Pollensomes as Natural Vehicles for Pollen Allergens

Noela Prado, Concepción De Linares, María L. Sanz, Pedro Gamboa, Mayte Villalba, Rosalía Rodríguez and Eva Batanero

J Immunol 2015; 195:445-449; Prepublished online 3 June 2015; doi: 10.4049/jimmunol.1500452
http://www.jimmunol.org/content/195/2/445

References This article cites 25 articles, 0 of which you can access for free at: http://www.jimmunol.org/content/195/2/445.full#ref-list-1

Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription

Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts

The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852
Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606.

The American Association of Immunologists, Inc. is published twice each month by The Journal of Immunology.
Pollensomes as Natural Vehicles for Pollen Allergens

Noela Prado,* Concepción De Linares,† María L. Sanz,‡ Pedro Gamboa,§ Mayte Villalba,* Rosalía Rodríguez,* and Eva Batanero*

Olive (*Olea europaea*) pollen constitutes one of the most important allergen sources in the Mediterranean countries and some areas of the United States, South Africa, and Australia. Recently, we provided evidence that olive pollen releases nanovesicles of respirable size, named generically pollensomes, during in vitro germination. Olive pollensomes contain allergens, such as Ole e 1, Ole e 11, and Ole e 12, suggesting a possible role in allergy. The aim of this study was to assess the contribution of pollensomes to the allergic reaction. We show that pollensomes exhibit allergenic activity in terms of patients’ IgE-binding capacity, human basophil activation, and positive skin reaction in sensitized patients. Furthermore, allergen-containing pollensomes have been isolated from three clinically relevant nonphylogenetically related species: birch (*Betula verrucosa*), pine (*Pinus sylvestris*), and ryegrass (*Lolium perenne*). Most interesting, pollensomes were isolated from aerobiological samples collected with an eight-stage cascade impactor collector, indicating that pollensomes secretion is a naturally occurring phenomenon. Our findings indicate that pollensomes may represent widespread vehicles for pollen allergens, with potential implications in the allergic reaction. The Journal of Immunology, 2015, 195: 445–449.

The most important outdoor sources of allergens are pollen grains from anemophilous plants, including trees, grasses, and weeds. In Mediterranean countries and some areas of the United States, South Africa, and Australia, olive (*Olea europaea*) pollen constitutes one of the most important causes of pollinosis (1). Exposure to its pollen grains leads to a variety of allergic symptoms ranging from seasonal rhinoconjunctivitis to severe asthma in susceptible individuals (2). Olive pollen contains a wide collection of different allergens (3). To date, 12 allergens, Ole e 1 to Ole e 12, have been identified, isolated, and characterized.

Allergen release from pollen is a prerequisite for sensitization and elicitation of the allergic symptoms in humans. Several works have reported that allergen liberation from pollen grains occurs in two different compartments: first, outside the individual organism when pollen grains are spreading through the atmosphere; and second, on the mucosal surface of the upper respiratory tract after inhaling pollen. Previous studies have shown that the air, in addition to containing airborne pollens, contains allergen-pollen-derived submicronic (<10 μm) and paucimicronic (<1 μm) particles that can reach the lower airways, eliciting allergic symptoms in susceptible subjects (4–12). These particles are mainly composed of starch granules and polysaccharide particles, structures that are scarce or absent in mature olive pollen (13).

Recently, we reported that fresh olive pollen grains release nanovesicles of respirable size, named pollensomes, during in vitro germination (14). In addition to proteins involved in the fertilization process, pollensomes contain Ole e 1, Ole e 11, and Ole e 12 allergens, suggesting their possible role in allergy. The aim of this study is to assess the contribution of these nanovesicles to the allergic reaction. We study whether pollensomes show IgE-binding capacity and induce specific activation of human basophils and positive skin reactions in olive pollen–allergic patients. Moreover, the release of allergen-containing pollensomes from birch, pine, and ryegrass pollens, three clinically relevant but non-phylogenetically related pollens, is also analyzed. Finally, to determine whether pollensomes release is a naturally occurring phenomenon, we examine their presence in aerobiological samples collected with a cascade impactor collector. Our findings indicate that pollensomes may represent widespread vehicles for pollen allergens, with a potential role in the natural induction of the allergic reaction.

Materials and Methods
Pollen material

Mature pollen grains were collected from olive (*Olea europaea*) trees in Granada (Spain) during seasons of 2009–2011. Pollen was dried overnight and stored at −20°C until used. Pollens of birch (*Betula verrucosa*), pine (*Pinus sylvestris*), and ryegrass (*Lolium perenne*) were supplied by ALK-Abelló (Madrid, Spain). Pollen extracts were prepared as described previously (15).

Abs and reagents

Polyclonal sera against Ole e 1, Ole e 2, Ole e 3, Ole e 9, Ole e 11, and Ole e 12 allergens from olive pollen were generated by Dr. F. Vivanco’s laboratory (Fundación Jiménez Díaz, Madrid, Spain). A polyclonal serum against the major allergen from birch pollen, Bet v 1, was prepared by immunization of BALB/c mice. The mAbs raised against the major group 1 allergen from timothy grass pollen (Phl p 1) and anti-human IgE mAbs were kindly donated by ALK-Abelló. Anti–Phl p 1 mAb recognizes other grass group 1 allergens such as Lol p 1, the major allergen from ryegrass pollen. HRP-conjugated goat anti-rabbit IgG (BioRad) and goat anti-mouse IgG (Pierce Chemical) were used as secondary Abs.

*Departamento de Bioquímica y Biología Molecular, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain; †Departamento de Biología Animal, Biología Vegetal i Ecología, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; ‡Departamento de Alergología e Inmunología Clínica, Clínica Universidad de Navarra, 31008 Pamplona, Navarra, Spain; and ‡Servicio de Alergia, Hospital Basurto, 48013 Bilbao, Vizcaya, Bizkaia, Spain

Received for publication February 26, 2015. Accepted for publication May 12, 2015.

This work was supported by Ministerio de Ciencia e Innovación (Spain) Grants SAF-2008-04053 (to R.R.) and SAF-2011-26716 (to M.V.), Red de Investigación de Reacciones Adversas a Alérgenos y Fármacos of the Instituto de Salud Carlos III (Spain) Grant RD07/0064/0009 (to R.R., M.L.S., and P.G.), and a fellowship from the University Complutense of Madrid (to N.P.).

Address correspondence and reprint requests to Eva Batanero, Departamento de Bioquímica y Biología Molecular, Facultad de Química, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain. E-mail address: ebatanero@pku.ucm.es

Abbreviations used in this article: Phl p 1, major group 1 allergen from timothy grass pollen; SPT, skin prick test.

Copyright © 2015 by The American Association of Immunologists, Inc. 0022-1767/15/$25.00
POLLENSONES AS NATURAL VEHICLES FOR POLLEN ALLERGENS

Patients
Olive pollen–allergic patients \((n = 4)\) included in this study were diagnosed on the basis of a clinical history of allergy to olive pollen, a positive skin prick test (SPT), and CAP-FEIA System (Pharmacab Ab) classes 3–6 to olive pollen. Nonatopic individuals \((n = 2)\) were used as control subjects. Written, informed consent was obtained from all participants.

In vitro pollen germination and isolation of pollensomes
Olive pollen \((0.1 \text{ g})\) was hydrated in a humid chamber at room temperature for 30 min before transferring to petri dishes \((15 \text{ cm in diameter})\) containing 20 ml germination medium: 10% sucrose, 0.03% Ca\((\text{NO}_3)\)_2, 0.01% KNO\(_3\), 0.02% MgSO\(_4\), and 0.03% H\(_2\)BO\(_3\). Pollen was germinated at 30°C in the dark for 16 h \((16)\). Similar protocol was used for birch and ryegrass pollens. For pine, a gymnosperm, in vitro pollen germination was performed in 15% sucrose, 0.02% Ca\(_2\)Cl, and 0.03% H\(_3\)BO\(_3\) for 72 h at 30°C in the dark \((17)\). Pollen grains were considered germinated only when the tube was longer than the diameter of the pollen grain.

Cultured medium was collected and cleared of pollen debris by centrifugation. Pollensomes were isolated from cleared medium as previously described \((14)\). The protein concentration in pollensome preparations was measured by the microbicinchoninic acid assay \(\text{Pierce Chemical}\).

Aerobiological samples
Atmospheric particles were sampled in the city of Granada \(\text{(Spain)}\) during April 2010, using an eight-stage cascade impactor collector \((\text{Andersen})\) \((11)\). Particles were collected on glass microfiber filters \((\text{Type GF/A}; \text{Whatman})\). Every 24 h, filters were removed and frozen at \(-20°C\) until required. Particulate from stages 7 and F filters were gently washed out in PBS onto a petri dish for 1 h, and supernatants were subjected to the pollensomes purification protocol.

Scanning electron microscopy
A piece of microfiber filters \((0.5 \text{ cm}^2)\) was mounted on aluminum stubs and sputter-coated with gold. Images were obtained at 80 kV with a JEOL 6400 scanning electron microscope \((\text{JEOL}; \text{http://www.jeol.com})\), and images were collected and processed with the software INCA \((\text{http://www.oxford-instruments.com})\).

Electron microscopy
Pollensomes were fixed in 2% paraformaldehyde and loaded onto copper-formvar/carbon-coated 200-mesh electron microscopy grids. Samples were contrasted with 1% uranyl acetate and observed at 80 kV with a transmission electron microscope \((\text{JEOL1010}; \text{JEOL instrument})\).

Western and dot-blot analysis
For Western blot, pollensomes and pollen protein extracts were resolved by 15% SDS-PAGE and transferred onto nitrocellulose membranes \((\text{Hybond} \text{C}-\text{T} ; \text{Amersham})\) as previously described \((15)\). After blocking with 3% skim milk in PBS-0.1% Tween 20, the membranes were incubated with the specific polyclonal serum, or mAb, for each allergen for 1 h at room temperature. The membranes were then washed with PBS-0.1% Tween 20 and incubated with secondary HRP-conjugated goat anti-rabbit IgG Ab \((1:3000 \text{ dilution})\), or HRP-conjugated anti-mouse IgG Ab \((1:2500 \text{ dilution})\), for 1 h, followed by visualization with the ECL Western blotting detection reagent \((\text{Amersham})\) and the LAS-3000 mini \((\text{Fujifilm})\) imaging system.

For IgE-binding assays, the membranes were incubated with individual sera from patients allergic to olive pollen \((1:10 \text{ dilution})\) and, for control purposes, from nonallergic individuals, for 2 h at room temperature. This was followed by incubation with anti-IgE mAb \((1:5000 \text{ dilution})\) and HRP-conjugated goat anti-mouse IgG Ab \((1:2500 \text{ dilution})\).

For dot-blot experiments, samples were applied onto nitrocellulose membranes using a Minifold I dot-blot system, and bound IgG Abs were detected with the secondary HRP-conjugated goat anti-rabbit IgG Ab as described for Western blot.

Skin prick test
Twenty microliters of pollen-derived nanovesicles \((50 \mu \text{g/ml in PBS})\) was gently pricked on the forearm of patients as described previously \((18)\). Commercial olive pollen extract \((\text{ALK-Abelló})\) was used as a positive control at a concentration recommended by the manufacturer \((0.005–5 \mu \text{g/ml})\), and for control purpose with anti-IgE Ab, as described previously \((19)\). Results were expressed in percentage of activated CD63\(^+\)-basophils detected by flow cytometry.

Results
Allergens are released from olive pollen in pollensomes
Olive pollensomes were isolated from germination medium as previously described \((14)\), with sizes ranging from 28 to 68 nm \((\text{Fig. 1A})\). Western blot analysis revealed that, besides Ole e 1, Ole e 11, and Ole e 12 allergens, Ole e 3, the olive polcalcin, was also present in these pollensomes \((\text{Fig. 1B})\). By contrast, Ole e 2 and Ole e 9 \((\text{a profilin and a 1,3-β-glucanase, respectively})\) were not detected in pollensomes \((\text{Fig. 1B})\).

Pollensomes play an active role in allergy
The IgE reactivity of pollensomes was analyzed by Western blot using individual sera from two olive pollen–allergic patients, representing two different allergenic sensitization patterns \((\text{Fig. 1C})\). The IgE-binding pattern of olive pollen extract is complex, because it contains a large number of IgE-reactive components with molecular masses ranging from 10 to 60 kDa. Pollensomes also displayed an IgE-binding profile that varied among allergic individuals, but with lower complexity compared with the whole pollen protein extract. IgE reactivity was detected against protein bands, which, according to their molecular masses, might represent Ole e 1 \((18.5–20 \text{ kDa})\) and Ole e 3 \((9.2 \text{ kDa})\). IgE-reactive protein bands of 60–70 kDa were also detected. No significant reactivity was observed using control sera from nonatopic subjects.

The ability of pollensomes to elicit cutaneous reactions in vivo was evaluated in four patients with olive pollen allergy \((\text{Fig. 1D})\). The whole group presented positive SPT to both olive pollen extract and pollensomes. In all cases, olive pollen extract induced a larger skin reaction than the isolated pollensomes, with mean wheal area values of 22.0 and 11.6 mm\(^2\), respectively. These results could be explained in terms of the differences in contents of allergens \((\text{number and concentration})\) in pollen extracts versus pollensomes. No positive reaction either to pollensomes or to pollen extracts was observed in control subjects, indicating the high specificity of SPT. No adverse effects were observed in the subjects tested.

To obtain a more complete picture of pollensomes’ IgE reactivity and, therefore, their potential clinical significance, basophil activation assays were performed with peripheral blood cells of four olive pollen–allergic patients \((\text{Fig. 1E})\). In all patients tested, pollensomes induced activation of basophils in a dose-dependent manner, whereas Ole e 1 had already reached its maximal effect or plateau at the dose range represented. Basophils from nonatopic controls did not respond to pollensomes.

Pollensomes represent a new mechanism of allergen release common to different species
To investigate whether pollensomes represent a common mechanism for allergen release, we assayed pollens from three clinically relevant and nonphyllogenetic-related species: birch, ryegrass, and pine. These pollens released pollensomes during in vitro germination with sizes comparable with those described for olive: 30–60 nm in diameter \((\text{Fig. 2A})\). The major allergen from birch pollen, Bet v 1, was present in pollensomes derived from this species \((\text{Fig. 2B})\). In contrast, Lol p 1, the major allergen of ryegrass pollen, was not detected in released pollensomes from this pollen. In addition, Ole e 12–homologous allergen could be localized in

Basophil activation test
Whole blood cells from olive pollen–allergic patients \((n = 4)\) and nonallergic individuals \((n = 2)\) were challenged with increasing concentrations of pollensomes or Ole e 1 \((0.005–5 \mu \text{g/ml})\), and for control purpose with anti-IgE Ab, as described previously \((19)\). Results were expressed in percentage of activated CD63\(^+\)-basophils detected by flow cytometry.
nanovesicles released from birch, ryegrass, and pine pollens. Therefore, it can be defined as a protein marker for pollensomes. However, Ole e 1–like protein was detected only in birch pollensomes but not in those from ryegrass and pine.

Pollensomes are present in the atmospheric aerosol

To provide direct evidence that pollensomes are airborne nanoparticles released to the air, we took atmospheric samples during April 2010 using an eight-stage cascade impactor collector. This study was performed in Granada, a city in the south of Spain. The aerobiological analysis was performed according to the Spanish Aerobiological Network (http://www.uco.es/rea) guidelines, showing that the dominant pollen types recorded in the studied period were Plantago followed by Pinus. Olea pollen was registered in low concentration (2 grains pollen/m³). The sizing efficiency of the cascade impactor collector was verified examining air filters by scanning electron microscopy. Pollen grains (17–21 μm in diameter) were only found in filters of stages 0 and 1, whereas the remaining stage filters of the collector were free of pollen grains (Fig. 3A). Pollensomes-like nanovesicles were collected from stages 7 (0.4–0.7 μm) and F (<0.4 μm) filters of the cascade collector (Fig. 3B). No pollensomes were detected in control ones (unexposed filters). When the airborne pollensomes were compared with those released in vitro by transmission electron microscopy, similar features were found for both types of nanovesicles: 27–55 nm in diameter and round-shaped morphology. However, Ole e 1–like proteins were only detected by dot blotting in the nanovesicles collected from stage 7, defining them as pollensomes (Fig. 3C). For Ole e 1–like proteins, the staining was very faint and diffuse in pollensomes of stage 7; this might be explained by the low levels of

FIGURE 1. Pollensomes, vehicles for olive pollen allergens, play an active role in allergy. (A) Transmission electron micrograph of pollensomes released from in vitro germinated pollen from olive (Olea europaea). (B) Western blot analysis of olive pollensomes protein extract (PS, 50 μg) for the presence of Ole e 1, 2, 3, 9, 11, and 12 allergens using specific Ab. Olive pollen extract (PE, 30 μg) was used as positive control. M₆ of allergens are indicated in kilodaltons (kDa). (C) Western blot analysis of olive pollensomes (50 μg) with IgE from serum of two olive pollen–allergic patients and one nonallergic individual (control 1). Olive pollen extract (30 μg) was used as positive control. Arrows indicate allergen positions. Faint bands are marked with white arrows. (D) SPT of four olive pollen–allergic patients and two nonallergic individuals (controls 1 and 2) with pollensomes and olive pollen extract (as positive control). Values are wheal and flare areas in square millimeters (mm²). (E) Allergenic potency of pollensomes determined by the basophil activation test using flow cytometry. Basophils from four olive pollen–allergic patients and two nonallergic individuals were incubated with different doses of pollensomes or Ole e 1. Results are given as percentage of CD63 expression.
Pollensomes, a mechanism of allergen release common to different species. (A) Transmission electron micrographs of pollensomes released from birch, ryegrass, and pine pollen during in vitro germination. (B) Western blot analysis of Ole e 1- and Ole e 12-like proteins in pollensomes protein extracts (50 µg) from birch, ryegrass, and pine, using specific Abs. The same analyses were carried out for the allergens Bet v 1 in birch and Lol p 1 in ryegrass, using an anti–Bet v 1 and anti–Phl p 1 Ab, respectively. Pollen extracts (30 µg) of birch, ryegrass, and pine were also probed as controls.

Discussion
Olive pollen allergens are one of the major causes of allergic reactions in the Mediterranean area during the flowering season (1). However, the mechanism by which olive pollen allergens become airborne respirable-sized particles with the ability to reach the respiratory tract and trigger an allergic response in susceptible people remains unknown. In this study, we provide experimental evidence to support that: 1) pollensomes, defined as allergen-loaded nanovesicles released from olive pollen during in vitro germination, exhibited allergenic activity; 2) they are released from pollen belonging to different taxa; and 3) they occur naturally in the atmospheric aerosols.

Our data have shown that allergens, including Ole e 1, Ole e 3, Ole e 11, and Ole e 12, are released in the context of olive pollensomes. Moreover, pollensomes seem to be a mechanism of allergen release common to different clinical relevant pollens, including both gymnosperm (pine) and angiosperm species (birch, olive, and ryegrass). To our knowledge, this is the first report to describe allergens as a cargo of secreted membrane nanovesicles. On the basis of the results obtained in this study by means of IgE-binding capacity, activation of human basophils, and positive SPT in patients allergic to olive pollen, pollensomes might exhibit allergenic activity. The potential clinical implication for these findings in allergy is supported by the fact that pollensomes occur in the atmospheric aerosol. Airborne pollensomes were isolated from stage 7 filters of a cascade impactor collector, containing Ole e 1– and Ole e 12–like allergens. In support, De Linares et al. (11) revealed that allergenic activity of Ole e 1 in the atmosphere primarily involves paucimicronic particles. The release of paucimicronic and submicronic particles containing allergens into the atmospheric aerosol has been described for other pollen species including grasses, weeds, and trees (4–10, 12). These particles include mainly starch granules, polysaccharide particles, and other subpollen particles that are scarce or absent in olive pollen (13). Two main mechanisms have been proposed for the release of these particles from pollen grains: 1) a process described for grass (7, 9) and ragweed (10) that involves simply ruptures of pollen grains after contact with rainwater; and 2) abortive germination described for allergen release from pollen trees of the Fagales order (birch, alder, hazel) (5, 8). In this study, we described a new mechanism by which pollen allergens become aerosols, which involves the secretion of nanovesicles, pollensomes, during pollen germination. The observation that, after rainfall, birch pollen germinates on leaf surfaces (5) supports this proposed mechanism of allergen release in the atmospheric aerosol. Further work is needed to determine the contribution of pollensomes as allergen carriers on the allergenic aerosol. Because of their small size, pollensomes should be efficiently deposited in lower airways, which cannot be reached by intact pollen grains because of their aerodynamic diameter (19–21 µm). Thus, pollensomes seem suitable to trigger an allergic response in susceptible people, and may explain both the severe asthmatic symptoms associated with olive pollen season (20) and the increased allergen levels during periods when little or no pollen grains are present in the air (11). The latest observation has also been reported for birch (5) and several grass (4, 6) species. In addition, the particulate nature of the pollensomes and their components likely amplifies the immune response in the airways. Yet, pollensomes can contribute by themselves to the activation of the mucosal epithelium of the respiratory tract. In this context, pollens, beside allergens, contain a range of other compounds that may be contributing to initiation, manifestation, or exacerbation of allergic inflammation. Adjuvant factors of pollens include: 1) NAD(P)H-oxidases that generate reactive oxygen species provide a signal that enhances allergic airway inflammation (21); 2) bioactive lipid mediators (PALMS), with chemical and functional similari-
ties to leukotrienes and PGs, that contribute to the generation of a local microenvironment favoring Th2 responses (22); and 3) adenosine, a potent immunoregulator in pollen allergy, that acts on the level of dendritic cells (23). If such compounds are present in pollensomes, they will likely contribute to allergen sensitization and clinical symptoms. In this sense, NAD(P)H-oxidases have been detected in subpollen particles released from ragweed pollen (10). Finally, it has been demonstrated that air pollutants (e.g., diesel exhaust, dust, fuel combustion) can enhance the immune response to pollen allergens, after interacting in the atmosphere or, more probably, from codeposition in the human airways (24, 25). Thus, the existence of pollensomes in the air made feasible their interaction with these pollutants that might also enhance the allergenic potential of these nanovesicles.

These findings open a new dimension in the understanding of early events in both allergic sensitization and exacerbation of the disease after allergen-induced mechanisms. Moreover, pollensomes described in this work provide a unique insight into the dynamics of protein secretion during the processes of pollen germination and pollen tube growth, which are critical for successful fertilization in flowering plants.

Acknowledgments
We thank Agustín Fernández from Universidad Complutense de Madrid for electron microscopy assistance.

Disclosures
The authors have no financial conflicts of interest.

References