA viruses (e.g., HSV1 and -2, cowpox virus), mimicked by poly(dA-dT), has been elusive; however, the adaptor molecule AIM2 (8) and RNA polymerase-III (9) appear to be involved in such recognition. Once detected by the cell, the aforementioned compounds initiate the antiviral response.

Aside from its proinflammatory properties, recent reports have highlighted that IL-32 is regulated during viral infection. Elevated levels of IL-32 were found in serum from patients infected with HIV-1 (10) or influenza A (11), suggesting that this cytokine is relevant in viral infection in humans. Positive and negative feedback interactions between IL-32 and cyclooxygenase-2, PGE2, and inducible NO synthase (iNOS) (12) during influenza A infections have been described. Furthermore, it has been demonstrated that epigenetic modifications modulate the efficacy of the antiviral properties of IL-32 (13). We reported that IL-32 interferes with viral function: silencing of IL-32 in PBMCs acutely infected with HIV-1 resulted in 4-fold increases in the production of HIV-1 (2). We observed similar increases in the latently infected U1 macrophage cell line. Moreover, treatment of U1 cells with recombinant human IL-32γ resulted in 72% decreases in the HIV-1 p24 protein. That study provided the first evidence that IL-32 regulates the production of a virus. Furthermore, small interfering RNA (siRNA) to IL-32 resulted in a 51% reduction of IFN-γ protein levels (2). Encouraged by the advances described above, we searched the promoter of the if-32 gene for sites sensitive to regulation by IFN regulatory factors (IRFs). IRFs are key inducers of antiviral effectors and have been reported to bind to tandem repeats of the core motif GAAA (14, 15). Indeed, the region up to 2000 bp upstream of the transcriptional start site of il-32 contains several occurrences of the IRF consensus sequences. Given the mounting evidence for a role of IL-32 in the immune response to viral infection and its regulation by and induction of IFNs, we set out to investigate whether and how antiviral responses depend on IL-32. We employed a WISH cell model to study the RNA-based VSV as well as an endothelial and an epithelial cell assay for infections with the DNA-based HSV-2.

*Department of Medicine, University of Colorado Denver, Aurora, CO 80045; and The Ritchie Centre, Monash University, Melbourne, Victoria 3168, Australia
†The Ritchie Centre, Monash Medical Centre, 246 Clayton Road, Melbourne, VIC 3168, Australia
*Department of Medicine, University of Colorado Denver, Aurora, CO 80045; and The Ritchie Centre, Monash University, Melbourne, Victoria 3168, Australia
Received for publication January 11, 2010. Accepted for publication January 21, 2011.
This work was supported by National Institutes of Health Grants AI-15614 and HL-68743 to C.A.D. and Deutsche Forschungsgemeinschaft Grant 747-1/1 to M.F.N.
Address correspondence and reprint requests to Dr. Marcel F. Nold, The Ritchie Centre, Monash Medical Centre, 246 Clayton Road, Melbourne, VIC 3168, Australia. E-mail address: mfnold@hotmail.com
Abbreviations used in this article: CT, threshold cycle; eIF-2α, eukaryotic translation initiation factor 2α; iNOS, inducible NO synthase; IFN, IFN regulatory factor; LDH, lactate dehydrogenase; PAMP, pathogen-associated molecular pattern; PKR, protein kinase R; poly(dA-dT), polydeoxyadenylic-polydeoxythymidylic acid; poly-IC, polynosinic-polycytidylic acid; poly(U), polyuridine; scr, scrambled small interfering RNA; sIL-32, small interfering RNA to IL-32; ssRNA, small interfering RNA; sol-IFN-α/βR, soluble IFN-α/β receptor; VSV, vesicular stomatitis virus.
Copyright © 2011 by The American Association of Immunologists, Inc. 0022-1767/11/$16.00
Downloaded from http://www.jimmunol.org/ by guest on April 20, 2017
Materials and Methods

Reagents

MEM, Isocove's DMEM, FCS, penicillin/streptomycin, and trypsin were purchased from Cellgro (Herndon, VA). rIL-32, siRNAs, scrambled siRNAs (scr), and phospho-eukaryotic translation initiation factor 2α (p-eIF-2α) were from Thermo Fisher Scientific (Lafayette, CO). Penicillin/streptomycin, RPMI, and FCS were purchased from Life Technologies (Rocky Hill, NJ). Trypsin was from Life Technologies (Rocky Hill, NJ). WISH cells were purchased from Collaborative (Waltham, MA). The mouse anti-human IL-32 Ab used for Western blotting was described previously (1). The rabbit anti-human protein kinase R (PKR) antibody was kindly provided by Dr. Daniela Novick, Weizmann Institute, Rehovot, Israel. The affinity-purified goat anti-human IL-32 Ab used for Western blotting was described previously (1). The rabbit anti-human protein kinase R (PKR) and phospho-eukaryotic translation initiation factor 2α (p-eIF-2α) were obtained from Cell Signaling Technology (Danvers, MA). The mouse anti-MxA mAb was a gift from Dr. Georg Kochs, Department of Virology, University of Freiburg, Freiburg, Germany, and was described previously in Ref. 16.

Cell culture

Human amnion-derived WISH cells and the monkey kidney epithelial Vero cells were obtained from American Type Culture Collection and cultured in MEM with 10% FCS and 50 U/ml and 50 μg/ml penicillin/streptomycin. HUVEC were obtained and propagated as described previously (5). For each cell type in each experiment that required stimulation with exogenous protein (e.g., IL-32γ), growth medium was removed and replaced with reduced serum media before stimulation. For WISH and Vero cells, MEM with 1% pooled human serum and 1% penicillin/streptomycin was used; for HUVEC, stimulation medium was the same as growth medium, except FCS was reduced to 2%. For HUVEC experiments, all cell-culture plates were coated with 1% gelatin.

Human PBMC were obtained from healthy volunteers that abstained from taking any medications for at least 1 wk before blood draw. Heparized (20 U/ml) blood was collected from the antecubital vein, and PBMC were separated where appropriate. Monkey kidney epithelial cells were harvested (20 U/ml) blood was collected from the antecubital vein, and PBMC were separated where appropriate. Monkey kidney epithelial cells were harvested by the mononuclear cell layer, the PBMC were washed two times with cold PBS and resuspended in pure RPMI 1640 without additives. All experiments involving PBMC were approved by the University of Colorado Multiple Institutional Review Board.

Viruses used in this study were the Indiana strain of VSV and a clinically isolated type 2 HSV. Virus was propagated in WISH (VSV) and VERO (HSV-2), and aliquots of virus-rich supernatant were frozen at −80˚C. Only one freeze-thaw cycle was allowed.

Antiviral bioassays

To investigate modulation of virally induced cytotoxic effects, we employed the VSV/WISH cell model to study RNA-based viruses and the HSV-2/Vero or HUVEC model to explore DNA-based viruses. Both models were described previously (17). WISH or Vero cells (passages 1–10) were trypsinized, and live cells were counted using trypan blue exclusion. The cells were spun at 200 × g for 10 min, then resuspended in PBMC stimulation medium: RPMI 1640 plus 1% human serum plus 10 mM HEPES buffer (Cellgro) plus 100 μg/ml primocin (Lonza) at a concentration of 2 × 10⁶ cells/ml.

HSV quantitative PCR

After 48 h of HSV infection, HUVEC cell cultures were frozen and thawed. The freeze-thaw suspension was analyzed for LDH and cytokines, and DNA was extracted from the remaining cell-susceptible mixture. Viral DNA was extracted, and real-time PCR was performed using reagents and devices by Roche (Boulder, CO). The primer/probe sets targeted HSV-1 and -2; HSV-1 was not detected in any of the samples. Total DNA content was determined on a NanoDrop (Thermo Fisher Scientific); each sample was measured in triplicate. After acquisition of threshold cycles (Ct) by real-time PCR, ΔCt values were calculated by subtracting the Ct of the scr-transfected controls from the Ct of the small interfering RNA to IL-32 (siIL-32)–transfected conditions. Fold changes in HSV content were obtained by normalization to DNA content.

Electrochemiluminescence assays and ELISAs

Electrochemiluminescence measurements of protein levels of the human cytokines IL-1α, IL-6, IL-8, IL-12, and TNF were performed with specific Ab pairs and standards made with recombinant proteins, all provided by R&D Systems (Minneapolis, MN), and assayed on the Origen Analyzer from Wellstat Diagnostics (Gaithersburg, MD) as described previously (2). The Ab pairs for human IFN-γ were purchased from Fitzgerald Industries International. ELISAs for IFN-α and IFN-β were from PBL InterferonSource (Piscataway, NJ) and performed according to the manufacturer’s instructions.

LDH assay

After 24 (VSV) or 48 (HSV) h of infection, 10 μl cell supernatant was removed and immediately assayed for LDH according to the manufacturer’s instructions. All samples were run in duplicate. For percent decrease calculations, wells that received virus alone were defined as uninhibited virus-induced cell death. Therefore, percent decrease was calculated by using LDH values in the following equation: [(stimulated/positive cell death control)] × 100.

Crystal violet staining

Staining involved a crystal violet solution in 100% ethanol performed when virus-induced cell death in wells with virus alone was nearly complete. This was determined by light microscopy. Supernatants were removed, and 50 μl crystal violet solution was added to all wells. Residual (nonabsorbed) crystal violet was washed out by repeated rinses with distilled water.

Immunoblotting

The total protein content of each sample was determined using the Bradford method. Twenty-five micrograms total protein were then solubilized in SDS buffer with 2-ME. Samples were separated on 4–15% gradient SDS-polyacrylamide gels (Bio-Rad). Proteins were transferred to nitrocellulose membranes (0.2 μm), which were assessed for equal loading by Ponceau staining. Equal loading was also ascertained by β-actin (Santa Cruz Technologies) staining. Densitometry on immunoblots was performed using Adobe Photoshop software (Adobe Systems).

Measurement of nitrate/nitrite

Supernatants from WISH cells treated with vehicle or L-NAME with or without siRNA to IL-32 (Thermo Fisher Scientific, Lafayette, CO). For sequences, please see Ref. 2. Cells were recovered from the cuvette with 0.5 ml pure MEM for WISH or Opti-MEM 1× (Cellgro) for HUVEC warmed to 37˚C followed by 5 min of recovery at 37˚C. Cells were then resuspended in 24-well flat-bottom plates with 1 ml growth medium at a concentration of 0.1 × 10⁶ cells/ml. For cytokine analysis, transfected cells were grown overnight, then medium was replaced with stimulation media, and stimuli were added for 24 h. Thereafter, cells were challenged with VSV or HSV-2. PBMC were transfected using Amaxa Nucleofector kit T cell as described previously (2). In brief, 10 × 10⁶ cells were used per transfection condition per cuvette. Transfected cells were recovered from the cuvette with 0.5 ml pure, prewarmed RPMI 1640. Cells rested overnight at 37˚C in polypropylene tubes in human T-Cell Media (Lonza) plus 1% human serum plus 2 mM l-glutamine (Cellgro). Cells were then resuspended and washed two times with cold trypsin. The cells were spun at 200 × g for 10 min, then resuspended in PBMC stimulation medium: RPMI 1640 plus 1% human serum plus 10 mM HEPES buffer (Cellgro) plus 100 μg/ml primocin (Lonza) at a concentration of 2 × 10⁶ cells/ml.
Statistical analysis

Raw datasets were tested for normality by the Kolmogorov-Smirnov method and for equal variance (p value to reject = 0.05). Afterwards, data were analyzed using the unpaired t test (α set at 0.05 in all cases) or the Mann–Whitney rank-sum test.

Results

Production and regulation of IL-32 in WISH cells

To determine whether WISH cells produce the IL-32 protein, cell-culture lysates were assayed by ELISA, electrochemiluminescence assay, and immunoblotting. Fig. 1B shows that IL-1β and IFN-γ increase the production of IL-32 protein 4.2- and 5.5-fold, respectively. IFN-κ moderately induced IL-32. Classical inducers of type I IFNs, the synthetic ligands of TLR3 and 7/8 [poly-IC and poly(U)], exhibited a significant 3.8- and 2-fold increase in IL-32 abundance (Fig. 1C). These observations were also confirmed by immunoblot as demonstrated in Fig. 1A. Blocking experiments using IL-1R antagonist revealed that the contribution of TLR ligand-stimulated IL-1α to the induction of IL-32 was minimal for poly-IC and absent for poly(U) (data not shown). Neither IL-1β nor IFN-κ was detectable in WISH cells regardless of which stimulus was used (data not shown). A dose dependency for the induction of IL-32 was established for each of the stimuli by testing at least two concentrations (data not shown).

Exogenous IL-32γ confers an antiviral state in WISH cells

To investigate the effect of exogenous IL-32, we used the γ-isofrom of rIL-32, which has been shown to be the most active isoform in its activity both against viruses (13) as well as in other settings (18). We stimulated WISH cells with IL-32γ and 20 h later challenged them with VSV. Protection was assessed by vital staining with crystal violet (as described in Ref. 6). We observed that nearly all WISH cells that were infected with VSV alone were killed by the virus (Fig. 2A, left panel). As expected, IFN-γ (Fig. 2A, left panel) and IFN-β (not shown) conferred a dose-dependent protection. Treatment with IL-32γ also had a protective effect, but in contrast to IFN-γ, this effect exhibited a biphasic dose response: from 0.5–10 ng/ml IL-32γ, the viability of the WISH cells increased; however, when we used concentrations >20 ng/ml, the protective effect abated and, at 50 ng/ml, was not detectable at all (Fig. 2A, right panel).

To assess whether exogenous IL-32γ regulates cytokines in WISH cells, we assayed the supernatants and lysates from the experiments described above for IL-1β, IL-6, IL-8, IFN-γ, and IL-1α. Constitutive production of these cytokines ranged from 50–100 pg/ml for IL-6 and 5–10 pg/ml for IL-1α, whereas IL-1β, IL-8, and IFN-γ abundance was below limits of detection. The abundance of each of these cytokines was unaffected by treatment with IL-32γ (data not shown).

To quantify the VSV-induced cytopathic effect, we measured LDH levels in the supernatants of VSV-treated WISH cell cultures. Fig. 2B shows percent decreases in LDH release in the supernatants of the WISH cell bioassays. Cells with VSV alone exhibited the most cell death and release of LDH; this was set as baseline (0 in Fig. 2B). The decrease in LDH release associated with IL-32γ stimulation was consistent with the increase in crystal violet staining (Fig. 2A). The inset in Fig. 2B shows the increase in LDH release induced by serial dilutions of VSV after 24 h of infection of WISH cell monolayers. The typical range between spontaneous LDH release (no virus, no stimulus) and maximum VSV-induced cell death (VSV alone, no stimulus) fell between 600 and 1800 arbitrary units. Using the information in the inset, we calculated that a 25% change in LDH translated into a 3- to 4-fold change in viral load.

Effects of specific blockade of type I IFN activity on antiviral functions of IL-32

We recently reported that IL-32 induces IFN-α in U1 cells (2). To demonstrate a similar regulation in WISH cells, we measured the production of type I and II IFNs (IFN-α, IFN-β, and IFN-γ) after treatment with IL-32γ. IFN-α/β as well as IFN-γ levels were below detection limits of the ELISA (data not shown). However, failing to measure IFNs did not rule out a possible role for these cytokines in IL-32γ-induced antiviral activity, especially because IFNs can exert antiviral functions at low concentrations (Fig. 2). To resolve whether type I IFNs contributed to the antiviral activity of IL-32γ, WISH cells were incubated with sol-IFN-α/βR. The effectiveness of sol-IFN-α/βR in our WISH-VSV model was tested by coincubating the inhibitor with IFN-β. As expected, we found that sol-IFN-α/βR dose-dependently decreased the antiviral activity of IFN-β (data not shown). When sol-IFN-α/βR was used alone, we observed a marginal increase in virus-induced cytopathic effect (data not shown). When coinoculated with IL-32γ (Fig. 3), sol-IFN/βR increased LDH by ∼50% compared with IL-32γ alone. Therefore, this experiment indicates that IL-32 possesses both IFN-dependent as well as IFN-independent antiviral properties.

Regulation of PKR, eIF-2α, and NO by IL-32γ

Next, we investigated the antiviral PKR–eIF-2α pathway. Fig. 4A shows that upon addition of IL-32γ to WISH cell cultures, PKR levels were upregulated to 13-fold as estimated by densitometry, with 5 and 10 ng/ml being the most effective concentrations, a finding consistent with the results from the bioassays (Fig. 2). As PKR activates eIF-2α by phosphorylation, we performed a time

FIGURE 1. IL-32 is expressed and regulated in WISH cells. Except where indicated otherwise, WISH cells were incubated for 20 h with the indicated stimuli at the following concentrations: IL-1β, 10 ng/ml; IFN-γ, 2 ng/ml; poly-IC, 100 μg/ml; poly(U), 5 μg/ml; and IFN-β, 2 ng/ml. A, One representative immunoblot of three independently performed is shown. B, IL-32 concentrations in WISH cell lysates; means ± SEM are shown; $n = 3$. **$p < 0.001$ for control (constitutive) versus stimulated conditions. C, IL-32 concentrations in WISH cell lysates stimulated with RNA-mimetic compounds; means ± SEM are shown; $n = 3$. *$p < 0.01$, **$p < 0.001$ for control versus stimulated.
course of IL-32γ stimulation in WISH cells (Fig. 4B). The blot shows WISH cell lysates after stimulation with 10 ng/ml IL-32γ in which phosphorylated eIF-2α is increased up to 5-fold. In contrast, unstimulated WISH cells exhibited no induction of phosphorylated eIF-2α with the exception of a moderate increase at 24 h (data not shown).

As others have reported an interplay between IL-32 and iNOS in the setting of viral infections (12) and neuroinflammation (19), we investigated whether this interaction occurred in WISH cells, in which iNOS is expressed and regulated (20). However, in contrast to the previous study, we did not observe any effect of IL-32 on NO or vice versa. Neither did the abundance of NO in WISH cells change with different concentrations of IL-32γ, nor did L-NAME, an inhibitor of NO production, alter the antiviral state of WISH cells with or without IL-32γ (data not shown).

Silencing of IL-32 reduces the efficacy of the antiviral response

To explore the antiviral functions of endogenous IL-32 in WISH cells, we knocked down the cytokine using specific siRNA in WISH cells. Using a pool of four different siRNAs at 25 nM each (siIL-32), we consistently achieved ∼90% reductions of steady-state and inducible IL-32 protein, as shown in Fig. 5A. A pool of four nontargeting siRNAs at a similar concentration was used for comparison (scr). Consistent with the results obtained using exogenous IL-32γ in WISH cells, silencing of IL-32 did not affect the levels of constitutive, IL-1β−, or IFN-γ−induced IL-1α, IL-6, IL-8, and IFN-γ (not shown). For instance, IL-1β−induced IL-6 in transfected WISH cells increased by only 14% upon treatment with siIL-32 versus scrambled control (p = 0.74). In contrast, the efficacy of the antiviral responses triggered by poly-IC, poly(U), and IFN-β was reduced. As shown in Fig. 5B, LDH assays revealed that the cytopathic effects of VSV were more pronounced in siIL-32–transfected than in scr-transfected WISH cells. When
endogenous IL-32 was reduced, the protection afforded by poly-IC or poly(U) was 48 and 88% less, respectively, which resulted in 2- to 3-fold more virus compared with the scrambled controls. IFN-β responses appeared less affected by the abundance of IL-32 (data not shown).

IL-32 interferes with HSV-2

Next, we tested whether IL-32 also participates in responses to the DNA virus HSV. Similar to VSV in WISH cells, HSV-2 has cytotoxic effects when propagated in Vero cells and HUVEC (17). To characterize this model, we established a kill curve for serially diluted HSV-2 in Vero cells (Fig. 6A, inset). In this model, a 26% change in LDH translated into a 4–10-fold change in viral load. As shown in Fig. 6A, a 20 h treatment of Vero cells with exogenous IL-32γ before infection with HSV-2 resulted in a biphasic reduction in LDH release. The maximum protection, a 26% decrease in LDH compared with virus only, was observed at 5 ng/ml IL-32γ.

Because the abundance of L-32 was below detection limits of the assays in Vero cells, we employed HUVEC for the silencing experiments, as these cells produce considerable quantities of IL-32 (5) and are susceptible to HSV infection. After achieving the knockdown of IL-32 in HUVEC, the cells were treated with poly-IC, poly(U), or IFN-β. As shown in Fig. 6B, the viral cytopathic effect increased by 22% in poly-IC–stimulated conditions transduced with siIL-32 compared with scrambled-transfected controls. As per the inset of Fig. 6A, this change likely corresponded to a 6–8-fold increase in viral load. We also determined HSV DNA in these cultures by real-time quantitative PCR and observed that the loss of IL-32–mediated protection was assessed correctly by the LDH assays, as copies of HSV DNA increased 8-fold (Fig. 6C).

Only slight changes in LDH values for IFN-β–stimulated conditions were noted (data not shown). The effect of poly(U) was not studied in this model, as TLR7 and -8 are not expressed in HUVEC (21).

Endogenous IL-32 is required for the production of IFN-α and MxA

To further characterize the role of endogenous IL-32 in the antiviral response, PBMC were transfected with siIL-32 and then stimulated with poly-IC, poly(U), or IFN-β. Fig. 7A shows an immunoblot from these lysates stained for the antiviral protein MxA. Upon silencing of IL-32, MxA protein production was reduced by ∼50% in the poly(U)-stimulated conditions. Despite the moderate difference in poly-IC–stimulated conditions in Fig. 7A (which shows the blot that provides the best overview over all conditions), the abundance of MxA was in fact consistently reduced by siIL-32 (mean decrease 34% comparing poly-IC/scr to poly-IC/siIL-32). Constitutive and IFN-β–induced MxA appeared to be unaffected by changes in IL-32 levels.

To determine whether IL-32 participates in the production of IFN-α, we measured this cytokine in PBMC transfected with siIL-32 or scrambled siRNA. Fig. 7B demonstrates that in the absence of endogenous IL-32, the 3.7-fold increase in IFN-α production induced by a 20 h treatment with poly-IC was nearly abolished. Importantly, this effect was also observed after only 0.5 h of stimulation with poly-IC (1.4-fold increase in scrambled versus 0.6-fold decrease in siIL-32).
Fig. 8 provides an overview of the working hypothesis regarding the role of IL-32 in the immune response to DNA and RNA viruses based on the data presented above.

Discussion
When we first set out to investigate the role of IL-32 in viral infections, we expected this cytokine to increase the proliferation of viruses. This assumption was based on the proinflammatory properties of IL-32, which comprise signaling via the p38-MAPK, NF-κB, and AP-1 pathways to upregulate IL-1β, IL-6, IL-8, and TNF (1, 2). Under most circumstances, cytokines with similar activities stimulate viral reproduction, but not so for IL-32. Silencing of endogenous IL-32 in cells acutely or latently infected with HIV-1 resulted in up to 4-fold increases in the production of this virus, despite the fact that levels of IL-1β, IL-6, IL-8, and TNF as well as the activity of NF-κB and AP-1 in the same cultures were considerably reduced (2). These seemingly contradictory findings were explained by three key activities of IL-32: 1) this cytokine augmented the expression of type I and II IFNs, the prototypic antiviral cytokines (22); 2) silencing of IL-32 reduced the production of ligands of the HIV-1 coreceptors CCR5 and CXCR4 (2, 23); and 3) of Th1 cytokines (2), which are important during anti-HIV responses (2, 24, 25). Another group confirmed that IL-32 acts against HIV-1 in a different setting and that the abundance of IL-32 is regulated in human HIV infection (10).

We began our study by characterizing production and regulation of IL-32 in the well-established WISH-VSV bioassay (6). Baseline abundance of IL-32 in these cells was comparable to that in lung epithelial A549 cells (reported in Ref. 1). Our results concerning regulation were also consistent with previous studies, as IFN-γ (1) and IL-1β (26) increased IL-32 production in WISH cells. Next, we explored whether treatment with the synthetic analogs of viral ds- and ssRNA, poly-IC, and poly(U) affected the abundance of IL-32. These analogs are recognized by TLRs and signal via the NF-κB and IRF-3/7 (27, 28) signaling pathways. Viral ds- and ssRNA strongly induce the production of antiviral cytokines, such as type I (IFN-α/β) (29) and III (IFN-λ) IFNs (30). Hence, the findings that both poly-IC and poly(U) increased the production of IL-32 as well as that the IL-32 promoter contains IRF consensus sites (although the functionality of these sites remains to be determined) underscore the importance of this cytokine in the immune response to viruses.

Having established that IL-32 is present and regulated by cytokines and viral components in WISH cells, we explored whether this cytokine imparted protection from the cytopathic effects of VSV infection. Indeed, treatment with exogenous IL-32 resulted in a marked, dose-dependent increase in viable WISH cells. Whereas this finding was consistent with the suppression of HIV-1 by IL-32γ in U1 cells (2) and with antiviral activity of this cytokine against influenza A (13), we unexpectedly observed that when IL-32γ concentrations were increased beyond 10–20 ng/ml, the protective activity progressively decreased. This biphasic fashion of protection was confirmed by an additional assay in which we quantified leakage of LDH from dying and dead cells. The cause for this biphasic pattern remains to be determined; however, one may speculate that, at higher concentrations, the
induction of cytotoxic TNF (1, 31) or yet another proapoptotic mediator by IL-32 may superease the protective effects in this model. In fact, PKR is known to induce apoptosis (32) and may mediate by IL-32 may supersede the protective effects in this model. In fact, PKR is known to induce apoptosis (32) and may play a role in this regard.

We hypothesized that treatment with IL-32γ may upregulate other cytokines in the WISH cell culture by which the production from VSV may be mediated. But this was not the case, as the abundance of IL-1α, IFN-α, and IFN-β, as well as of the effector cytokine IL-6, did not change with IL-32γ-stimulation. [WISH cells are capable of producing these cytokines, but not IL-1β and IFN-γ (33).] Because IFNs can protect WISH cells from VSV-induced cytopathic effects at low concentrations, we used soluble IFN-α/βR to block the activity of extracellular type I IFNs and observed a moderate decrease in the protection afforded by exogenous IL-32γ. This result supports the conclusion that IL-32 indeed possesses IFN-independent antiviral properties. The finding that the antiviral program initiated by IL-32γ appeared to be more transient than that triggered by IFNs (as shown by time-course analysis of eIF-2α phosphorylation with a return to near baseline 24 h after IL-32γ stimulation) also favors this hypothesis.

After characterizing the effects of exogenously added IL-32, we sought to establish causality for the role of IL-32 in antiviral responses. Unexpectedly and in contrast to PBMC (2) and endothelial cells (5), neither constitutive nor inducible IL-1α, IL-6, IL-8, TNF, IFN-γ, or IFN-α/β were affected by changes in IL-32 abundance. Although we cannot explain the absence of changes in cytokine levels at this time, this observation rules out that the antiviral effects of IL-32 are mediated by any of these cytokines.

Viruses trigger IFN production through several pathways. For RNA viruses, the detection event leads to phosphorylation and nuclear translocation of IRF-3 when detected by TLR3 (34) and IRF-3/7 via detection by RIG-I (27), DAI (39), AIM-2 (8), and IFN-γ (Ref. 2) expression. However, some IFN is produced in the absence of IL-32 (35). 5a, IFNs can increase the production of IL-32, constituting a self-amplification cycle (5a, 5b) that initiates and sustains the antiviral machinery of the cell (4, 6, 7).

![FIGURE 7](http://www.jimmunol.org/)

FIGURE 7. The presence of endogenous IL-32 is required for the production of antiviral regulators. In A, PBMC were transfected with siRNA to IL-32 or scrambled, then stimulated for 20 h with vehicle (ctrl), poly-IC (100 μg/ml), poly(U) (5 μg/ml), or IFN-β (2 ng/ml). One immunoblot representative for three blots with similar results from PBMC lysates stained against MxA is shown with multiple stimuli. The fold increase in MxA protein abundance compared with unstimulated, scr-transfected conditions as assessed by densitometry is indicated below the blot. Shown in B are the mean fold changes in IFN-α production ± SEM in PBMC transfected with siRNA to IL-32 or scrambled and stimulated for the indicated periods of time with 100 μg/ml poly-IC or vehicle. n = 5 donors. *p < 0.05, **p < 0.01 for scrambled versus siIL-32.

![FIGURE 8](http://www.jimmunol.org/)

FIGURE 8. Working hypothesis for the mechanism of action of the antiviral properties of IL-32. Green arrows represent upregulation; the red connector symbolizes inhibition. Bold arrows show findings presented in this paper; thin arrows indicate that an effect was known previously (1). Recognition of a virus. A role for IL-32 in this process is possible, but currently unknown. IL-32 is induced (2) and, independent of IFNs (4), boosts cellular antiviral activity by triggering the PKR-eIF-2α, the MxA, and possibly other pathways. Moreover, IL-32 is a crucial component of viremically induced IFN-α (5b) and IFN-γ (Ref. 2) expression. However, some IFN is produced in the absence of IL-32 (35). 5a, IFNs can increase the production of IL-32, constituting a self-amplification cycle (5a, 5b) that initiates and sustains the antiviral machinery of the cell (4, 6, 7).
HSV infections in particular. Directly involved in the antiviral response (Fig. 8, regulation, we revealed that IL-32 controls key proteins that are absence of inhibition as in Fig. 8, and that HSV-2 thrives in an IL-32–deficient environment (ab-deactivation of viral nucleocapsid structures). We also showed that confer the neutralization of viral components (e.g., through the activation of an intermediate such as IFNs. In contrast to a previous pathway, as opposed to requiring the transcription and translation of an intermediate such as IFNs. In this set of experiments provides mechanistic evidence for the antiviral properties of IL-32. In addition, the rapid nature of the effect suggests that IL-32 acts pointedly through the PKR–eIF-2-a pathway, as opposed to requiring the transcription and translation of an intermediate such as IFNs. In contrast to a previous study (12), NO and iNOS did not appear to play a role in the antiviral signaling of IL-32. This observation is likely due to different experimental approaches and opens this field to further investigation. Collectively, these data identify IL-32 as a mediator that is crucial for the mounting of an efficient response to viral infection. As summarized in Fig. 8, we have explored the interplay between IL-32 and IFNs: not only does IL-32 upregulate the production of IFN-a/b (Fig. 8, 5), but it also controls their induction by viral PAMPs (Fig. 8, J, 2, 5). Beyond the intermediate role in IFN regulation, we revealed that IL-32 controls key proteins that are directly involved in the antiviral response (Fig. 8, 4). By activating the PKR–eIF-2-a pathway, IL-32 likely suppresses the initiation of viral protein translation and furthermore may contribute to apoptosis of infected cells. Via upregulation of MxA, IL-32 may confer the neutralization of viral components (e.g., through the deactivation of viral nucleocapsid structures). We also showed that without IL-32, WISH and Vero cells as well as HUVEC are more susceptible to VSV- or HSV-2–induced cell death, respectively, and that HSV-2 thrives in an IL-32–deficient environment (absence of inhibition as in Fig. 8, 7). This study lays the foundation for a possible future therapeutic use of IL-32 or its signaling pathways in viral diseases in general and as a topical agent for HSV infections in particular.

Acknowledgments
We thank Soo-Hyun Kim for important advice regarding IL-32 and Daniela Novick for the sol-IFN-a/β as a gift. Likewise, the HSV-2 stock was provided by the laboratory of Elizabeth Connick. We also thank Georg Kochs for making the anti-MxA Ab available to us and Tania Azam for technical advice.

Disclosures
The authors have no financial conflicts of interest.

References
induced intracellular signaling leading to gene induction or to cytotoxicity by necrosis or by apoptosis. *J. Inflamm.* 47: 67–75.

