Antiviral Response Dictated by Choreographed Cascade of Transcription Factors

Elena Zaslavsky, Uri Hershberg, Jeremy Seto, Alissa M. Pham, Susanna Marquez, Jamie L. Duke, James G. Wetmur, Benjamin R. tenOever, Stuart C. Sealfon and Steven H. Klein

J Immunol published online 17 February 2010
http://www.jimmunol.org/content/early/2010/02/17/jimmunol.0903453

Supplementary Material
http://www.jimmunol.org/content/suppl/2010/02/15/jimmunol.0903453.S1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Antiviral Response Dictated by Choreographed Cascade of Transcription Factors

Elena Zaslavsky,*,†,1 Uri Hershberg,‡,1 Jeremy Seto,*† Alissa M. Pham,§ Susanna Marquez,‡ Jamie L. Duke,§ James G. Wetmur,§ Benjamin R. tenOever,§ Stuart C. Sealfon,*† and Steven H. Kleinstein‡,

The dendritic cell (DC) is a master regulator of immune responses. Pathogenic viruses subvert normal immune function in DCs through the expression of immune antagonists. Understanding how these antagonists interact with the host immune system requires knowledge of the underlying genetic regulatory network that operates during an uninhibited antiviral response. To isolate and identify this network, we studied DCs infected with Newcastle disease virus, which is able to stimulate innate immunity and DC maturation through activation of RIG-I signaling, but lacks the ability to evade the human IFN response. To analyze this experimental model, we developed a new approach integrating genome-wide expression kinetics and time-dependent promoter analysis. We found that the genetic program underlying the antiviral cell-state transition during the first 18 h postinfection could be explained by a single convergent regulatory network. Gene expression changes were driven by a stepwise multifactor cascading control mechanism, where the specific transcription factors controlling expression changed over time. Within this network, most individual genes were regulated by multiple factors, indicating robustness against virus-encoded immune evasion genes. In addition to effectively recapitulating current biological knowledge, we predicted, and validated experimentally, antiviral roles for several novel transcription factors. More generally, our results show how a genetic program can be temporally controlled through a single regulatory network to achieve the large-scale genetic reprogramming characteristic of cell-state transitions. The Journal of Immunology, 2010, 184: 000–000.

Dendritic cells (DCs) play a key role in the early immune response to viral infections. Activation of viral pattern sensors, such as RIG-I and MDA5, triggers a transcriptional program that includes the production of type I IFNs. These antiviral cytokines signal in both autocrine and paracrine fashion through the JAK-STAT pathway leading to additional transcription events involving the differential expression of many hundreds of genes. The antiviral state produced by this extensive genetic reprogramming involves a core set of genes as well as pathogen-specific components (1).

The DC response to individual pathogens involves multiple signals that must be integrated to initiate an appropriate immune response. Pathogenic viruses attempt to subvert normal immune function through the expression of IFN antagonists (2, 3). For example, IFN regulatory factor (IRF) 3 activation and IFN-β expression are blocked by the NS1 protein of influenza (4). Unraveling the impact of these immune antagonists would be aided by a detailed understanding of the genetic regulatory network that operates during an uninhibited antiviral response. This knowledge is lacking because previous human studies have used viruses that interfere with the immune response (4–6). One fundamental unresolved question is to what extent the antiviral response is a single interconnected transcriptional cascade (convergent architecture) or a combination of transcriptional events operating independently in reaction to the multiple signals that arise following viral insult (parallel architecture). Newcastle disease virus (NDV) infection of human DCs provides an ideal system to define the uninhibited regulatory network (7, 8). NDV is an avian virus that is able to stimulate innate immunity and DC maturation, but lacks the ability to evade the human interferon response (9). By focusing on NDV, we can accurately depict the baseline network of transcription factor (TF) interactions that underlie a broad range of immune responses. Through comparative studies, this network will enable detailed analysis of other infections and greatly improve our understanding of the control mechanisms in antiviral immunity and the myriad ways through which pathogenic viruses subvert normal immune function.

Systems biology methods combined with high-throughput experimental technologies are providing new insights into virus-host interactions (10, 11). Genome-wide transcriptional profiling has suggested that the DC antiviral response is characterized by temporal waves of gene activation, which may be controlled by different combinations of transcriptional regulators (1). Potential regulators can be implicated using direct approaches, such as differential expression of the TF mRNA (1) or indirectly by identification of
common cis-regulatory motifs (12, 13). These methods typically provide a static view of the network. Other computational methods have been proposed to identify TFs driving time-dependent changes in expression, but these do not explicitly account for the regulation of the TF itself (14, 15). The most common approaches are based on the hypothesis that genes sharing a similar temporal profile are regulated by common TFs (16). In mammals, a variety of posttranscriptional regulatory mechanisms can impact mRNA kinetics following upregulation (17), so that requiring similarity across the entire time series may be unnecessarily restrictive. As an alternative, we propose to focus on the initial upregulation time as a criterion to identify genes that are likely to share common regulatory control logic.

We developed and validated by experiment a new approach integrating genome-wide expression kinetics and time-dependent promoter analysis. Our method infers the TFs driving initial gene expression changes, determines the timing of their activity and identifies a causal chain of regulation. We have applied this approach to the anti-NDV response in human DCs to deduce the causality and coherence of the transcriptional events responsible for the complex gene regulation elicited by virus infection. Along with many expected factors (e.g., IRFs and STATs), key roles were predicted and experimentally validated for several regulators with no previously known role in antiviral responses. Our approach identified a single transcriptional cascade that spanned the experimental time series and could account for observed expression changes in a majority of all upregulated genes.

Materials and Methods
Multiple sample gene array time course following NDV infection of isolated DCs

Differentiation of DCs. Monocyte-derived conventional DCs were obtained from human blood donors following a standard protocol (18, 19). Briefly, human monocytes from buffy coats were isolated by Ficol density gradient centrifugation (Histopaque; Sigma-Aldrich, St. Louis, MO), and CD14+ monocytes were immunomagnetically purified by using an MACS CD14 isolation kit (Miltenyi Biotec, Auburn, CA). CD14+ monocytes (0.7 × 10^6 cells/ml) were later differentiated into immature conventional DCs after 5 to 6 d incubation in DC growth media (RPMI 1640, Life Technologies, Carlsbad, CA), 10% FCS (Hyclone; Thermo Fisher Scientific, Waltham, MA), 2 mM l-glutamine, 100 U/ml penicillin, 100 µg/ml streptomycin (Pen/Strep; Invitrogen, Carlsbad, CA), 500 U/ml hGM-CSF (PeproTech, Rocky Hill, NJ) and 1000 U/ml IL-4 (PeproTech) at 37°C. Virus preparation and viral infection. The recombinant Hitchner strain of NDV (rNDV/B1) was prepared, and aliquots of allantionic fluid were harvested as previously described (20). NDV virus stock was titered by infection of Vero cell plates and identification of viral growth by the addition of mAbs specific for NDV HN protein (Monti Sinai Hybridoma Core Facility, New York, NY) followed by addition of anti-mouse IgG-FITC and visualization using fluorescent microscopy. Titered NDV stock was diluted in DMEM and added directly into pelleted DCs at a multiplicity of infection of 0.5 prepared as previously described (21). Postincubation for 30 min at 37°C, fresh DC growth medium was added back to the infected DCs (1.0 × 10^6 cells/ml). Virus-free allantionic fluid was added to all tubes of cells to serve as a negative control.

Microarray experiments. Total RNA was purified from 2.5 × 10^6 DCs per time sample using RNeasyMicro (Qiagen, Valencia, CA) with DNase treatment. RNA was eluted from columns using water and quantified by spectrophotometry. Quality control of RNAs was performed using the Agilent Bioanalyzer (Agilent, Santa Clara, CA). Total RNA from cells of two different donors were infected with NDV or control and harvested at 0, 1, 2, 6, 10, and 18 h for control and 1, 2, 4, 6, 8, 10, 12, 14, 16, and 18 h for NDV infection. Biological replicates were performed for both of these donors. A third donor was not included in the current analysis because no replicate measurements were made. Good-quality RNA was reverse transcribed using T7-oligo(dT)24 to yield double-stranded cDNA. cDNA was transcribed and biotinylated from cDNA templates. Fragmented cRNA was hybridized to Affymetrix GeneChip Arrays (Affymetrix, Santa Clara, CA) and washed, stained, and imaged using the Affymetrix GeneChip Reader (Affymetrix) controlled by the Mount Sinai Microarray Shared Resource Facility. All microarrays studied in this paper have been deposited in the Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo) with the series accession number GSE18791.

Microarray analysis. Raw Affymetrix microarray data were normalized using GCRMA. Differential expression was defined for each probeset using four criteria. For at least one time point in each of the experiments, we required: 1) a minimum log2 intensity of 5, which was indicative of nonexpressed genes by visual inspection of the expression intensity histogram at time-zero; 2) an absolute fold-change of at least 2 relative to time-zero; and 3) a significant change in expression by LIMMA (BioConductor implementation) after correction for multiple hypothesis testing (q < 0.005) (22). The fourth criterion for defining differential expression required that the probeset did not meet criteria 2 and 3 above in the control time series. In analyses where a background set of genes was required, it was defined as the set of genes from all time points that met criterion 3 (significant change by LIMMA), without regard to either of the other criteria. All of this analysis was performed using the BioConductor software package (23) in R. Gene ontology (GO) analysis was performed using the conditional test in the GOSTats package (24).

Comparing the timing of response progression
Estimating the upregulation time for genes. The initial upregulation time for each gene was estimated by fitting the mRNA expression time series following NDV infection to a logistic function (Equation 1). Parameters (A, K, I, and C) were estimated by minimizing the sum-squared error using differential evolution with modified sampling (25). To neutralize the undue influence of high-intensity gene array results, we divided the error at each time point by its intensity. The upregulation time for each gene was defined as the time of maximal change in the acceleration of the logistic function (star in Fig. 1). This point can be calculated by finding the maximum of the third derivative (i.e., the first time at which the fourth derivative of the logistic function equals zero). Estimates of the upregulation time were considered acceptable if they fell between 0 and 18 h (i.e., the time points included in the fit). Note that the value for time point zero in the fitting was taken from the appropriate control gene arrays because measurements of time zero were done only for the control experiments.

\[A + \frac{I}{1 + e^{-\frac{I-C}{K}}} \]

(1)

TF binding site analysis
Using the University of California Santa Cruz Genome Bioinformatics site (http://genome.ucsc.edu/), we downloaded the transcription start site (TSS) for all human RefSeq genes, defined by the March 2006 refGene table (26). The region 2 kb upstream of each TSS was identified within a genome-wide multiple alignment of 27 vertebrate species to the human genome (27), also available through University of California Santa Cruz Genome Bioinformatics site. To identify putative TF binding sites, the human sequences, along with aligned regions from chimpanzee and mouse, were analyzed using the TRANSFAC MATCH (28) algorithm with a cutoff chosen to minimize the sum of false positives and false negatives. The analysis was performed for all vertebrate TF matrices in the 2008.3 release of TRANSFAC (29), and putative binding sites were considered to be evolutionarily conserved if matches were also found at the aligned positions in both chimpanzee and mouse sequences and had no gaps present in the multiple alignment. Each TRANSFAC matrix was linked to a set of gene symbols describing potential binding factors using annotations present in the “Binding Factor” field of the database. Only vertebrate TRANSFAC matrices that could be linked to a human (HGNC) gene symbol (30), either directly or through an alias linked in National Center for Biotechnology Information gene, were included. To build the regulatory network, we further refined the list of TFs to include only those that were upregulated in our microarray time series.

Time-dependent promoter analysis and regulatory network construction

We constructed a regulatory network by inferring transcriptional regulators of each time slice. The TF inference was based on statistical enrichment of putative TF targets. More precisely, let G, the called foreground set, be the set of differentially expressed genes at a particular time point, and let T be the set of all genes in the dataset with binding sites for a given TRANSFAC matrix M. The set T is determined by choosing an appropriate sequence match cutoff for matrix M and further filtering the genes with matches to M to include only those with a conserved binding site upstream of an orthologous mouse and chimpanzee gene (as described above). The background set R, which serves to catalog the expected distribution of binding sites for M and dictate whether the observations in the foreground set G are unusual, is computed as described above (see Microarray analysis). Next, we find how many of the genes in the foreground and
background contain binding sites for matrix M, defining subsets in the
foreground and the background as intersections of G and B, respectively,
with T. With \(N_T = |G| \), \(N_B = |B| \), \(H_B = |G \cap T| \) and \(H_B = |B \cap T| \), we computed the hypergeometric \(p \) value \(HGP(N_T, N_B, H_B, N_R) \) (Equation 2), which is the

\[
HGP = \min_{j=H_R} \left(\frac{N_R}{N_B + N_R - j} \right) \frac{N_B}{H_B + H_R}
\]

(2)

At each time point, we computed the \(p \) value for every TRANSFAC matrix
mapped to a gene found to be differentially expressed somewhere in the
time course and retained those passing a false discovery rate-corrected
threshold of 0.05 (22). To connect the individual TFs into a regulatory
network, we placed each TF gene represented by one of the enriched
matrix matches at the time it is first differentially expressed. An activity window
was defined for every TF in the network. The temporal boundaries of the
activity window of each TF were defined to include the earliest and latest
times of differential expression and enrichment of associated matrices.

The upregulation time for each gene was determined by fitting a logistic
model for transcriptional regulation, and visual inspection of the
data suggested this was appropriate for many of the genes known to
participate in the antiviral response (e.g., IFNB1; Fig. 1). This
model-based approach allowed us to estimate the upregulation time at
a finer resolution than the microarray sampling. Another advantage is that the estimate is less sensitive to variation in individual expression values because the entire time course is fit by
the model. Focusing on a representative set of genes known to participate in pathogens responses (31), we identified 94 upregulated
genes that displayed expression patterns with an acceptable fit to the
ligistic function. These were used to measure the degree of
conservation in the anti-NDV response. The selected genes spanned
a wide range of upregulation times, although none were found to be
upregulated at later time points (after 12 h postinfection; Fig. 2), indicating either the relatively early initiation of the response or the
difficulty of fitting expression profiles that do not reach saturation.

To quantify the overall conservation of the regulatory progression
between samples and subjects, we assessed the relative degree of
similarity in the upregulation times of the selected pathogen response genes. As can be readily seen in Fig. 2, the estimated upregulation
times were very highly correlated both between donors and across
samples, resulting in correlation coefficients ranging between 0.8
and 0.9. This indicated that the initial steps of the antiviral response
are ordered in a highly conserved progression of gene expression.
Such a high degree of conservation in the time progression, as our
results indicated, is most likely the result of a tightly controlled set
of regulatory mechanisms that operate as the system progresses
through time. Surprisingly, the variance in upregulation times
appeared relatively constant over time (Fig. 2), suggesting the existence
of feedback mechanisms to dampen any noise that might
accumulate as the signal propagates through the network (32, 33).

To identify the regulatory cascade underlying this tightly controlled system, we first focused on the events occurring at distinct time
points and then connected this information across time into a co-
herent higher-level transcriptional network. We focused specifically
on upregulated genes because downregulation times were not
correlated across donors or samples (Supplemental Fig. 1).

Multifactor cascading control of the antiviral genetic program

In this section, we implemented our time-centric view by identi-
yfying and analyzing sets of genes that were first upregulated at each
time point (i.e., 1, 2, 4, 6, 8, 10, 12, 14, 16, and 18 h postinfection;
Fig. 3A). This approach contrasts with the more standard analyses

FIGURE 1. Model-based estimation of the upregulation time for individual genes. The upregulation time for each gene was determined by fitting a logistic function (solid line) to the experimentally measured mRNA expression values from a single experiment (circles). The estimated time of upregulation was defined as the maximal change in the acceleration of the logistic function and is indicated by a star. This example shows IFNB1 expression from donor 2, sample 1.
that first cluster genes across a set of experiments and then analyze these refined subsets for functional enrichment, TF activity, etc. (16, 34, 35). It also differs from the straightforward approach of treating each time point independently, because the entire time series is used to determine the point of initial upregulation.

Transcriptional regulators. The activation of the antiviral response is complex and involves many viral and cellular determinants. Due to the high level of correlation we found between samples and the careful temporal progression it implied, we analyzed the underlying regulatory controls in a temporal succession. Starting from the 1351 upregulated genes, we considered sets of genes that were first differentially expressed at each time point separately and attempted to infer the TFs involved in regulating them. Transcriptional regulators for each time slice were identified by testing for statistical enrichment of their putative targets (as described in Materials and Methods). That is, if among the set of upregulated genes an unusually high number contain binding sites for a particular TF, that factor is likely involved in regulating the genes under consideration. Statistical significance was assessed using the hypergeometric distribution to measure the degree to which a given regulator’s set of targets is overrepresented in the sample of genes under consideration compared with a representative background set.

Using information from the TRANSFAC database (29), we identified 80 TF binding matrices (motifs) annotated to human TF genes that were upregulated during at least one point in our microarray time series. We restricted the TRANSFAC database in this way because we were only interested in those TFs most likely to participate in the regulatory program as conduits of the transcriptional signals (16, 34, 35), implying differential-expression at the mRNA level. Although it would be conceptually simple to extend the analysis to all TFs included in TRANSFAC, computing the p value for all TRANSFAC matrices would also greatly reduce statistical power as a result of the multiple hypothesis correction. For each of these 80 matrices, we determined the set of putative target genes by scanning the promoter regions and requiring that potential binding sites be conserved in chimp and mouse (Materials and Methods). This kind of phylogenetic footprinting has been shown to decrease the number of false-positive binding sites (36).

Our enrichment analysis found a total of 30 matrices whose targets were significantly over-represented during at least one time-point (false discovery rate, q < 0.05). We generated a temporal enrichment profile for each of these matrices by identifying the different time points during which their targets were overrepresented. As seen in Fig. 3B, the activity of most of the matrices, and by implication the TFs they represent, spans several hours. Moreover, we observed multiple temporal phases in the response, each driven by distinct groups of TFs. In agreement with many previous studies of the innate antiviral response (6), IRF-based
activation was evident in the initial wave of transcriptional upregulation. In our analysis, this initial wave begins 4 h postinfection, somewhat later than expected. This is likely because genes are assigned to time points somewhat later than their actual upregulation due to the stringent differential-expression criteria used in this study. Similarly, STAT activity was apparent by 4–6 h postinfection and peaked at 14 h postinfection. The middle phase of the response was driven by a variety of TFs, many of which have not been previously implicated in antiviral responses (see DC antiviral transcriptional network). Overall, the inferred enrichment profiles strongly suggested a cascade of TFs that drive different temporal phases of the response (Fig. 3B).

Distributed overlap and redundancy of transcription target genes. Having determined the individual regulators of the response, we focused on their target genes to determine the extent of cooperative regulation and redundancy. It is quite clear that there is a great amount of redundancy between the targets of the different matrices. Of the 30 TRANSFAC matrices implicated, none has >∼10% unique targets (and many have less). Moreover, most individual genes are targeted by >1 matrix. This can arise when a single TRANSFAC matrix is associated with multiple genes (e.g., the association of VSIRF_Q6 with several IRFs) or when the TFs are members of a complex that is represented by multiple matrices (e.g., NFKB1, NFKB2, REL, and RELA). In other cases, a high overlap of target genes could indicate cooperative regulation. To identify these potential interactions, we quantified the extent of overlap in the target gene sets for all of the TRANSFAC matrices implicated in the anti-NDV response (Fig. 3C). As expected, the most significant overlap of target genes occurred for matrices that describe members of the same TF family or complex. These are readily apparent in the dark red blocks along the diagonal in Fig. 3C. However, in a few cases, significant overlap was observed between different TF families. The most striking example involves the matrices encoding the STATs, ALX1, FOXO3, and FOXC1, whose targets overlap ∼30% on average (Fig. 3C, black box). Within this group of core TFs, the highest pairwise overlap of target genes occurs for ALX1 and FOXO3, and we hypothesize that these two TFs may be part of a single cis-regulatory module. In general, we predicted that most genes would be regulated by multiple TFs, with only 150 genes containing binding sites corresponding to a single matrix.

Causal linkage generates unified regulatory cascade

We sought to generate a transcriptional regulatory network that could connect the TFs associated with each phase of the response into a coherent linked cascade. This kind of representation required us to shift our focus from TRANSFAC matrices, which can each be annotated to multiple TFs, to a framework that considers individual TF activity over time.

DC antiviral transcriptional network. We generated an initial set of network links by identifying all pairs of TFs in which one was a putative regulator of the other. To reduce the potential for false-positive regulatory relationships, we limited the time frame during which a TF could be implicated as having an important role in regulating a potential target. This was accomplished by defining an activity window for each TF (Materials and Methods). We removed all network links where the initial upregulation of the target gene occurred outside the activity window of the regulator. This pruning removed 37 links, producing a final network that consisted of 24 TFs and 133 regulatory links. To visualize the resulting network (Fig. 4), each TF was placed at the time its mRNA was first upregulated in the response. We also considered the placement of TFs based on their activity, but ruled this out for two main reasons. First, many of the TRANSFAC matrices were enriched at multiple time points, making the choice of placement somewhat arbitrary. Second, this scheme does not allow for differentiation between TFs that are annotated to the same TRANSFAC matrix. Placing genes at the time of their first differential expression provides TF-specific information and, in combination with the activity heatmap (Fig. 3B), leads to a clearer view of the temporal progression of the network. This placement scheme is also consistent with our view of the biological process.

FIGURE 3. Dynamic activity profiles and target overlap for TFs in the NDV response network. A, The number of genes first upregulated at each time point, split by TF (white bar) and non-TF (black bar) genes. B, Heat map showing the overrepresentation of targets associated with each of the TRANSFAC matrices in the network (rows) over time (columns). The colors are row normalized −log (p values). Darker red indicates greater inferred activity of the TF. The temporal activity window of each TF matrix (●—●) was inferred from the union of the activity of all of the individual TFs represented by that matrix. C, Heat map quantifying the extent of overlap between predicted targets of each TRANSFAC matrix (rows and columns). Colors indicate −log (p values) of the hypergeometric test. The threshold for statistical significance assuming a Bonferroni-corrected p value of 0.05 is indicated by the dashed line on the color bar. Matrices that could be individually removed without any loss of coverage are marked with an asterisk (*). The black box indicates a region of high overlap between TFs from different families, suggesting possible cooperativity.
as a stepwise cascade where the upregulation of the TF is tied to its activity. To provide additional resolution, genes appearing within the same time slice were ordered based on the upregulation time estimated by our model-based analysis (see Timing of gene expression is highly conserved). To interpret the network visualization in Fig. 4, it is helpful to keep in mind that links connect regulators to targets and arrowtails indicate upregulation of the regulator, whereas arrowheads indicate activity of the regulator.

The resulting network of 24 TFs spans virtually the entire time period analyzed. The TFs in this network are predicted to regulate 779 of 1351 (58%) upregulated genes. As mentioned above, the transcriptional cascade we have discovered includes many TFs already associated with the interferon response (e.g., IRFs, STATs, NF-κB) (6). It additionally includes ATF3 and TGIF1, which were previously implicated by other systems biology analyses (16, 35). In all, 18 of 24 TFs implicated in the transcriptional cascade controlling the antiviral response appear in the known general pathogen response signature (31) or the core DC response signature (1) (Fig. 5). Clearly, our approach is effective at capturing the known biology of the system.

The network contains both feedforward links, which propagate the transcriptional signal through time, as well as feedback links, where TFs may influence the activity of targets that have previously been upregulated (Fig. 4). Feedback links, although serving as potential conduits of regulatory activity, do not neatly fit into our idealized view of a regulatory cascade where upregulation of TFs at the

Table I. Novel TFs predicted by the network analysis

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>TRANSFAC Matrix</th>
<th>TRANSFAC Motif</th>
<th>First Expressed (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALX1</td>
<td>VSCART1_01</td>
<td>TATA</td>
<td>10</td>
</tr>
<tr>
<td>FOXC1</td>
<td>VSFREAC3_01</td>
<td>AAAA</td>
<td>8</td>
</tr>
<tr>
<td>FOXO3</td>
<td>VSFVOX3_01</td>
<td>TTTT</td>
<td>14</td>
</tr>
<tr>
<td>MAX</td>
<td>VSMYCMAX_02</td>
<td>CACG</td>
<td>8</td>
</tr>
<tr>
<td>RUNX3</td>
<td>VSAML_Q6</td>
<td>ACCG</td>
<td>8</td>
</tr>
<tr>
<td>ZEB1</td>
<td>VSAREB6_01</td>
<td>ACCG</td>
<td>14</td>
</tr>
</tbody>
</table>

Factors listed in boldface were experimentally tested using EMSA. *Multiple TRANSFAC matrices are significant; only the one with the most significant p value is indicated.*
mRNA level drives the next wave of transcriptional changes. Thus, it is important to note that excluding these links only disconnects a single TF (STAT5A) from our network. We chose to visualize these links to present potentially important information on candidate feedback circuits. To understand whether the inferred network architecture was effective in capturing the underlying transcriptional cascade, we reasoned that true regulatory interactions would link genes that appeared close together in time. To test this hypothesis, we compared the average link length (i.e., the absolute difference in upregulation time between the regulator and target) in the inferred network with that found in a set of random networks. To generate each random network, all upregulated genes were randomly assigned an initial differential expression time, and TFs were randomly assigned an activity window from the set of observed profiles. Networks were inferred from these randomized data using the same method as the observed data, including the determination of enriched TRANSFAC matrices, etc. We found that the average link length in the real network (3.2 h) was significantly shorter than those of the random networks (p < 0.002 for 1000 random networks). A similar result was obtained when the link lengths were computed over all the target genes and not just the TFs appearing in Fig. 4 (p < 0.005 for 1000 random networks). We conclude that our network is effective in capturing the underlying biology and produces a pattern that is consistent with a stepwise transcriptional signal propagation.

Experimental validation of regulatory links. The network implicated six novel TFs in the antiviral response (Fig. 5). We applied multiple criteria for selecting the most promising of these factors.
along with a set of their predicted regulators and targets for experimental validation by EMSA. First, we looked for a robust upregulation pattern in the TF mRNA expression and focused particularly on those upregulated in the middle phase of the response. Second, we eliminated TFs with nonspecific binding signatures so that the true sites would be easier to identify (Table I). Finally, we selected TFs with targets either in the constructed network or in the known pathogen response gene set, additionally selecting targets with very good matches to the TF’s binding signature. To ensure the reliability of the EMSA validation, we verified that such targets did not overlap with predicted binding sites for any other matrixes annotated to TFs associated with pathogen responses (1, 31) or appearing in our network. Our set of sites for any other matrixes annotated to TFs associated with verified that such targets did not overlap with predicted binding signature. To ensure the reliability of the EMSA validation, we selecting targets with very good matches to the TF’s binding network or in the known pathogen response gene set, additionally signatures so that the true sites would be easier to identify (Table I). As a group, these TFs had at least one binding site in 70% of all the network targets, suggesting they are critical factors driving the observed upregulation pattern. We sought to place these TFs in a functional context by performing a GO analysis of their predicted target genes. FOXC1, RUNX3, and ALX1 targets share many of the same functions; however, they have distinct profiles (Fig. 6). The targets of RUNX3 include genes related to the T cell response, and the factor appears functionally similar to known players ATF3 and CREM. In contrast, ALX1 and FOXC1 both cluster together with several STATs, although FOXC1 targets more genes related to development. To validate the chosen target sites associated with our three novel TFs, we performed EMSAs with NDV-infected whole cell extract using 32P-labeled oligonucleotides. EMSA probes were designed to include core target sites flanked with the endogenous genomic sequence (Table II). In comparing uninfected whole cell extract to extract derived from 4, 6, and 8 h postinfection, we were able to verify four uncharacterized virus-inducible elements (Fig. 7). TF binding assays using a characterized ISRE element of ISG15 and a putative IRF7 site upstream of the ALX1 TSS both demonstrated virus-inducible binding that was evident at 4 h postinfection and was sustained for the duration of the sampling (Fig. 7A, 7B). Furthermore, a putative ALX1 target element also demonstrated virus-inducible occupancy during infection (Fig. 7C). This element upstream of the PLA1A gene mediated the assembly of a single DNA-binding complex estimated to be 75–150 kDa. Moreover, binding of the ALX1 promoter element in PLA1A appeared to be dynamic, as a second faster migrating complex was visible by 8 h postinfection, suggesting a time-dependent change in the composition of this complex (Fig. 7C). These results place ALX1 within a well-known network motif (38) (Fig. 8). Two additional non-ISRE binding sites were also verified by EMSA, including putative binding sites for FOXC1 and RUNX3 (Fig. 7D, 7E). Taken together, these data corroborate both microarray data and computational analyses, suggesting a complex transcriptional regulatory network that may depend on the cooperative activities of multiple TFs.

Discussion

The activation of viral pattern sensors combined with cytokine signaling initiates a genetic program in DCs that is critical to controlling infection. We have found that the timing of this program is highly conserved. To deduce the underlying regulatory architecture, we developed an integrative method to reverse engineer the transcriptional network and its progression through time. Using genome-wide transcriptional profiling data covering the first 18 h postinfection, our approach identified a single regulatory network composed of 24 TFs that accounts for the upregulation of a majority of genes (Fig. 4). This network captures and connects through time many known elements of the antiviral response, including IRFs, STATs, and NF-κB. The cascading pattern of TF activity (Fig. 3B) and the interconnectedness of the network (Fig. 4) combined with the tight conservation of target upregulation times (Fig. 2), all indicate an integrated control as opposed to an underlying parallel architecture. It is important to carefully interpret the network structure and ordering of events defined by the predicted regulatory network because the overall genetic program results from the integration of multiple signals that may arrive at different times. The NDV infection was performed using a multiplicity of infection of 0.5 so that only approximately half the cells are infected and thus many cells are simply responding to the IFN and other cytokines secreted by infected cells, rather than directly to the virus. Although this implies that the gene expression measurements reflect the operation of two distinct signaling pathways, the inferred network structure suggests that both rapidly converge on an overlapping set of downstream transcriptional regulators. Nevertheless, this could explain why NF-κB activity follows STAT activity in our network. We conclude that the uninhibited antiviral response is the result of a single transcriptional cascade with a convergent architecture and is not implemented as a series of independent transcriptional events.

Six TFs whose involvement in the network was predicted by our method are not part of the general pathogen response signature (31) or the DC core response (1). These represent potentially novel antiviral

Table II. Probe sequences used in EMSA experiments

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>Specific TRANSFAC Matrix</th>
<th>TF/Target Site</th>
<th>Probe Sequence (5′-3′)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISG15 (control)*</td>
<td>ISRE</td>
<td></td>
<td>GATCGGAAAGGGAAACGAAACTGAAAGCC</td>
</tr>
<tr>
<td>ALX1*</td>
<td>VSIRF7_01</td>
<td>IRF7</td>
<td>AGTTCTAAATGATATAGSAAGCGGCGG</td>
</tr>
<tr>
<td>PLA1A*</td>
<td>VSCART1_01</td>
<td>ALX1</td>
<td>GAGGCTTTGAGTTGTTGTTGTTGTTT</td>
</tr>
<tr>
<td>IFN5</td>
<td>VSCART1_01</td>
<td>ALX1</td>
<td>AATTAAATTTGATGGCGGTGTATTTAG</td>
</tr>
<tr>
<td>IFN7</td>
<td>VSCART1_01</td>
<td>ALX1</td>
<td>TGAACACTAATTTCTACATTTCATTAAAG</td>
</tr>
<tr>
<td>FOXC1</td>
<td>VSSTAT1_01</td>
<td>STAT1</td>
<td>GGGGCTCGCGTGCCTCGCCTCGCCTCGCCT</td>
</tr>
<tr>
<td>IFNA14*</td>
<td>VSRECA3_01</td>
<td>FOXC1</td>
<td>GTGCATCTGAGCTGTTAAATAGGGAAACATAC</td>
</tr>
<tr>
<td>CREM</td>
<td>VSRECA3_01</td>
<td>FOXC1</td>
<td>AAAATGGCTTCTCGGAAATGAAAAAT</td>
</tr>
<tr>
<td>CXCL9</td>
<td>VSRECA3_01</td>
<td>FOXC1</td>
<td>GAAGTGAAATCTCTAATATATATGATCC</td>
</tr>
<tr>
<td>PCL19</td>
<td>VSRECA3_01</td>
<td>FOXC1</td>
<td>CCCCATTAAAAATGGGAAATGAGA</td>
</tr>
<tr>
<td>RUNX3</td>
<td>VSCREB_04_01</td>
<td>CREM</td>
<td>CACCTGCAGGGCGGCGGTCGACAGCGCCTTT</td>
</tr>
<tr>
<td>RUNX3*</td>
<td>VSAIA_06</td>
<td>RUNX3</td>
<td>CACCTGCAGGGCGGCGGTCGACAGCGCCTTT</td>
</tr>
<tr>
<td>CCL3</td>
<td>VSAIA_06</td>
<td>RUNX3</td>
<td>TATTCCTGAGCCCTTGGTCACACGAGGACC</td>
</tr>
</tbody>
</table>

*Validated by EMSA.
Network motif involving the putative antiviral TF ALX1.

The Journal of Immunology

FIGURE 7. Experimental validation of TF network connections. EMSAs were performed at 0, 4, 6, and 8 h postinfection to test for virus-inducible binding at predicted binding sites. A, Positive control demonstrating virus-inducible binding to an ISRE element in the promoter of ISG15. As validation of the TF network connections, virus-inducible binding was demonstrated for predicted binding sites of IRF7 (B), ALX1 (C), FOXC1 (D), and RUNX3 (E). The probe sequences (detailed in Table II) encompass predicted binding sites found in the promoters of ALX1 (B), PLA1A (C), IFNA14 (D), and RUNX3 (E) as specified in Materials and Methods. TF-probe complexes are indicated with arrows.

FIGURE 8. Network motif involving the putative antiviral TF ALX1. A, The ALX1 gene is activated by IRF7. B, ALX1 activates other genes such as PLA1A. The solid lines (A, B) represent EMSA-validated network connections. The dashed lines, completing a feedforward loop (C) and indicating autoregulation (D), were predicted computationally.

transcriptional potentials or ability to recruit DNA modifying enzymes. In the case of the putative FOXC1 binding site, this element represents the first documented example of a non-IRF controlling the transcription of this genetic cluster. Although this site was found to overlap the TATA-box, it has also been observed that FOX proteins can regulate genes through direct binding to TATA-boxes (39). Further experiments will be needed to verify the true impact of this site and the cause for the FOXC1 binding site we have found.

ALX1 had the highest number of experimentally validated links. Based on the occupancy of the IRF7 binding site upstream of the ALX1 TSS, it would appear that transcription is, in part, mediated directly by type I IFN signaling (Fig. 7B). In the network, ALX1 is predicted to cooperate with IRFs in the regulation of downstream genes as part of a feed-forward loop (Fig. 8). ALX1 encodes CART1, a paired-class homeodomain protein that is necessary for survival of the forebrain mesenchyme in rodents (40). Although the binding site preferences for CART1 have been characterized (41), the function of this protein in humans is not known. A GO analysis of ALX1-predicted targets suggests that this factor is functionally similar to STAT1 and FOXO3 (Fig. 6). ALX1 target genes are involved in a variety of functions, but the most enriched GO category predicts that this factor is most likely involved in the negative regulation of macromolecule biosynthetic processes (GO:0010558; Fig. 6). Our network analysis places ALX1 within a well-known network motif (38), supporting a critical role for this TF in coordinating the antiviral response (Fig. 8). Our experimental results also appear to indicate the workings of such a feedforward control element of PLA1A by ALX1 and another virus-activated TF. Looking at our EMSA results, we see that following the assembly of a single DNA-binding complex at 4 h, a second faster migrating complex was visible by 8 h postinfection (Fig. 7B). These results suggest the exciting possibility that ALX1, and other novel TFs identified in this study, may cooperate both with each other, or with known virus activated factors such as IRF3, IRF7, STAT1, and/or NF-κB.

Combinatorial regulation can play an important role in mammalian gene regulation but is not specifically incorporated in our approach. However, multiple regulators are predicted for most target genes, and the potential for combinatorial control can be investigated indirectly by analysis of TF target overlap (Fig. 3C). Consistent with our idea of cascading control, we found that most of the implicated TFs do not exhibit statistically significant pairwise overlap of target genes. However, a cluster of high overlap, including ALX1 (mentioned above) and also FOXO3, FOXC1, and STAT, was identified and may also reflect cooperative activity (Fig. 3C, black box). Together, these TFs account for ~70% of the genes controlled by the network. The cooperative nature of the network is further evidenced by the fact that only ~19% of genes controlled by the network are targeted by a single matrix. Thus, although TFs pass along the baton in an orderly fashion, individual genes may be controlled by multiple TFs at various points in the cascade, and the network as a whole is the minimal unit of control.

The network-building approach developed in this study is generally applicable to transcriptional profiling time series. It differs from most current analyses in several important ways. First, we grouped genes according to their initial time of upregulation. Second, instead of simply identifying the controlling TFs, we connected these together mechanistically to generate a complete transcriptional cascade. In cases where the time resolution of microarray sampling may not be sufficiently dense to isolate genes with common cis-regulatory logic, we suggest that the model-based analysis might be generalized to estimate upregulation times on a finer scale. Several assumptions underlying our network reconstruction method are important to keep in mind. The analysis is limited to TFs whose
binding preferences are known and are included in the TRANSFAC database. Nevertheless, as we have demonstrated, it is possible to implicate factors with previously unknown functions such as ALX1. Our method is also restricted to TFs that are differentially expressed at the mRNA level. Consequently, it will miss factors that are posttranscriptionally regulated, which may be particularly important in the earliest stages of the response. Furthermore, because only upregulated genes are included, the analysis will also not identify transcriptional repressors. Although it is conceptually possible to extend the network reconstruction procedure to downregulated genes, the lack of correlation among downregulation times (Supplemental Fig. 1) suggested that a transcriptional cascade may not be the best model for these data.

To study the highly dynamic processes involved in immune interaction with pathogens requires a methodology that incorporates time directly into the analysis rather than subsuming it. The method presented in this study is a first step in the construction of such a methodology. Using our time-centric promoter analysis methods, we have elucidated the transcriptional network underlying an un inhibited antiviral response in human DCs. Our results indicate a robust convergent design and stepwise execution of the antiviral mechanism. Using our time-centric promoter analysis methods, we have incorporated the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57: 289–300.

Supplementary Figure 1: Down-regulation times are not conserved in the anti-NDV response. The initial down/up-regulation times were estimated for the set of differentially-expressed genes in the NDV response using a model-based analysis. Down/up-regulation times for individual genes (points) are shown for the (A) 601 down-regulated and (B) 411 up-regulated genes whose expression profiles could be fit to a logistic function as described in Methods. The correlation across donors for sample 1 was (A) $R = 0.28$ for the down-regulated genes and (B) $R = 0.79$ for the up-regulated genes. Similar results were obtained from sample 2, and when considering sample-to-sample variability for the same donor (not shown).