The Bile Acid Receptor FXR Is a Modulator of Intestinal Innate Immunity

Piero Vavassori, Andrea Mencarelli, Barbara Renga, Eleonora Distrutti and Stefano Fiorucci

J Immunol published online 28 October 2009
http://www.jimmunol.org/content/early/2009/10/28/jimmunol.0803978

Supplementary Material
http://www.jimmunol.org/content/suppl/2009/10/28/jimmunol.0803978.8.DC1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
The Bile Acid Receptor FXR Is a Modulator of Intestinal Innate Immunity

Piero Vavassori,* Andrea Mencarelli,* Barbara Renga,* Eleonora Distutti,† and Stefano Fiorucci2*

The farnesoid X receptor (FXR) is a bile acid-regulated nuclear receptor expressed in enterohepatic tissues. In this study we investigated whether FXR is expressed by cells of innate immunity and regulates inflammation in animal models of colitis. Acute (7 days) and chronic (8 wk) colitis were induced in wild-type and FXR−/− mice by intrarectal administration of trinitrobenzenesulfonic acid or by 7-day administration of 5% dextran sulfate in drinking water. The results of this experiment demonstrate that FXR is expressed by and exerts counterregulatory effects on cells of innate immunity. Exposure of LPS-activated macrophages to 6-ethyl chenodeoxycholic acid (6E-CDCA; INT-747) a synthetic FXR ligand, results in a reciprocal regulation of NF-κB dependent-genes (TNF-α, IL-1β, IL-6, COX-1, COX-2, and iNOS) and induction of SHP, a FXR-regulated gene. FXR activation stabilizes the nuclear corepressor NCoR on the NF-κB responsive element on the IL-1β promoter. Colon inflammation in Crohn’s disease patients and in rodent models of colitis is associated with a reduced expression of FXR mRNA. Using two rodent models of colon inflammation, we show that progression of these immune-mediated disorders is exacerbated in FXR−/− mice (p < 0.01).

In vivo treatment with INT-747 attenuates organ injury and immune cell activation. FXR activation increased the colon expression of I-BABP, FXR, and SHP while reducing IL-1β, IL-6, TNF-α, and IFN-γ mRNA expression and attenuating disease severity. In aggregate, these findings provide evidence that FXR is an essential component of a network of nuclear receptors that regulate intestinal innate immunity and homeostasis.

*Dipartimento di Medicina Clinica e Sperimentale, Università di Perugia, Perugia, Italy and †Azienda Ospedaliera Santa Maria della Misericordia, Perugia, Italy

Received for publication November 26, 2008. Accepted for publication August 31, 2009.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This study was partially supported by a grant from Intercept Pharmaceuticals Inc. to Stefano Fiorucci.

2 Address correspondence and reprint requests to Dr. Stefano Fiorucci, Dipartimento di Medicina Clinica e Sperimentale, Via Enrico dal Pozzo, 06122 Perugia, Italy. E-mail address: fiorucci@unipg.it

3 Abbreviations used in this paper: NR, nuclear receptor; CDCA, chenodeoxycholic acid; ChDrP, chromatin immunoprecipitation; COX, cyclooxygenase; DSS, dextran sulfate; FXR, farnesoid X receptor; I-BABP, intestinal bile acid-binding protein; INOS, inducible NO synthase; LP, lamina propria; LDL, ligand binding domain; NcoR, nuclear compressor; PBDM, peripheral blood-derived macrophage; PPAR, peroxisome proliferator-activated receptor; qRT-PCR, quantitative RT-PCR; siRNA, small interfering RNA; SHP, Src homology region 2 domain-containing phosphatase; SUMO, small ubiquitin-like modifier; TNBS, trinitrobenzenesulfonic acid.

Copyright © 2009 by The American Association of Immunologists, Inc. 0022-1767/09/$2.00

www.jimmunol.org/cgi/doi/10.4049/jimmunol.0803978
negatively regulates IL-1β, IL-6, and TNF-α release from LPS-primed macrophages (18, 19).

In this study, we have investigated whether FXR regulates intestinal innate immunity and whether its activation protects against the development of colon inflammation in rodent models of colitis.

Materials and Methods

Patients and colon samples

Colonic mucosal samples were obtained from macroscopically involved and uninvolved areas of seven patients with active Crohn’s disease undergoing colonoscopy for diagnostic purposes. Patients were at the first diagnosis and no treatment was taken for at least 1 wk before biopsies were taken. All patients (four men; mean age, 25.3 ± 5.3) had a ileocolonic or colonic localization of the disease. Macroscopically normal colon samples were also obtained from seven patients (three men; mean age, 26.7 ± 7.3) with irritable bowel syndrome having a colonoscopy for recurrent abdominal pain. Informed consent was obtained from all patients and control subjects.

Animals

Six- to 8-wk-old female C57BL/6jH11015, BALB/c, and SCID mice were obtained from Charles River Laboratories. FXR−/− mice (C57BL/6jH11016 background) were originally provided by F. Gonzales (National Institutes of Health, Bethesda, MD) (20). All mice were housed in a temperature-controlled room and had free access to food and water. The local Animal Care and Ethics Committee of the University of Perugia (Perugia, Italy) approved all experimental protocols.

Colitis induction, study design, and isolation and stimulation of lamina propria (LP) CD11b+ cells

Pharmacological activation of FXR was obtained by in vivo and in vitro treatment with 6-ethyl-CDCA (INT-747), a semisynthetic FXR ligand that activates the receptor with an EC50 of ~100 nM (21–23). The efficacy of INT-747 was tested in acute and chronic models of colon inflammation induced by trinitrobenzenesulfonic acid (TNBS) or dextran sulfate (DSS) (24, 25). Lamina propria-derived CD11b+ cells were prepared as described previously using a MACS selection system and CD11b microbeads (Miltenyi Biotec) following the manufacturer’s instructions.

In a pilot study to test the dose-dependent prevention of colitis, acute TNBS colitis was induced in BALB/c mice by the intrarectal administration of TNBS (0.5 mg/mouse) in 50% ethanol. To assess whether activation of FXR would protect against the development of colitis, TNBS-treated mice were randomized to receive no treatment or INT-747 at a dose of 1, 3, or 5 mg/kg/day (n = 10 for each group) (23). INT-747 was administered i.p. for 3 days before TNBS injection and daily thereafter for 7 days. Controls received 50% ethanol alone (n = 10). No differences in terms of mortality were observed in all TNBS groups (~40% of the animals).

For induction of DSS colitis, BALB/c mice (n = 10) were fed 5% (w/v) DSS (molecular mass, 40 kDa; ICN Biomedicals) dissolved in filtered water for 7 days (24). Mice of the DSS plus INT-747 group (n = 10) received INT-747 at 5 mg/kg i.p. for 3 days before DSS administration and daily thereafter for 7 days. No mortality was observed during the 7 days of DSS administration in all groups (24).

Seven days after TNBS or DSS administration, mice were sacrificed and the colon samples were removed and divided for histology and RNA extraction.

The induction of chronic colitis was performed according the protocol proposed by Lawrence et al. (25). Briefly, 6- to 8-wk-old female mice were treated weekly for 8 wk with escalating doses (0.5 to 1.25 mg, with 0.25 mg/mouse weekly increments) of TNBS in 30% ethanol via an intracolonic catheter. To test the influence of FXR in the inflammatory and fibrotic response to the chronic administration of TNBS, chronic colitis was induced in C57BL/6jH11015 FXR wild-type (FXR+/−; n = 20) and FXR−/− (n = 18). To test the efficacy of FXR activation to prevent the development of chronic colitis, BALB/c mice were administered TNBS (n = 15) or TNBS plus INT-747 (5 mg/kg/day via intragastriac catheter; n = 15). In both experiments, control mice received 30% ethanol alone (n = 7). During the 8 wk of treatment, mice were examined weekly for weight loss, diarrhea, rectal bleeding and prolapse, piloerection, lethargy, and periorbital exudates. No differences in terms of mortality were observed among the TNBS-administered animals (~20% of the C57BL/6j mice, irrespective of the FXR genetic background, and ~40% of the BALB/c mice of the TNBS group as well as the TNBS plus INT-747 group). Two days after the last TNBS administration, mice were killed and the colons were removed, examined, and divided for histology and RNA extraction. The macroscopic appearance was analyzed considering the presence of induration, edema, thickening, and evidence of mucosal hemorrhage. For histologic examination, a section of the distal colon from each animal was fixed in 10% formalin, embedded in paraffin, sectioned, and stained with H&E or Sirius red. Images from colon sections were acquired with a BX60 microscope (Olympus), digitalized using a SPOT-2 camera (Diagnostic Instruments) with a resolution of 1315 × 1033 pixels, and analyzed using a computerized image analysis system (Image Acquisition System, version 005; Delta System). Sections from the colon of each animal were then examined in a blinded fashion. The degree of inflammation and fibrosis was assessed on the basis of the density and extent of inflammatory infiltrates, the loss of goblet cells, bowel wall thickening, and the intensity of Sirius red-positive connective tissue staining.

To define the immune compartment that mediates the effect of the FXR ligand in vivo, the efficacy of INT-747 was also tested in T cell- and B cell-depleted SCID mice. TNBS colitis was induced by intrarectal administration of TNBS (0.5 mg/mouse) in 50% ethanol (21, 22). Mice receiving TNBS were randomized to receive no treatment or INT-747 at a dose of 5 mg/kg (n = 10 for each group). INT-747 was administered i.p. for 3 days before TNBS injection and daily thereafter for 7 days. Control mice received 50% ethanol alone (n = 10). No differences in terms of mortality were observed in all TNBS groups (~40% of the animals). Seven days after TNBS administration, mice were sacrificed and the colons were removed and divided for histology and RNA extraction. For histological examination, a specimen of the al colon of each animal was used. Inflammation was graded semiquantitatively from 0 (no signs of inflammation) to 4 (transmural infiltrations, loss of goblet cells, high vascular density, and kening of the colon wall) (25).

Isolation and culture of human and mouse macrophages

Human PBMCs were obtained from normal individual donors to the Blood Bank Service of the University of Perugia Hospital. PBMCs were isolated by density gradient centrifugation through a Ficoll-Hypaque gradient (Pharmacia Biotech). Monocytes were isolated by positive selection using magnetic cell sorting according to the manufacturer’s instructions (Miltenyi Biotec). Human peripheral blood monocyte-derived macrophages (PBDMs) were obtained from PBMCs by adherence in plastic flasks. Mouse macrophages were obtained from the spleens of FXR wild-type and null mice (C57BL/6jH11015 background) following a previous described protocol.

Quantitative RT-PCR (qRT-PCR), immunoblot analysis, immunoprecipitation, and immunohistochemistry

Quantization of the expression level of selected genes was performed by qRT-PCR, following a previously described protocol (supplemental Table I). Immunoblot analysis and immunoprecipitation were performed according to previously described protocols (26).

Three-dimensional structure of the ligand binding domain (LBD) of FXR and the maturation of FXR

A putative consensus sequence for SUMO, KEE, was identified on the currently available three-dimensional structures of the LBD of FXR (11).

At present, the three-dimensional structures of the LBD of the human FXR (in complex with fexaramine, Protein Data Bank code 1OSH) and the mouse FXR (in complex with INT-747, Protein Data Bank code 1OT7) are available. The homologous sequence in mouse FXR (272KEE274) is localized in the short loop connecting H2 with H3 (see Fig. 9c). The K277R-mutated FXR was generated by using PCR and cloning techniques. Briefly, the 5′-fragment corresponding to nt 91–1200 and the 3′-fragment corresponding to nt 1171–1772 of human FXR (GenBank accession no. NM_005123; www.ncbi.nlm.nih.gov/nucleotide/1424306165) were amplified by using the Phusion polymerase enzyme according to the manufacturer’s guidelines (Finzymes). The primers used were as follows: 5′-fragment, 5′-GATCTGGAGAGGAAGACCTA-3′ and 5′-CCTCTGACACTCTCTCTCTC-3′; 3′-fragment, 5′-GGATTTGAGAGAGATCGTCACGGTCAGGAGAAG-3′ and 5′-TCACCTGCACCTCCCCAGATTCA-3′. The mutated nucleotides are underlined. The 3′-fragment was cloned in the pCR2.1 vector using the TOPO-TA cloning kit (Invitrogen) according to manufacturer’s guidelines to obtain pCR2.1–3′-FXRK277R vector. The 5′-fragment of FXR was subcloned upstream of the 3′-fragment of FXR into the SacI site-digested pCR2.1–3′-FXRK277R vector. The SacI site is in italic letters in the primers. The sequence of full

4 The online version of this article contains supplemental material.
length mutated FXR K277R was sequenced and subcloned into mammalian vector expression pCMV-SPORT4 to obtain the construct pCMV-SPORT-FXRK277R.

Plasmids, cell culture, transfection, and luciferase assays

The human FXR-expressing plasmid was as described in Ref. 26. For luciferase assays, the minimal promoter region containing the NF-κB site. The promoter primers used were as follows: 5′-CTCTTGAACTCCTCCCTCC-3′ and 5′-AGCCTCAAAACCTTCCCTC-3′. Luciferase activities were normalized for transfection efficiencies by dividing the relative luciferase activity using the luciferase assay system from Promega. Luminescence was measured using an automated luminometer. Luciferase activities were normalized for transfection efficiencies by dividing the relative light units by β-galactosidase activity expressed from cotransfected pCMV-βgal. Plasmid mutagenesis were performed using the QuickChange site-directed mutagenesis kit (Stratagene) according to the manufacturer’s guidelines.

NCor gene silencing by siRNA

THP-1 cells were transiently transfected with an Arrest-In transfection reagent (Open Biosystems) using guidelines provided by the manufacturer. After 72 h posttransfection, the cells were pretreated with INT-747 at 1 μM of diluted reporter lysis buffer (Promega), and 0.2 μl of cellular lysates was assayed for luciferase activity using the luciferase assay system from Promega. Luminescence was measured using an automated luminometer. Luciferase activities were normalized for transfection efficiencies by dividing the relative light units by β-galactosidase activity expressed from cotransfected pCMV-βgal. Plasmid mutagenesis were performed using the QuickChange site-directed mutagenesis kit (Stratagene) according to the manufacturer’s guidelines.

ChIP assays and NCoR silencing

ChIP assays were performed according to a previous published method (6). The following primers specific for the human IL-1β and iNOS promoters were used in ChIP assays: IL-1β promoter, 5′-CCGCTGGAATACTCCAGTTTTTATTG-3′ and 5′-CAGACTGATCCATCACGAAATATGC-3′; iNOS promoter, 5′-CTCTTCTTTGACCACTATT-3′ and 5′-CCGTTACTGGCCAGATCCTC-3′. Immunoblot analysis, immunoprecipitation, and immunohistochemistry

Immunoblot analysis, immunoprecipitation, and immunohistochemistry were performed accordingly to previous described protocols (6). Nitrocellulose membranes were probed with polyclonal Abs against anti-FXR (polyclonal H-130; Santa Cruz Biotechnology), anti-tubulin (Sigma-Aldrich), anti-SUMO (Cell Signaling Technology), anti-NCoR (Upstate Biotechnology), and anti-ubiquitin (Sigma-Aldrich). Immunoprecipitation was performed with 1 μg/ml anti-FXR or anti-CD3 (both from Santa Cruz Biotechnology) as a control Ab in the presence of 10 μl of protein A-Sepharose (GE Healthcare).

Statistical analysis

All values in the text, graphs, and tables are expressed as mean ± SEM. Variations in the data set were tested with Student’s t test or ANOVA, and significance was tested with unpaired t tests with a Bonferroni modification for comparison of more than two groups of data.

Results

FXR-null mice show proinflammatory and profibrogenic phenotype of the colon under naive conditions

FXR is expressed in the small and large intestines (17, 19, 20); however, the role of FXR in the colon is poorly investigated. FXR-null mice on a C57BL/6Jb6 genetic background were used in these studies (20–23). Although no macroscopic and histopathologic abnormalities were detected in 8-wk old mice (not shown), a mild to moderate cellular infiltration of the colonic mucosa LP with enhanced collagen deposition in the superficial layers of the intestinal wall was observed in 14- to 16-wk-old FXR−/− mice in comparison with wild-type mice (FXR+/+/) (Fig. 1a). Analysis of LP-derived cells from wild-type and FXR−/− mice revealed that, in comparison with wild-type mice, FXR gene ablation manifests itself by an enhanced infiltration of CD11b+ cells (18.1 ± 0.1 vs 8.4 ± 0.1%, respectively; p < 0.05, Student’s t test, n = 5; Table I), whereas the relative percentage of LP-infiltrating CD4+, CD8+, CD19+, and Gr1+ cells was unchanged. Accompanying these features, an enhanced expression of inflammatory genes along with proteins of the extracellular matrix was detected in the colons of mice harboring a disrupted FXR. By qRT-PCR analysis, a 5- to 60-fold increase in the expression of TNF-α, IL-1β, IFN-γ, TGFβ1, α1(1) collagen, TIMP-1, and α-smooth muscle actin mRNA was detected, indicating that FXR gene ablation leads to dysregulation of intestinal immunity and tissue remodeling (Fig. 1b). To investigate the role of macrophage influx on this proinflammatory phenotype, LP-derived CD11b+ cells obtained from wild-type and FXR-null mice were tested for their ability to release IL-1β, IFN-γ, and TNF-α (Fig. 1c). FXR−/− macropages released, either under basal conditions and in response to stimulation with LPS, increased amounts of IL-1β, IFN-γ, and TNF-α compared with wild-type cells. In addition, whereas levels of IL-10 secretion by FXR−/− and wild-type CD11b+ cells were unchanged (data not shown), an increased release of IL-6 was measured either in the basal state (267.5 ± 32.7 vs 64.1 ± 34.9 pg/ml; n = 5, p < 0.05) and in response to LPS (718.0 ± 276.4 vs 298.0 ± 54.0 pg/ml; n = 4, p < 0.05). This setting of immune dysfunction and enhanced colon collagen deposition was maintained during the entire life span of FXR−/− mice as shown by the enhanced expression of TNF-α, IL-1β, TGFβ1, α1(1) collagen, fibronectin, and MMP-2 mRNA in the colons of 14-mo-old FXR−/− mice (Fig. 1d). Consistent with these findings, CD11b+ cells isolated from the spleens of FXR−/− mice generated higher amounts of IL-1β, IFN-γ, and TNF-α when challenged with LPS than wild-type macrophages (Fig. 2e), indicating that FXR gene ablation results in a systemic dysregulation of macrophage function.

FXR gene ablation predisposes to uncontrolled immune reaction in the colon

Administering TNBS to 6- to 8-wk-old FXR−/− C57BL/6 mice resulted in mild chronic inflammatory infiltration in the superficial layers of the colon, with minor collagen deposition in the mucosal and submucosal layers in < 30% of mice (Fig. 2, b and c). This attenuated manifestation is consistent with the relative resistance of the C57BL/6 background to colon inflammation induced by TNBS (24). The disease, however, was dramatically exacerbated in FXR−/− mice (Fig. 2a). By histopathology analysis a moderate to severe colitis with acute and chronic inflammatory infiltrates located in the mucosal and submucosal layers was observed in 70–90% of these mice (Fig. 2, b and c), and by qRT-PCR analysis a robust induction of proinflammatory and profibrogenic genes was detected in the colons of FXR−/− mice exposed to TNBS (Fig. 2d). The dysregulated immune response of FXR-null mice to the haptenizing agent reflects itself also in the ability of intestinal macrophages to release IL-1β, IFN-γ, and TNF-α. Thus, in comparison with wild-type mice, LP CD11b+ cells isolated from FXR−/−, TNBS-treated mice released significantly higher amounts of these cytokines either in basal state and after treatment with LPS (Fig. 2e).
Altered colon homeostasis in FXR-null mice. a, H&E (left panels) and Sirius red (central and right panels) staining of representative paraffin-embedded sections from distal colons of naive wild-type (FXR+/+) and FXR-null (FXR−/−) mice on a C57BL/6J background. b, qRT-PCR of inflammatory and profibrogenetic genes in whole colon homogenates from naive FXR−/− (blue bars; n = 7) and FXR+/+ mice (red bars; n = 7), * p < 0.05; and **, p < 0.01; both vs FXR+/+ mice (Student’s t-test). c, TNF-α production by LP CD11b+ cells were obtained from naive FXR+/+ and naive FXR−/− mice cultured in the presence (black bars) or absence (white bars) of LPS (1 μg/ml). *, p < 0.05 vs unstimulated and naive FXR+/+ cells (Student’s t-test). d, qRT-PCR of inflammatory and profibrogenetic genes in whole colon homogenates obtained from 14-mo-old naive FXR−/− (blue bars; n = 6) and FXR+/+ mice (red bars, n = 6). *, p < 0.05 vs wild type.

We then investigated whether colon inflammation results in altered expression of FXR. The colonic expression of FXR was assessed in colon samples of TNBS-treated mice and human samples obtained at colonoscopy from Crohn’s disease patients (n = 7) and control subjects (n = 7). In comparison with control mice, colon expression of FXR mRNA was reduced by TNBS administration (Fig. 3a). In comparison with control subjects, FXR mRNA expression was similarly reduced in colonic biopsies obtained from areas of macroscopically inflamed mucosa of Crohn’s patients (Fig. 3b). In contrast, FXR expression was maintained in those areas of the colonic mucosa of Crohn’s patients showing normal appearance at colonoscopy. The change in FXR gene expression was specific and not mirrored by similar changes in the expression of I-BABP and SHP (Src homology region 2 domain-containing phosphatase) (24), two FXR-regulated genes.

FXR activation protects against colitis development

Because these data predict a protective role for FXR in the context of colonic inflammation, we then investigated whether in vivo FXR activation with 6-ethyl-CDCA (INT-747) (24, 28), a synthetic ligand, would protect against the development of colitis in mice administered TNBS. BALB/c mice were used for these studies because they develop a more aggressive disease than C57BL/6 mice (23) effectively protects against colitis development in mice administered TNBS for 1 wk (Fig. 4). Because this is a rather short model, confirmation of these results was obtained by treating TNBS-administered BALB/c mice with INT-747 at doses of 3 and 5 mg/kg/day (23) effectively protected against colitis development in mice administered TNBS for 4 wk. As shown in Fig. 5, whereas mild to moderate inflammation and fibrosis were seen in virtually all mice administered TNBS alone, up to 60% of mice coadministered INT-747 showed no signs of colitis (Fig. 5, a and b). INT-747 treatment also attenuated the immune dysfunction caused by TNBS as demonstrated by the qRT-PCR analysis of proinflammatory genes and Th1-type cytokines on whole colon homogenates (Fig. 5c) and the measurement of IL-1β, IFN-γ, and TNF-α release from LP-derived CD11b+ cells (Fig. 5d).

Table I. Flow cytometry analysis of LP mononuclear cells isolated from colon of naive FXR wild-type (FXR+/+) and null (FXR−/−) mice

<table>
<thead>
<tr>
<th>Cell Marker</th>
<th>FXR+/+ (%)</th>
<th>FXR−/− (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD11b+</td>
<td>8.4 ± 0.2</td>
<td>18.1 ± 0.1*</td>
</tr>
<tr>
<td>CD11c+</td>
<td>3.1 ± 0.1</td>
<td>2.6 ± 0.2</td>
</tr>
<tr>
<td>CD4+</td>
<td>23.6 ± 0.7</td>
<td>22.6 ± 0.4</td>
</tr>
<tr>
<td>CD4+/CD25+</td>
<td>16.5 ± 1.4</td>
<td>13.5 ± 0.5</td>
</tr>
<tr>
<td>CD4+/FAS+</td>
<td>30.6 ± 1.0</td>
<td>29.0 ± 2.0</td>
</tr>
<tr>
<td>CD88+</td>
<td>8.0 ± 1.5</td>
<td>7.0 ± 0.5</td>
</tr>
<tr>
<td>CD19+</td>
<td>55.3 ± 1.1</td>
<td>44.7 ± 4.1</td>
</tr>
<tr>
<td>GRI1+</td>
<td>6.5 ± 1.0</td>
<td>7.5 ± 0.3</td>
</tr>
</tbody>
</table>

* Analysis of LP cells was carried out by flow cytometry as described in Ref 24. Mice were 14–15 wk old.

* * p < 0.05 (Student’s t-test) vs FXR+/+ (n = 5 mice per group).
A similar beneficial effect of the FXR ligand was observed in a second model of colitis induced by administering mice with 5% DSS in drinking water (supplemental Fig. 1) (24). To obtain confirmation of the specificity of the effect of INT-747 in modulating intestinal inflammation, we administered INT-747 to TNBS-treated FXR/H11002 mice and to their wild-type counterparts at 5 mg/kg (7 days). As shown in supplemental Fig. 2, INT-747 failed to protect against colitis development in TNBS-treated FXR/H11002 mice. Of interest, FXR activation with INT-747 (5 mg/kg/day) protected against colitis development in T cell- and B cell-depleted SCID mice to a similar extent as that observed in wild-type mice, indicating that FXR exerts its counterregulatory function by acting on the innate immunity of cells (Fig. 6).

FIGURE 2. Exacerbation of TNBS-induced colitis in FXR-null mice (C57BL/6J background). a, Exacerbation of wasting diseases induced by 8 wk of administration of TNBS in FXR−/− mice. Group sizes were as follows: FXR+/+ TNBS, n = 16; FXR−/− TNBS, n = 14; and control FXR+/+ mice n = 7, * p < 0.05 vs control and FXR+/+ TNBS mice. b, Histologic scoring of inflammation (I) and fibrosis (F) of distal colons. c, H&E (left panels) and Sirius red (central and right panels) staining of representative paraffin-embedded sections from distal colons after 8 wk of administration of TNBS or vehicle (control mice). d, qRT-PCR analysis of inflammatory and profibrogenetic genes in colon homogenates from control mice (white bars) and FXR+/+ (blue bars) and FXR−/− (red bars) administered TNBS; n = 7–9 mice per group. * and O, p < 0.05 vs control and FXR+/+ TNBS mice. e, IL-1β, IFN-γ, and TNF-α production by LP-derived CD11b+ cells cultured with (black bars) or without (white bars) LPS (1 μg/ml); n = 3, p < 0.05 vs unstimulated cells (*), control cells (O), or FXR+/+ TNBS (∧) (by ANOVA followed by Bonferroni’s Multiple Comparison).

FXR is expressed by macrophages and exerts counterregulatory functions

We then assessed whether, in addition to epithelial cells, intestinal macrophages express FXR. As illustrated in Fig. 7, a–e, expression of FXR in LP-derived CD11b+ cells was demonstrated by qualitative RT-PCR and qRT-PCR, Western blot analysis, and immunohistochemistry. In addition, by qualitative RT-PCR, FXR mRNA expression was detected on myeloid cells of mouse (spleen-derived macrophages and RAW264.7 cells) and human origin (PBDM, and THP-1 cells) (Fig. 7f). The sequencing of human FXR fragments demonstrates that these PCR products show 100% homology with the human FXR gene (sequence between exons 5 and 6) (supplemental Fig. 3). By

FIGURE 3. Colonic expression of FXR is reduced by inflammation. a, qRT-PCR analysis of FXR expression in whole colon homogenate of naïve mice and mice administered TNBS; n = 5. * p < 0.05. b, qRT-PCR of FXR, I-BABP, and SHP mRNA expression in inflamed and noninflamed mucosa of colons from patients affected by Crohn’s disease (n = 7) and control subjects (n = 7). * p < 0.05 (ANOVA followed by Bonferroni) vs noninflamed mucosa and control subjects. In both panels, the relative expression of FXR vs GAPDH is shown.
qRT-PCR (Fig. 7g) we found that although mouse livers and human HepG2 cells express higher content of FXR, FXR mRNA was also expressed in macrophage cell lines (THP-1 and RAW264.7), PBDM, and spleen-derived macrophages. Skeletal muscle cells were used as negative control. FXR protein expression and nuclear localization were further confirmed in mouse and human macrophage cell lines by Western blotting (Fig. 7h) and immunohistochemistry analyses (Fig. 7, i–m).

To investigate whether FXR activation exerts counterregulatory activities on macrophages, LP-derived Cd11b⁺ cells and THP-1 cells were treated with LPS alone or in combination with INT-747 (1 μM). As shown in Fig. 8a, induction of IL-1β and TNF-α caused by LPS was attenuated by INT-747. In this setting, INT-747 caused a ~3-fold increase in SHP expression. Furthermore, FXR activation reduced IL-1β production (Fig. 8b). These effects were insensitive to the activity of GW9662, a PPARγ antagonist.
The mechanism of cytokine regulation by FXR was further investigated by ChIP using THP-1 cells transfected with FXR and iNOS promoters. The results of these experiments demonstrate that FXR is rapidly recruited to the iNOS promoter within 30 min of exposure to LPS (Fig. 9a) and that this effect was robustly enhanced by cotreating the cells with INT-747 (1 μM).

Discussion

The NR FXR is a ligand-regulated transcription factor expressed in the liver and gastrointestinal tract that regulates bile acid homeostasis (12–14). Previous studies have linked NRs to the counterregulation of macrophage biology (3–7). Activation of PPAR-γ and the liver X receptor by lipid mediators generated by the arachidonic acid breakdown in the COX pathways and oxysterols antagonizes the expression of inflammatory cytokines, providing counterregulatory signals that limit macrophage activation by pathogen-associated molecular patterns (3–7). In addition to these receptors, we now provide evidence that the bile acid sensor FXR counterregulates myeloid cell activation by TLR-4. Support for this view comes from a number of different experimental approaches, including quantitative and qualitative PCRs, sequencing of the transcript products, Western blot analysis, and immunohistochemistry, as well as functional studies on FXR-null macrophages. The results of these studies support a regulatory role for FXR on macrophages. Indeed, FXR activation by natural and synthetic and steroidal and nonsteroidal, ligands represses the expression of a set of TLR-4-regulated genes, including proinflammatory enzymes of the liver.

Supplementary Note:

Sumoylation of FXR mediates the counterregulatory activities of FXR ligands

Because the sumoylation of transcription factors correlates with transcriptional activation and/or transcriptional repression (11), we have investigated whether INT-747 causes FXR sumoylation. Results from immunoprecipitation experiments demonstrate that amount of sumoylated FXR decreases rapidly in cells exposed to LPS, an event that was robustly inhibited by INT-747 (Fig. 9b).

The primary amino acid sequence of human FXR shows at least two sumoylation consensus sequences (wKX(E/D); where w represents an hydrophobic amino acid and X refers to any amino acid) (26). To further investigate the role of sumoylation in regulating the expression of target genes by FXR, we generated a human FXR protein mutant lacking the sumoylation consensus sequence located in the LBD of the receptor, position K277 (Fig. 9c; the homologous sequence of mouse FXR is K272). Transfection of HEK293-TLR4 cells with a protein in which the K277 of human FXR was mutated to arginine (K277R) greatly impaired the inhibition of the TNF-α gene expression caused by the FXR ligand INT-747, whereas the wild-type FXR retained full trans-repression activity (Fig. 9d). Thus, sumoylation of FXR is required for FXR-mediated trans-repression of cytokine expression induced by INT-747.

We then investigated whether NCoR is required for FXR-mediated trans-repression of TLR-4-induced cytokines expression. THP-1 cells transfected with an anti-human NCoR siRNA validated for efficacy (supplemental Fig. 5) were used for these experiments. In comparison with wild-type cells, the NCoR knockout cells responded to LPS by an enhanced accumulation of IL-1β and iNOS mRNA (Fig. 9e). Similar results were obtained for TNF-α (data not shown). These observations predict that NCoR-containing complexes associate with the IL-1β and iNOS promoters. Results of the ChIP analysis confirmed that NCoR was present on the promoter of these genes under basal conditions and cleared within 30 min following LPS stimulation (Fig. 9e). We next used ChIP assays to evaluate whether an ordered sequence of events was required for NCoR clearance in response to LPS stimulation in the presence or absence of an FXR ligand and found that pretreatment of cells with INT-747 prevented the clearance of NCoR from the promoters of IL-1β and iNOS (Fig. 9, f and g).
cytokines, chemokines, and their receptors. Because these counterregulatory effects are lost in FXR\(^{-/-}\) macrophages, they selectively depend on FXR expression and are not mediated by other receptors, such as the recently discovered G protein-coupled receptor TGR5, a seven-transmembrane domain receptor for bile acids that is also expressed in macrophages (29). Furthermore, the preventive effect of INT-747 was lost in FXR\(^{-/-}\) mice (supplemental Fig. 2).

The present studies also define sequential steps of the pathway mediating a ligand-dependent trans-repression of inflammatory response genes by FXR ligands. Several of the macrophage genes inhibited by FXR ligands are established targets for NF-\(\kappa\)B and AP-1 (27), which are central transcriptional regulators in cells of innate immunity and adaptive immunity. The iNOS, TNF-\(\alpha\), and IL-1\(\beta\) were used for these studies for their relevance in inflammation and their ability to respond to TLR-4 ligation by a NF-\(\kappa\)B-mediated pathway (27). The promoters of these genes are marked in the basal state by the presence of NCoR-containing complexes linked to the NF-\(\kappa\)B-responsive element (11). Previous studies have provided evidence that LPS signaling results in NCoR clearance from the promoters of these genes, allowing a switch from active repression to transcriptional activation (30). By ChIP and gene overexpression we demonstrated that INT-747 targets FXR to the iNOS and IL-1\(\beta\) promoters and stabilizes the NCoR complexes on the promoters of these two genes (11, 30). NCoR stabilization is essential for FXR-mediated iNOS and IL-1\(\beta\) trans-repression caused by INT-747 as demonstrated by knockdown experiments with anti-NCoR siRNA. This pathway is initiated by a ligand-induced sumoylation of FXR. In this study we demonstrate that the human FXR protein has two sumoylation consensus sequences. Mutation of the K277, located in the FXR LBD, to arginine (K277R) resulted in a protein that was unable to trans-repress TNF-\(\alpha\) expression in cells induced with LPS (28, 31).

FIGURE 7. FXR expression by intestinal mouse macrophage and macrophage cell lines and human monocyte-derived macrophages. a–e, Analysis of the expression of FXR in CD11b\(^{+}\) cells isolated from the mouse colonic LP. a and b, Qualitative and quantitative RT-PCR of FXR mRNA expression by LP-derived CD11b\(^{+}\) cells. c, Western blot analysis of FXR protein expression by LP-derived CD11b\(^{+}\) cells. d and e, Immunohistochemistry analysis of FXR expression by CD11b\(^{+}\) cells stained with an anti-FXR Ab (d). Control cells were prepared by omitting the primary Ab (e). Cytoptins of LP-derived CD11b cells were stained with an anti-FXR polyclonal Ab and counterstained with hematoxylin. Original magnification, \(\times\)10. f, Qualitative RT-PCR of FXR mRNA expression by human and mouse macrophages. HepG2 cells, a human hepatoma cell line, and mouse liver and spleen lysates were used as positive controls. g, qRT-PCR of FXR mRNA expression by human and mouse macrophages. h, Western blot analysis using a polyclonal anti-FXR Ab showing expression of FXR protein by mouse and human macrophage cell lines. i and k–m, Immunohistochemical analysis of macrophage cell lines showing nuclear staining of FXR. Original magnification, \(\times\)100. Cytoptins of human THP-1 (i) and mouse RAW264.7 (l) cell lines were stained with an anti-FXR polyclonal Ab and counterstained with hematoxylin. k, HepG2 cells were used as a positive control. m, Negative controls were obtained using cytospins of THP-1 cells prepared by omitting the primary Ab and counterstaining with hematoxylin.
Inhibition of inflammatory signaling by FXR is not limited to isolated macrophages but manifests itself in vivo. Thus, FXR gene ablation results in a proinflammatory phenotype characterized by spontaneous development of mild to moderate intestinal inflammation and fibrosis. In comparison to FXR−/− mice, LP CD11b+ cells isolated from FXR-null mice show an increased activation in the resting state and enhanced release of TNF-α in response to TLR-4 ligation. Complementary to our data, Inagaki et al. (19) have shown that mice lacking FXR have increased ileal levels of bacteria and a compromised epithelial barrier. Thus, modulating the integrity of the intestinal epithelium and the functions of resident macrophages, bile acids appear to participate in a FXR-regulated manner in protection of the host against foreign pathogens and maintenance of the intestinal homeostasis. Because other NRs, such as PPARγ, are also involved in regulating intestinal macrophage functions, a network of NRs exists to modulate TLR-activated signals to limit inflammatory/immune response to luminal pathogens. The restriction of FXR expression to the enterohepatic system with intestinal macrophages acting as high gain sensors of luminal Ags might provide the requested tissue specificity to this regulatory network.

Other than in naive conditions, dysregulated intestinal innate immunity in mice lacking FXR manifests itself also in an increased susceptibility to the development of inflammation in acute and chronic models of colitis. These murine models show similarities with inflammatory bowel disease, a family of chronic and destructive inflammatory disorders for which dysregulation of innate immunity plays a mechanistic role (24). The model of chronic colitis induced by 8 wk of administration of TNBS, in which inflammation caused by the haptenizing agent associates with enhanced generation of TNF-α, IL-1β, IL-2 IL-6, and intestinal fibrosis, presents similarity with Crohn’s disease (24). The finding that mice lacking FXR were more susceptible to this chronic model than other mice of their genetic background and develop moderate to severe fibrosis along with proinflammatory phenotype provides robust evidence that FXR functions to limit innate immunity responses and immune-mediated activation of intestinal fibroblasts. A further confirmation of the inverse correlation existing between FXR expression/function and host susceptibility to inflammation in the intestinal compartment comes from the observation that acute exposure to TNBS results in a robust down-regulation of colonic expression of FXR. At a translational level, we found that

FIGURE 8. FXR ligands counterregulate induction of inflammatory genes in TLR-4-activated macrophages while inducing SHP in CD11b+ cells isolated from the colon LP and in the THP-1 cell line. *a,* FXR activation in LP-derived CD11b+ cells attenuates expression of IL-1β and TNF-α mRNA induced by LPS while inducing SHP expression. **p** < 0.05 vs unstimulated cells; **∗∗∗,** **p** < 0.05 vs LPS alone; n = 4–5 experiments. *b,* FXR activation in LP-derived CD11b+ cells attenuates release of IL-1β induced by LPS. **p** < 0.05 vs unstimulated cells; **∗∗,** **p** < 0.05 vs LPS alone. *c,* The synthetic FXR ligand INT-747 inhibits LPS-induced expression of inflammatory cytokines. THP-1 cells were pretreated with INT-747 (1 μM) for 3 h and then stimulated with LPS (1 μg/ml) for 18 h. **∗,** **p** < 0.05 vs control cells and cells exposed to LPS, respectively. *d,* LPS-induced (1 μg/ml for 18 h) expression of the IL-1β was negatively modulated by pretreating (for 3 h) THP-1 cells with CDCA (20 μM) and cholate (CA) (20 μM), two natural FXR ligands, as well as GW4064 (1 μM), a nonsteroidal FXR ligand, but not with lithocholic acid (LCA) (20 μM), a week FXR modulator. **p** < 0.05 vs unstimulated cells and LPS, respectively. *e,* FXR activation alters IL-1β and iNOS expression in a promoter-dependent manner. HEK293 cells expressing TLR-4 were transfected with an FXR expression vector (FXR) or vector alone (Vector) and a luciferase reporter gene linked to IL-1β or iNOS promoter region containing the NF-kB binding site. Cells were treated with LPS (1 μg/ml) alone or in combination with INT-747 (1 and 10 μM) for 24 h. **∗,** **∗∗,** and **∗∗∗,** **p** < 0.05 vs unstimulated cells, LPS, and FXR. In all panels the results are represented as mean ± SEM (n = 4–5 experiments) and indicate the relative mRNA expression (*a–e*) or relative fold of activation (*d*) in comparison with the unstimulated condition (by ANOVA followed by Bonferroni’s multiple comparison test).
FXR mRNA expression was almost undetectable in colon biopsies obtained from macroscopically inflamed mucosa of patients with Crohn’s disease. In contrast, in the same patients the expression of two FXR related genes, IBAPB and SHP, was maintained online. Because the expression of PPARα has also been reported to be reduced in the inflamed mucosa (9), these data suggest that a down-regulation of the NR network is required to mount an inflammatory response in the human gut (32).

Further evidence of the regulatory role of FXR on innate immunity comes from the results of pharmacological studies with a synthetic FXR ligand. Treating BALB/c mice with INT-747 protects against the development of intestinal inflammation induced by TNBS and DSS. In both models, exposure to FXR ligands attenuates the release of the signature cytokines IL-1β and IL-6 in the TNBS model and IL-4 and IL-5 in the DSS model (24), demonstrating that FXR exerts a counterregulatory function on both branches of the intestinal immune system. However, because INT-747 also protected against colitis development in lymphocyte-deficient SCID mice, it appears that myeloid cells in the innate immunity compartment are the predominant target.

In summary, we have provided evidence that FXR-deficient mice respond to intestinal inflammation with an exaggerated production of proinflammatory cytokines and inflammation-driven fibrosis in the colon. By demonstrating that FXR activation with potent synthetic ligand protects against the development of inflammation in murine models of colitis, our results establish that FXR might represent a novel therapeutic target in inflammatory bowel diseases.

Acknowledgments
We thank Prof. Roberto Pellicciari for providing the FXR ligand and Prof. Gabriele Costantino for modeling the FXR structure.

Disclosures
The authors have no financial conflict of interest.

References

