The 1959 Fort Detrick Symposium on Nonspecific Resistance To Infection

Held at Hood College, Frederick, Maryland, September 16 and 17, 1959

Sponsored by the U. S. Army Chemical Corps, Fort Detrick. Conducted under the auspices of the American Institute of Biological Sciences

CONTENTS:

- Foreword. Riley D. Housewright
- Introduction. Colin M. MacLeod
- Mobilization of Defensive Cells in Inflammatory Tissue. Henry Harris
- Fever as a Mechanism of Resistance. Ivan L. Bennett, Jr., and Anthony Nicasiri
- Influence of Irradiation on Resistance to Infection. Baruj Benacerraf
- Phagocytosis, with Particular Reference to Encapsulated Bacteria. W. Barry Wood, Jr.
- Host Mechanisms which Act to Remove Bacteria from the Blood Stream. David E. Rogers
- Cellular Immunity. Sanford S. Elberg
- Relation of Cell Metabolism to Infection with Rickettsial and Bacterial Agents. Zanvil A. Cohn
- Antibacterial Systems of Serum in Relation to Nonspecific Immunity to Infection. Derrick Rowley
- Host-Parasite Relationships in Patients with Dysproteinemias. Robert A. Good, Robert A. Bridges, and Richard M. Condie
- Antimicrobial Factors in Tissues and Phagocytic Cells. James G. Hirsch
- Serum and Tissue Inhibitors of Virus. Harold S. Ginsberg
- Viral Interference. Some Considerations of Basic Mechanisms and Their Potential Relationship to Host Resistance. Robert R. Wagner
- Bacterial Interference. David W. Henderson
- Hormones and Host Resistance to Infection. Edward H. Kass
- Nutritional Factors in Host Resistance. Howard A. Schneider
- Genetic Effects in Nonspecific Resistance to Infectious Disease. John W. Gowen

1960 • 200 pp., 43 figs. • $2.00

Order from:

R. W. Sarber, Executive Secretary
American Society for Microbiology
19875 Mack Avenue
Detroit 36, Michigan

Examine these relationships when variations in findings are difficult to explain

There are a number of factors which alert investigators must constantly scrutinize and evaluate if biological experimentation is to result in maximum productivity.

One of the most important of these is the relationship of one factor to another. For should the reaction of these relationships be overlooked, variations in experimental results would be hard to trace.

What are these relationships? Some of the more basic ones are the relationship of nutritional requirements to: body surface area; energy-amino acid content of the diet; food intake. And within the nutrients themselves, many other relationships exist. Relationships such as those indicated by an optimum balance between essential amino acids; the effect of change in the calcium-phosphorus ratio; and the sparing effect of niacin on the tryptophane requirement.

Some relationships are more complex than others. For example, one of the most critical relationships which the investigator should consider is the relationship of physiologic status and nutritional deficiencies.

This relationship is indicated when nutritional abnormality results in a diseased state. Often this presents a perplexing problem because systemic disease unrelated to nutrition may precipitate a nutritional deficiency even though normally adequate intake of nutrients is maintained. The use of diets improperly balanced and controlled (from a quality or manufacturing viewpoint) could cause even further variations in findings.

Rockland Laboratory Diets have been carefully balanced to meet the specific laboratory animal’s nutritional requirements and their formulation remains constant. This permits the investigator to relate one experiment to another without introducing dietary variables outside of his control. Thus, the investigator can depend on Rockland to provide good nutrition for his animal charges with a minimum of experimental variations due to diet.

For further information on Rockland standard reference stock diets, see your Rockland Dealer or write: A. E. Staley Mfg. Co., Decatur, Illinois—manufacturers and distributors of:

ROCKLAND RAT DIET (complete) • ROCKLAND MOUSE DIET • ROCKLAND DOG DIET • ROCKLAND MOUSE WORMER-DIET • ROCKLAND RABBIT DIET • ROCKLAND RAT DIET (D-Free) • ROCKLAND GUINEA PIG DIET • ROCKLAND MONKEY DIET
REAGENTS and MEDIA
for
TISSUE CULTURE
and
VIRUS
PROPAGATION

These reagents are prepared and standardized to preserve unaltered the properties of the original material and include those commonly employed for the slide, roller tube and flask culture techniques for propagation and study of tissue cells and viruses in vitro.

REAGENTS OF ANIMAL ORIGIN—Desiccated and Liquid
 Plasma, Sera and Serous Fluids
 Embryos and Embryo Extracts
 Ultrafiltrates

REAGENTS, CHEMICALLY DEFINED—
 Dilute and Concentrate
 Synthetic Media—Eagle-HeLa, Eagle L, Scherer, 199, 703 and all formulas
 Balanced Salt Solutions—Earle, Gey, Hanks, Osgood, Simms, Tyrode and all formulas

ENZYMES INDICATORS AMINO ACIDS
HYDROLYSATES MEDIA ENRICHMENTS
BIOCHEMICALS CARBOHYDRATES

Descriptive Literature sent upon request

DIFCO LABORATORIES
DEtroIT 1, MICHIGAN