Concomitant Inhalation of Cigarette Smoke and Aerosolized Protein Activates Airway Dendritic Cells and Induces Allergic Airway Inflammation in a TLR-Independent Way

J Immunol published online 27 July 2009
http://www.jimmunol.org/content/early/2009/07/27/jimmunol.0802204
Concomitant Inhalation of Cigarette Smoke and Aerosolized Protein Activates Airway Dendritic Cells and Induces Allergic Airway Inflammation in a TLR-Independent Way

Cigarette smoking is associated with the development of allergic asthma. In mice, exposure to cigarette smoke sensitizes the airways toward coinhaled OVA, leading to OVA-specific allergic inflammation. Pulmonary dendritic cells (DCs) are professional APCs involved in immunosurveillance and implicated in the induction of allergic responses in lung. We investigated the effects of smoking on some of the key features of pulmonary DC biology, including trafficking dynamics and cellular activation status in different lung compartments. We found that cigarette smoke inhalation greatly amplified DC-mediated transport of inhaled Ags to mediastinal lymph nodes, a finding supported by the up-regulation of CCR7 on airway DCs. Pulmonary plasmacytoid DCs, which have been involved in inhalational tolerance, were reduced in number after smoke exposure. In addition, combined exposure to cigarette smoke and OVA aerosol increased surface expression of MHC class II, CD86, and PDL2 on airway DCs, while ICOSL was strongly down-regulated. Although inhaled endotoxins, which are also present in cigarette smoke, have been shown to act as DC activators and Th2-skewing sensitizers, TLR4-deficient and MyD88 knockout mice did not show impaired eosinophilic airway inflammation after concomitant exposure to cigarette smoke and OVA. From these data, we conclude that cigarette smoke activates the pulmonary DC network in a pattern that favors allergic airway sensitization toward coinhaled inert protein. The TLR independency of this phenomenon suggests that alternative immunological adjuvants are present in cigarette smoke. The Journal of Immunology, 2009, 183: 2758–2766.

Increasing epidemiological and experimental data now support an active role of cigarette smoking in the development and severity of asthma (1, 2). Active smoking interacts with the asthmatic phenotype, causing more severe allergic symptoms, a greater decline in lung function, and impaired therapeutic responses to corticosteroids (3, 4). In addition, smoke exposure is considered as a risk factor for allergen sensitization and is associated with the onset of asthma (5–7).

To better understand these effects, animal models studying the interaction between cigarette smoke and allergic responses have been developed (8–16). We and others recently established a mouse model in which concomitant inhalation of aerosolized OVA along with mainstream cigarette smoke, without prior immunization, induces features of allergic airway inflammation (16, 17). This allergic response was absent after exposure to OVA alone, suggesting a prominent role for cigarette smoking in the establishment of an OVA-specific Th2 immune response. Indeed, synthesis of IL-5, a Th2-derived cytokine critical for the recruitment and survival of eosinophils, was detected in thoracic lymph node (LN) cells suspensions of OVA/smoke-exposed animals only. However, not all studies supported a positive contribution of cigarette smoke exposure to the allergic phenotype and sensitization phenomenon, possibly as a result from the variable experimental conditions used among different laboratories (e.g., the use of environmental vs mainstream smoke, whole-body vs nose-only exposure, etc.) (11, 12, 14, 15). One outstanding observation was that the effects of smoke exposure on allergic responses appear to be dose dependent (15).

Pulmonary dendritic cells (DCs) are specialized APCs and have emerged as central players in the immunological balance of the airways (18, 19). A continuous flow of migrating DCs interacting with resident airway cells constantly assesses whether inhaled material should be confronted with an active immune response or whether homeostatic tolerance should be maintained (20). The outcome of adaptive immune responses depends on the context in which the Ag is encountered by airway DCs and is predominantly defined by the presence or absence of danger signals at the exposed site, such as pathogen-associated molecular patterns betraying the presence of bacterial, fungal, or viral pathogens and damage-associated molecular patterns released by stressed or damaged host tissue cells (21–23). TLRs expressed on DCs are essential for the
integration of these alarm signals and different pulmonary DC sub-
sets have been shown to express different TLRs, potentially lead-
ing to different immunological outcomes (24). Triggering of TLRs
leads to DC activation manifested by the up-regulation of a spe-
cific set of costimulatory molecules, enhanced migration toward
draining LNs, and efficient priming of T cells, which will re-
circulate to the periphery in an attempt to neutralize the threat.
In the setting of allergic airway inflammation, DCs mount an
inappropriate Th2-type inflammatory immune response against
otherwise nonpathogenic inhaled material (25, 26). The immu-
nological mechanisms by which DCs induce this aberrant re-
sponse are being unraveled. A working hypothesis is that environ-
mental factors acting as damage-associated molecular patterns affect
airway DCs in a way that breaks tolerance toward inhaled Ag
(18, 23). In this study, we asked ourselves whether cigarette smoke
inhalation affects pulmonary DCs in a way that would facilitate aller-
sic sensitization to inhaled OVA, a model inert protein Ag. Because
TLR triggering by trace amounts of endotoxin has been shown to
spark allergic sensitization to OVA (27–29) and because cigarette
smoke has been shown to contain bioactive endotoxins (30), we ver-
ified whether TLR4 and MyD88-dependent TLR signaling contrib-
utes to the phenomenon of smoke-induced allergic sensitization.

Materials and Methods

Mice

BALB/c mice (7–9 wk old) were obtained from Harlan. TLR4-deficient
mice (C57Bl/6-Tlr4−/−, 8–12 wk old) and control BALB/c mice (7–9 wk
old) were purchased from The Jackson Laboratory. MyD88 knockout
mice on a BALB/c background were obtained from the laboratory of G.
Lauvau (INSERM, University of Sofia Antipolis, Valbonne, France), bred in our
facility, and 6- to 8-wk-old mice were provided by Dr. O. Krysko (Ear-
Nose-Throat Research Laboratory, Ghent University Hospital, Ghent,
Bel-
gium). Control BALB/c mice were purchased from Harlan. The local Eth-
nical Committee (Ethics Committe, Faculty of Medicine and Health
Sciences, Ghent, Belgium) approved all in vivo manipulations.

Cigarette smoke exposure and aerosol challenge

Groups of seven to eight mice were subjected to whole-body mainstream
cigarette smoke exposure of five Kentucky Reference cigarettes (2R4F
without filters; University of Kentucky, Lexington, KY) for 7 min, 4 times/day,
5 days/week in a Plexiglas chamber (17 × 28 × 14 cm) with an inlet
for pressurized air (1.25 liter/min). For the MyD88 experiment, 3R4F Ken-
tucky cigarettes were used. In the experiments where cigarette smoke
and aerosol challenge were performed for 7 min, 4 times/day, 5 days/week in a
Plexiglas chamber (17 × 28 × 14 cm) with an inlet
for pressurized air (1.25 liter/min).

Flow cytometry

All staining procedures were conducted in calcium- and magnesium-free
PBS containing 10 mM EDTA, 1% BSA (Dade Behring), and 0.1% sodium
azide. One million cells were preincubated with anti-CD16/CD32 (2.4G2)
to block Fe receptors. mAbs used to identify cell surface molecules were
anti-CD11c (clone HL3), anti-CD11b (clone M1/70), anti-MHC class II
(MHCII; 1A5-E, clone M5/114), and anti-CD86 (clone GL1), all from BD
Biosciences; anti-ICOSL (anti-CD275, clone HK5.3), anti-PDL1 (anti-
CD274, clone MIH5), anti-PDL2 (anti-CD273, clone 122), anti-OX40L
(anti-CD134L, clone RM134L), anti-GITRL (clone YGL386), and anti-
CCR7 (CD194, clone 4B12) were from eBioscence; and the PDCA-1 mAb
(clone JF05-1C2.4.1) was from Milteny Biotec.

Evaluation of dendritic cell migration by intratracheal
instillation of OVA

After 3 wk of smoke exposure, mice were anesthetized with Avertin (1 mg
of tribromonem Polish veterinary 2.5% in PBS). The dose of the Avertin
solution was carefully determined according to the body weight of each mouse
separately so that no respiratory depression was observed. Seventy microliters
of fluorescein-conjugated OVA (OVA-FITC; Invitrogen) diluted in sterile
PBS (5 mg/ml) was injected intratracheally using pyrogen-free catheters in
order not to cause any local pulmonary inflammation, as described previously
(31). Mice were further exposed to cigarette smoke until they were sacrificed
at indicated time points after instillation. Mediastinal LNs were removed and
processed as described above to obtain single-cell suspensions. The number of
OVA-bearing airway-derived DCs (AW-DC) was calculated by flow cytometry
as the fraction of FITC-positive CD11c+ MHCII+ LNCs multiplied by the total
number of LN cells. PBS-instilled mice were used as a control to eliminate
background fluorescence.

Histology

Left lung was fixed in 4% paraformaldehyde and embedded in parafl
.Transversal sections of 3 μm were stained with Congo Red (Klinipath) for
the visualization of eosinophilic or with periodic acid-Schiff (PAS) to iden-
ify mucopolysaccharides in tissue and counterstained with hematoxylin
(Sigma-Aldrich). PAS-positive cells were identified as goblet cells and
quantified in airway walls with a perimeter basement membrane between
800 and 2000 μm.

Measurement of OVA-specific IgE

Blood was collected by cardiac puncture for measurement of total and
OVA-specific IgE with a homemade ELISA as described before (17).

RNA extraction and RT-PCR

RNA from lung tissue was extracted using a Qiagen RNAeasy Mini Kit.
Real-time RT-PCR was performed on a LightCycler 480 Instrument
(Roche Diagnostics) with Assays-on-Demand Gene Expression Products
(Applied Biosystems) starting from 20 ng of cDNA. Monitoring of the
RT-PCR occurred in real time using a FAM/TAMRA probe.

For IL-13, reverse transcription was performed for 10 min at 25°C, 60 min
at 42°C, and 10 min at 70°C using random hexamers and RevertAid M-MuLV
Reverse Transcriptase (Fermentas). After a 10-min incubation at 95°C for
denaturation of RNA-DNA heteroduplexes, a DNA amplification was per-
formed with 50 cycles of 95°C for 15 s and 60°C for 60 s using the TaqMan
Universal Primer Mix No AmpErase UNG (Applied Biosystems). Expression of
the mRNA of the gene of interest relative to hprt mRNA was calculated.

Statistical analysis

Reported values are expressed as mean ± SEM. Statistical analysis was
performed with SPSS software (version 15.0) using nonparametric tests
(Kruskal-Wallis and Mann-Whitney U test). Values of p < 0.05 were con-
sidered significant (*, p < 0.05; **, p < 0.01; and ***, p < 0.001).

Results

Simultaneous exposure to cigarette smoke and OVA induces
allergic airway inflammation

The effect of cigarette smoking on the development of allergic
responses was illustrated by exposing mice to a combination of
OVA aerosol and cigarette smoke without prior immunization to
OVA (17). As we observed earlier, 3 wk of simultaneous exposure
induced features of allergic airway inflammation, demonstrated by
accumulation of eosinophils, neutrophils, and lymphocytes and in

Preparation of single-cell suspensions

Lungs were perfused with saline plus EDTA through the pulmonary artery
to remove contaminating blood cells. Lungs and mediastinal LNs were
removed and digested as detailed previously (31). Briefly, minced lung
pieces and LNs were incubated with 1 mg/ml collagenase and 20 μg/ml
DNase I for 45 min at 37°C. RBC were lysed using ammonium chloride
buffer. Finally, cell suspensions were filtered through a 50-μm nylon mesh
to remove undigested organ fragments.
the BAL fluid (Fig. 1A), production of OVA-specific IgE in serum (Fig. 1A), eosinophilic infiltrates in the peribronchial tissue (Fig. 1B), and marked airway goblet cell hyperplasia on histological airway sections (Fig. 1C), fully consistent with earlier observations in this model (17). In line with the goblet cell hyperplasia, we observed a strong induction of pulmonary IL-13 mRNA expression in mice concomitantly exposed to OVA and cigarette smoke compared with OVA alone (Fig. 1C). We also showed earlier that this allergic response was associated with OVA-specific Th2 cytokine production in the draining LNs (17). Taken together, this suggests that cigarette smoke possessed adjuvant properties toward concomitantly inhaled OVA that favored the development of mucosal Th2 responses.

Effects of cigarette smoke exposure on pulmonary DC dynamics and Ag transport

Pulmonary DC trafficking can be divided into a recruitment phase toward the lung, progressing to an emigration phase toward mediastinal LNs. Combined exposure to cigarette smoke and OVA induced a strong elevation in conventional DC numbers in the BAL compartment, indicating that the developing allergic inflammation in these mice stimulated DC recruitment to the airways (Fig. 2A), which is consistent with earlier observations using i.p. alum as an adjuvant (32). Airway Ag-specific T cell priming relies on the capture and transport of inhaled Ag by DCs migrating to the mediastinal LNs. Hence, we investigated whether smoke inhalation as such could affect airway DC trafficking and Ag transport. We delivered fluorescently labeled OVA into the airways once after 3 wk of smoke exposure alone. At various time points after intratracheal challenge, FITC⁺ cells were detected within CD11c⁺ MHCII_{high} AW-DCs in the mediastinal LNs according to previous studies (31) (Fig. 2B, upper graph). The time course of these FITC⁺ AW-DCs in LNs of sham-exposed animals illustrated steady-state kinetics characterized by a peak of DCs infiltrating the LNs at 24 h after Ag challenge, slowly declining thereafter (Fig. 2B, lower graph). By contrast, smoke-exposed animals showed a marked amplification of DC-mediated Ag transport to LNs, i.e., more Ag-loaded DCs reaching the draining LNs (Fig. 2B, lower graph). This large wave of DCs carrying Ags to the LNs during smoke exposure peaked at 24–48 h after Ag challenge and rapidly declined thereafter. Accordingly, we found that cigarette smoke exposure selectively up-regulated surface expression of CCR7 on airway DCs, i.e., the population primarily involved in airway Ag capture (Fig. 2C). No CCR7 could, however, be detected on lung parenchymal DCs.

Next to the striking effects on conventional DCs in the lung, cigarette smoke inhalation also affected pulmonary plasmacytoid DCs (pDCs). Pulmonary pDCs were shown to actively contribute to tolerance toward inhaled Ag (33). Remarkably, the numbers of CD11c^{int}MHCII_{low/int} PDCA-1⁺ cells (generally regarded as pDCs) were reduced both within lung and mediastinal LNs of cigarette smoke-exposed mice (Fig. 2D).

FIGURE 1. Allergic sensitization of mice exposed to cigarette smoke and OVA. A, Absolute numbers of eosinophils, lymphocytes, and neutrophils in BAL fluid and serum OVA-specific IgE of mice exposed to PBS or OVA combined with cigarette smoke or air for 3 wk. Cells were identified on cytopsins stained with May-Grünwald-Giemsa. The concentration of OVA-specific IgE in serum was determined by ELISA. B, Histological evaluation of goblet cells and OVA-specific IgE in serum of mice exposed to PBS or OVA combined with cigarette smoke or air for 3 wk. Cells were identified on cytopsins stained with May-Grünwald-Giemsa. The concentration of OVA-specific IgE in serum was determined by ELISA. C, Histological evaluation of goblet cell hyperplasia on PAS-stained lung tissue sections. Quantification of the number of goblet cells per mm perimeter basement membrane (BM) of airway walls with a perimeter between 800 and 2000 µm of mice exposed to OVA with or without cigarette smoke. mRNA transcripts for IL-13 relative to a housekeeping gene (hprt) were measured in whole lung homogenates by real-time RT-PCR. A representative experiment (n = 8 mice/group) of three independent experiments is shown. *, A significant difference (p < 0.05) between the OVA/air and OVA/smoke group.
Effects of inhaled cigarette smoke and/or aerosolized OVA on pulmonary DC activation and costimulatory molecule expression

Costimulatory molecules expressed on DCs during Ag presentation contribute to the outcome of T cell stimulation and polarization. We therefore examined expression levels of various costimulatory molecules on the cell surface of pulmonary DCs during smoke and/or OVA Ag exposure. We focused on accessory molecules with documented involvement in the establishment of tolerance vs Th2 development. Examination of the expression levels of MHCII and CD86 showed that the majority of pulmonary DCs from the airway compartment and lung tissue of OVA/smoke-exposed mice exhibited a mature or activated phenotype (Fig. 3). This was also observed on DCs from PBS/smoke-exposed mice in the airway compartment and peripheral lung tissue, consistent with our previous results (34, 35). Expression of ICOSL (CD275), a member of the B7 family and a negative regulator of immune responses (36), was down-regulated from the cell surface of airway and lung DCs of OVA/smoke-exposed DCs compared with other groups. Alternatively, expression of two other B7 family members, programmed death ligand (PDL) 1 (CD274) and PDL2 (CD273), both ligands for the inhibitory TCR programmed death receptor 1 (PD1, CD279), was increased on DCs from OVA/smoke-exposed mice in the airway compartment and lung tissue. Remarkably, PDL2 was clearly up-regulated on AW-DCs in mediastinal LNs of combined OVA/smoke- and PBS/smoke-exposed mice. We were not able to detect significant amounts of GITRL or
OX40L (CD134L) on pulmonary DCs by flow cytometry (compared with OX40L-positive control staining on splenocytes stimulated with LPS; data not shown).

TLR independency of cigarette smoke-induced allergic sensitization

TLR4 has previously been reported to play a pivotal role in the allergic sensitization of airways toward inhaled OVA (27, 28). Accordingly, we examined whether the observed allergic sensitization could be due to endotoxin-like effects of cigarette smoke. Therefore, we challenged TLR4-deficient mice with cigarette smoke and OVA simultaneously for 3 wk and measured the degree of eosinophilic inflammation. Remarkably, TLR4-deficient mice were clearly able to develop a Th2 response comparable to the levels observed in BALB/c control mice, as measured by BAL eosinophilia, BAL lymphocytes, BAL DCs, and serum OVA-specific IgE (Fig. 4A). In addition, histological evaluation of lung tissue showed peribronchial eosinophilic infiltrates in both TLR4-deficient and control mice exposed to cigarette smoke and OVA simultaneously (Fig. 4B).

To exclude the contribution of alternative TLRs in cigarette smoke-induced allergic airway sensitization, we performed experiments in strain-matched MyD88 gene-deficient animals. MyD88 is an essential adaptor molecule broadly shared among members of the TLR/IL-1R family. OVA/smoke-exposed MyD88 knockout mice did not show any significant reduction in eosinophilic airway inflammation, lymphocytic BAL infiltration, and airway DC recruitment (Fig. 4C). In contrast and consistent with earlier observations in murine models of cigarette smoke-induced lung inflammation (37), neutrophil and macrophage recruitment into the airways in response to OVA/smoke inhalation was clearly impaired in the absence of MyD88.

Discussion

Concomitant inhalation of aerosolized OVA and cigarette smoke in mice induces a Th2-type airway inflammation that is absent after exposure to either agent alone. This aberrant immune response has high clinical relevance, as illustrated by the interaction between smoking habits and the development of asthma in predisposed subjects. The present study was designed to investigate the triggering of allergic airway inflammation by cigarette smoke from a pulmonary DC point of view. Key features of pulmonary DC biology are 1) recruitment to the Ag-exposed lung, 2) sampling of inhaled Ag and transport toward draining mediastinal LNs, and 3) maturation (i.e., increase in costimulatory marker expression), which is necessary to generate Ag-specific effector T cells. Subsequently, we sought to gain mechanistic insight in the observed phenomenon: based on previous knowledge, we focused on potential endotoxin-like activity in cigarette smoke.

We first confirmed that combined smoke and OVA protein aerosol exposure induces a strong increase in DC numbers in the airway compartment, which is consistent with observations made previously in OVA/alum-sensitized, OVA aerosol-challenged mice (32, 38). Transport of Ags from the airways to the T cell areas of draining LNs represents an additional key step in the Ag-presenting function of airway DCs. In this study, we reveal that there is strongly amplified DC-mediated transport of...
inhaled protein Ag toward mediastinal LNs in the presence of coinhaled cigarette smoke. In accordance with this observation, we detected an up-regulation of the LN-homing chemokine receptor CCR7 on airway DCs. Migration of DCs to the LNs is enabled by CCR7 expression on the cell surface of DCs interacting with the chemokines CCL21 and CCL19 displayed on lung lymphatics and in T cell zones of LNs. An alternative explanation for the enhanced capture and transport of airway Ag by DCs could be the recently described alteration of airway epithelial tight junctions by mainstream cigarette smoke (39). The resulting increase in epithelial permeability could lead to enhanced penetration of airborne Ag and promotion of the activation of the subepithelial DC network (40). In addition to changes in DC trafficking to the LNs, perturbation of the epithelial homeostasis could also affect DCs in a way that can trigger Th2-oriented sensitization. GM-CSF for instance, a product of the airway epithelium that is increased in smoke-exposed airways (13, 17, 41), has been shown to induce allergic sensitization to inhaled OVA by means of airway DC activation in the absence of any other adjuvant (42). Furthermore, allergic sensitization by cigarette smoking was recently found to be, at least partially, GM-CSF dependent (16). Thymic stromal lymphopoietin (TSLP) is another candidate cytokine which can be secreted by the respiratory epithelium and is a powerful activator of DCs leading to a Th2-polarized immune response in an OX40-OX40L-dependent manner (43). Interestingly, intranasal administration of cigarette smoke extract induced TSLP expression in the mouse lung and blocking TSLP activity inhibited OVA-specific Th2 responses and airway inflammation after concomitant cigarette smoke extract and OVA exposure (44). However, in our experiments, we could not detect significant modulation of GM-CSF or TSLP expression after either smoke or concomitant OVA/smoke inhalation, nor did we observe up-regulation of OX40L on pulmonary DC populations (data not shown).

The pattern of accessory or costimulatory molecule expression on the Ag-transporting DCs is a known determinant in the outcome

![FIGURE 4. Allergic sensitization of TLR4-deficient and MyD88 gene-deficient mice exposed to cigarette smoke and OVA.](http://www.jimmunol.org/)

A. Absolute numbers of eosinophils, lymphocytes, and DCs in the BAL fluid and concentration of OVA-specific IgE in serum of control mice (BALB/c) or TLR4-deficient mice (TLR4d) exposed to PBS or OVA combined with cigarette smoke or air for 3 wk. Eosinophils and lymphocytes are identified on cytospins stained with May-Grünwald-Giemsa, while DCs are identified by flow cytometry as low-autofluorescent CD11c⁺ cells. n = 9 mice/group. B. Histological evaluation of eosinophilic peribronchial infiltrates on Congo Red-stained lung tissue sections of BALB/c mice and TLR4-deficient mice counterstained with hematoxylin. C. Numbers of eosinophils, lymphocytes, neutrophils, DCs, and macrophages in the BAL fluid of MyD88 knockout mice or BALB/c control mice after 3 wk of OVA aerosol with () or without () cigarette smoke simultaneously. Eosinophils, lymphocytes, and neutrophils were identified on cytospins, whereas DCs (CD11c⁺ low autofluorescent cells), CD11b⁺ DCs (low-autofluorescent CD11c⁺/CD11b⁺ cells) and macrophages (high-autofluorescent CD11c⁺/CD11b⁺ cells) were differentiated using FACS analysis. OVA-specific IgE is determined by ELISA. n = 7 mice/group. *, A significant difference (p < 0.05) between the OVA/air and OVA/smoke group, unless otherwise indicated.

Downloaded from http://www.jimmunol.org/ on May 1, 2017.
of immune responses. Our data show that DCs in the airway compartment of OVA/smoke-exposed lungs display an increased expression of accessory molecules previously known for their role in modulating allergic immune responses. In line with our earlier observations (34, 35), cigarette smoke inhalation induces up-regulation of CD86 (B7-2) on airway DCs. This costimulatory molecule has been clearly shown to be involved in the priming of Th2 responses and the subsequent development of allergic airway inflammation toward inhaled protein (32, 45), and could thus be a means through which cigarette smoke exerts its Th2-skewing properties in this model. The striking down-regulation of ICOSL on airway DCs of mice concomitantly exposed to cigarette smoke and OVA is also consistent with our previous observations in the OVA-alum-i.p./OVA-aerosol asthma model (32). Expression of ICOSL on DCs during initial priming of T cells drives the formation of regulatory T cells in lung draining LNs and has been involved in the establishment of respiratory tolerance (36). Withdrawal of this inhibitory signal might contribute to the preferential Th2 priming toward inhaled Ags. An intriguing observation is the up-regulation of PDL2, another member of the B7 family, on airway DCs of OVA-alum-sensitized/OVA aerosol-challenged allergic mice (46) and might thus be a characteristic feature of allergic immune responses. PDL2 costimulation during allergen priming and challenge was shown to exacerbate immune and inflammatory allergic responses in mice, supporting a Th2-potentiating function (47). It has also been proposed that Th2 cells specifically regulate PDL2 expression on DCs via reverse signaling (48, 49). The novel finding in our study, however, is a striking up-regulation of PDL2 on airway-derived LN DCs after cigarette smoke inhalation alone. Whether this creates a context prone to Th2-polarized sensitization toward coinhaled protein is a tempting hypothesis. Further investigations using, for example, blocking Abs or local delivery of small interfering RNA, may help to elucidate the role of DC-expressed PDL2 in the process of allergic sensitization.

Interestingly, cigarette smoke exposure resulted in a reduction of pDC numbers in the lungs and thoracic LNs. pDCs have been recently described for their capacity to maintain inhalational tolerance: selective depletion of pulmonary pDCs was able to spark Th2-polarized airway inflammation toward inhaled inert Ag in the absence of any adjuvant (33). Along with 1) the activation of conventional airway DCs, 2) the increase in DC-mediated transport of inhaled Ag toward LNs, and 3) specific modulation DC costimulatory molecule expression, the reduced number of pDCs in smoke-exposed lungs might thus establish a general climate of reduced inhalational tolerance.

In contrast to our current findings, a recent study by Robbins et al. (50) reported that cigarette smoke leads to a decrease in lung DC numbers, a decrease in DC activation markers, and no change in migration toward mediastinal LNs. These findings are likely attributable to fundamental methodological differences. The most important element (not obvious in the above-mentioned study) is the exposure system used, i.e., nose only vs whole body, as this leads to large differences in dose intensity as reflected by carboxyhemoglobin levels. The protocol we use involves more frequent exposures and results in carboxyhemoglobin levels comparable to those measured in human smokers (51, 52). In addition, we report surface expression of costimulatory molecules on DCs as shifts in mean fluorescence intensity (MFI), which is more accurate than percent positive cells for these types of markers. Finally, in our study, we aim to discriminate effects on lung parenchymal DCs obtained by enzymatic digestion vs airway DCs harvested by BAL.

This allows us to detect the confinement of smoke effects (e.g., the up-regulation of accessory molecules and CCR7) to the DCs in the airway compartment.

We sought to gain mechanistic insight in the Th2-skewing adjuvant properties of cigarette smoke coinhaled with inert protein. We hypothesized that this effect would rely on the presence of endotoxin-like activity within the smoke itself. Indeed, both mainstream and side-stream cigarette smoke are known to contain bioactive endotoxin (30). It was already shown that, whereas endotoxin-free OVA induces inhalational tolerance, coinhalation of OVA and low-dose endotoxin triggers OVA-specific allergic airway inflammation (27). This phenomenon, along with the activation and enhanced migration of airway DCs, appeared to be TLR4 dependent (28). TLR4 also appears to be a determining factor in the initiation of allergic responses against inhaled house dust mite allergen (53, 54). Furthermore, our group and others previously revealed that acute cigarette smoke exposure induces airway DC maturation in a TLR4-dependent fashion (34, 37). Therefore, we were surprised to observe unhampered development of allergic airway inflammation in TLR4-deficient mice exposed to cigarette smoke and OVA. Any endotoxin potentially contaminating the cigarette smoke and/or the OVA used in these studies would have its proallergic effects greatly diminished in the absence of functional TLR4. Cigarette smoke exposure could also activate alternative TLRs, such as TLR2 which can bind heat shock protein 70, an endogenous danger signal known to be released in smoke-exposed airways (37). However, smoke-induced allergic sensitization was unhampered in MyD88 gene-deficient animals, thereby ruling out the contribution of TLR2 and several other members of the TLR/IL-1R family of innate immune sensors. This is in contrast to airway neutrophilia that disappeared completely in our model (consistent with Ref. 37) and the MyD88 dependency of allergic responses observed after house dust mite challenge, intranasal challenge of OVA with low-dose LPS, or in the presence of bacterial infection (29, 55, 56).

The fact that in our experiments the development of allergic inflammation is unaffected by TLR4/MyD88 deficiency suggests immunological adjuvant mechanisms of a different kind. The cellular stress inflicted by cigarette smoke in the airways, for instance, could lead to the release of compounds that trigger TLR/MyD88-independent immunogenic pathways. One of these endogenous compounds could be ATP, which was recently reported to trigger purinergic receptors on the airway DC network, leading to a DC-dependent allergic sensitization toward inhaled inert protein (57). Furthermore, alum, a prototypical Th2-skewing adjuvant, was shown to exert its adjuvant effect in a TLR4-independent way and to activate the NLRP3 inflammasome pathway either directly or through the release of uric acid from the local tissue microenvironment (58, 59). It is worth noting that aluminum has been detected at high concentrations in cigarette smoke, potentially precipitating as alum-like hydroxy salts in the epithelial lining fluid overlying the airway DC network (60). In support of this idea, MyD88 signaling is redundant for alum to act as an adjuvant for humoral adaptive responses (61). Hence, cytotoxic compounds in cigarette smoke could act in a TLR4/MyD88-independent manner by activating airway DCs either directly or by means of endogenous danger signals released by stressed airway cells (reviewed in Ref. 62). Whether this could result in a deviation of immune homeostasis toward an aberrant Th2-driven inflammation is a compelling working hypothesis for further investigation.

Acknowledgments

We thank E. Castrique, C. Snuauwaert, G. Barbier, K. De Saedeleer, I. De Borle, A. Neesen, A. Goethals, M. Mouton, E. Spruyt, and P. Degryze...
Disclosures

The authors have no financial conflict of interest.

References