Phenotypic Variation in Aicardi–Goutières Syndrome Explained by Cell-Specific IFN-Stimulated Gene Response and Cytokine Release

Eloy Cuadrado, Ilíana Michailidou, Emma J. van Bodegraven, Machiel H. Jansen, Jacqueline A. Sliujs, Dirk Geerts, Pierre-Olivier Couraud, Lidia De Filippis, Angelo L. Vescovi, Taco W. Kuijpers and Elly M. Hol

J Immunol 2015; 194:3623-3633; Prepublished online 13 March 2015; doi: 10.4049/jimmunol.1401334
http://www.jimmunol.org/content/194/8/3623

Supplementary Material
http://www.jimmunol.org/content/suppl/2015/03/13/jimmunol.1401334.4.DCSupplemental

Why *The JI*?

• **Rapid Reviews! 30 days** from submission to initial decision
• **No Triage!** Every submission reviewed by practicing scientists
• **Speedy Publication!** 4 weeks from acceptance to publication

*average

References
This article **cites 47 articles**, 13 of which you can access for free at:
http://www.jimmunol.org/content/194/8/3623.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Phenotypic Variation in Aicardi–Goutières Syndrome Explained by Cell-Specific IFN-Stimulated Gene Response and Cytokine Release

Eloy Cuadrado,*† Iliana Michailidou,‡,7 Emma J. van Bodegraven,§,†† Machiel H. Jansen,† Jacqueline A. Sluijs,§,† Dirk Geerts,*† Pierre-Olivier Couraud,§ Lidia De Filippis,‡ Angelo L. Vescovi,† Taco W. Kuijpers,† and Elly M. Hol*§,**

Aicardi–Goutières syndrome (AGS; MIM 225750) is a genetically determined neuroinflammatory disorder that typically becomes apparent in infancy (1). AGS encephalopathy is characterized by basal-ganglia calcification, white matter abnormalities, and a chronic cerebrospinal fluid (CSF) lymphocytois. Patients with AGS suffer from microcephaly, spasticity, dys—

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1401334

Copyright © 2015 by The American Association of Immunologists, Inc. 0022-1767/15/$25.00
Materials and Methods

Cell culture

Immortalized human neural stem cells (hsNSCs), derived from neural stem cells from the diencephalic and telencephalic brain regions of one human fetus, were cultured and propagated as previously described (29). Briefly, neurons were seeded in Eurafron (Perucchi, Italy) supplemented with 25 μg/ml insulin, 100 μg/ml 8-taprotransferrin, 6.3 ng/ml progesterone, 9.6 mg/ml putrescine, 520 ng/ml sodium selenite (N2 supplement, all from Sigma-Aldrich, St. Louis, MO), 20 ng/ml epidermal growth factor, and 10 ng/ml fibroblast growth factor 2 (both from Tebu-Bio, Heerhugowaard, the Netherlands) in uncoated dishes, shNSCs were differentiated into astrocytes and endothelial cells using lentiviral particles. This strategy resulted in the permanent knockdown of the targeted AGS genes, allowing us to study AGS pathogenesis in human cells, to our knowledge, for the first time in detail. We found that AGS protein knockdown leads to an increased but differential cytokine and IFN expression for both cell types tested. Interestingly, this effect was most dramatic after targeting TREX1 in both astrocytes and endothelial cells, which fits with the observation that patients carrying mutations in TREX1 suffer from the most severe phenotype (2) and with the observation that TREX1-null mutant mice have a strong IFN signature, which is weaker in mice (19, 20). All of these AGS animal models fail to replicate cerebral AGS-like symptoms and are therefore not suitable to study the intricate complexities of AGS neuropathology. Thus, human in vitro models are needed to study the cerebral alterations occurring in AGS (21). These models provide a unique tool to study AGS brain-related disease that otherwise would be limited to postmortem studies or imaging.

Early neuropathological human studies already suggested that AGS might represent a primary microangiopathy, because vascular mineral deposits and cortical microinfarctions were occasionally found in postmortem brains (22, 23). Recent clinical reports have described the presence of cerebrovascular disease, including ischemic and hemorrhagic strokes, in AGS patients carrying mutations for different genes (24–28). These clinical observations tie in with findings from our group describing that human astrocytes chronically exposed to IFN-α decrease the expression and release of proangiogenic and vascular trophic factors (21). Taken together, these observations suggest that an inflammatory disturbance of vascular homeostasis may be important in the pathogenesis of AGS.

The present study aims to gain deep insight into the specific role of each AGS gene in the biology of two important cell types of the gliovascular unit, which is part of the blood–brain barrier. To this end, short hairpin RNAs (shRNAs) against specific AGS genes were delivered to astrocytes and endothelial cells using lentiviral particles. This strategy resulted in the permanent knockdown of the targeted AGS genes, allowing us to study AGS pathogenesis in human cells, to our knowledge, for the first time in detail. We found that AGS protein knockdown leads to an increased but differential cytokine and IFN expression for both cell types tested. Interestingly, this effect was most dramatic after targeting TREX1 in both astrocytes and endothelial cells, which fits with the observation that patients carrying mutations in TREX1 suffer from the most severe phenotype (2) and with the observation that TREX1-null mutant mice have a strong IFN signature, which is weaker in Samhd1-null mutant mice (19, 20). Our approach revealed novel links between the disease severity and the production of proinflammatory mediators.

Western blot

Protein was isolated from cells by homogenization in lysis buffer (100 mM NaCl, 10 mM Tris–HCl [pH 7.6], 1 mM EDTA [pH 8.0]) supplemented with protease inhibitors PMSF (100 mg/ml) and aprotinin (0.5 mg/ml) mixture (Roche). Protein content was determined using the BCA protein assay kit (Pierce, Warrington, U.K.). Sequences of primers used are given in Supplemental Table II. GAPDH and β-actin were used as reference genes to normalize the assessed transcript levels of the target genes.
R.R. Klever and A. van den Maagdenberg), RNASEH2A (Origene, MD), SAMHD1 (pCMV6-hEF1a -SAMHD1orf), and ADAR1 (pCMV6-ADAR1orf; both gifts of J.L. van Hamme and T. Booman).

Cell cycle and proliferation analyses

For cell cycle analysis, cells were seeded into 24-well plates (200,000 cells/well) and cultivated for 48 h. Cells were harvested, washed once with PBS, and fixed in 70% ice-cold ethanol for 30 min. Cells were then washed in PBS and incubated with 0.5 µg/ml RNase T1 (Boehringer Ingelheim, Alkmaar, the Netherlands) for 15 min. Cells were then washed again and incubated with 2.5 µg/ml propidium iodide (Sigma-Aldrich). Cells were analyzed on a BD FACSCanto II flow cytometer (BD Biosciences, San Jose, CA).

Cell proliferation was measured using the Click-iT 5-ethyl-2'-deoxyuridine (EdU) flow cytometry assay kit (Life Technologies Europe) according to the manufacturer’s instructions. Using the standard protocol, the cells were incubated with 0.25 µM EdU for 2 h at 37˚C. After this period the cells were fixed and permeabilized, and EdU was detected by adding the Click-iT reaction mixture in the dark. After 30 min, cells were washed and FACS analysis was immediately performed using the BD FACSCanto II flow cytometer (BD Biosciences). Collected data were analyzed using FlowJo software version 7.6.3 (Tree Star, Palo Alto, CA).

Immunocytochemistry

Immunostaining was performed according to a standard protocol. Briefly, cells were fixed in 4% ice-cold paraformaldehyde for 15 min. The wells were then washed with PBS and permeabilized for 10 min with PBS containing 0.2% Triton X-100. Subsequently, cells were washed again with PBS and blocked for 30 min in SuperMix. After blocking, cells were incubated overnight at 4˚C with the following primary Abs: mouse anti-IFIT1 (1:1000, Sigma-Aldrich, G8993), rabbit anti-S100B (1:600, Dako, Glostrup, Denmark, Z0311), rabbit anti-cleaved caspase-3 (1:400, Cell Signaling Technology, Denver, MA, 9661), mouse anti-CD31 (1:100, Dako), and chicken anti-vimentin (1:1000, Millipore, Billerica, MA, AB5733). The following day, cells were washed three times in PBS and incubated with Cy3- or Cy2-labeled secondary Abs (1:500, Jackson ImmunoResearch Laboratories, Newmarket, Suffolk, U.K.) diluted in SuperMix 1 h at room temperature in the dark. Finally, cells were washed three more times in PBS and nuclei were counterstained with 1 µg/ml Hoechst. Stainings were analyzed with a fluorescence microscope (Zeiss 200M Axiovert, Carl Zeiss, Sliedrecht, the Netherlands) interfaced with an image analysis system (Image-Pro Plus 6.3, Media Cybernetics, Bethesda, MD).

Cell migration scratch assay

The scratch assay was carried out as described before by others (34). Briefly, 1 × 10⁵ cells were seeded in 24-well plates. The following morning, a 20-µl plastic pipette tip was used to draw across the wells to create a linear region void of cells. Afterward, wells were washed and medium was refreshed. Initial images of the denuded zone were taken immediately (t = 0 h) using an inverted microscope (Zeiss 200M Axiovert, Carl Zeiss, Sliedrecht, the Netherlands) interfaced with an image analysis system (Image-Pro Plus 6.3, Media Cybernetics, Bethesda, MD).

Tubulogenesis/Matrigel

For the Matrigel assay, hCMEC/D3 cells were seeded onto 96-well plates coated with growth factor–reduced Matrigel (BD Biosciences) at a density of 100,000 cells/well. After 16 h, digitized images of four representative fields were taken (at ×5 magnification) in bright field using the Zeiss 200M Axiovert microscope. The number of complete rings and the total tube length were measured using the ImageJ software as described by others (35).

Luminex

Briefly, 25-µl supernatants were analyzed using a custom Bio-Plex Pro human cytokine 27-plex panel Ab kit according to the manufacturer’s protocol (Bio-Rad, Veendendaal, the Netherlands). Plates were read on a Bio-Plex protein array system (Bio-Rad) using the standard high and low calibration curves. Data analysis was performed using Bio-Plex Manager software (Bio-Rad).

Statistical analysis

All experiments were performed at least three independent times unless otherwise specified. Graphs are presented as bar charts with ± SEM. The IFN score was calculated from the median fold change value for a panel of seven IFN-stimulated genes (IFIT1, IFIT2, IFIT3, IFI19, OAS1, OAS2, and RASD2) as described previously (14). The variable distribution was assessed by the Kolmogorov–Smirnov test. When the test distribution was not normal, a nonparametric Kruskal–Wallis test was used followed by a Dunn’s multiple comparison test to assess intergroup differences. Luminex data were analyzed using the nonparametric Friedman test for paired groups followed by a Dunn multiple comparison test to assess intergroup differences. A p value <0.05 was considered statistically significant at a 95% confidence level. Tests were performed as indicated using Prism 6.0 (GraphPad Software, San Diego, CA).

Results

Inhibition of TREX1 by shRNA induces apoptosis in human astrocytes

To study the significance of AGS genes in the astrocyte homeostasis, ihNSCs were differentiated into astrocytes (Fig. 1A) and subsequently transduced with LVs expressing shRNAs targeting the different AGS genes. Afterward, the protein expression of TREX1, SAMHD1, RNASEH2A, and ADAR1 was examined and found to be reduced as compared with NT shRNA-transduced cells (Fig. 1B). Previously published data showed that deletion or knockdown of one of the three subunits of the RNASEH2 protein complex is sufficient for the elimination of its activity (16). Although we could not detect SAMHD1 protein in our astrocyte lysates, we were able to detect SAMHD1 mRNA. These findings are in accordance with the gene atlas analysis showing a minimal expression of SAMHD1 in neural tissues (36). Moreover, we observed a major decrease in SAMHD1 mRNA upon knockdown (Supplemental Fig. 1).

An early observation suggested that silencing TREX1 in astrocytes resulted in a decreased cell survival. Indeed, the higher the multiplicity of infection (MOI) we used, the lower was the number of surviving cells (Fig. 1C). The effect was already evident with a low MOI, excluding a general toxic effect of the TREX1 shRNA. At higher MOIs, the number of TREX1 shRNA-transduced cells was decreased up to 70% compared with the NT shRNA control (p < 0.01, Fig. 1C, 1D). This effect on survival was not paralleled in the other control or AGS gene shRNA-transduced cell cultures. Only ADAR1 shRNA-transduced cells presented a slight, non-significant reduction. Because many floating cells were found in TREX1-transduced cultures, the cells were also stained against cleaved caspase-3. Indeed, we found a high number of positive cells (Fig. 1E) and conclude that TREX1 silencing reduces the number of surviving astrocytes by inducing apoptosis.

Silencing of TREX1 results in a reduced proliferation of endothelial cells

To assess the importance of AGS genes in human brain-derived microvascular endothelial cells, hCMEC/D3 cells were transduced with LVs expressing shRNAs targeting the different AGS genes (Fig. 2A). The expression of TREX1, SAMHD1, RNASEH2A, and ADAR1 was significantly reduced in the knockdown cells compared with NT shRNA-transduced cells at mRNA (Supplemental Fig. 2) and protein levels (Fig. 2B).

Next, we studied the effect of silencing AGS genes on the proliferation of hCMEC/D3 cells. Transduction with the different LVs had no visible effect on the cells, and cell death was not observed. However, we did notice a reduced proliferation of TREX1 shRNA-transduced cells. To further investigate this, we used EdU to pulse label cells for 2 h, allowing EdU to incorporate into all dividing cells. We then quantified the amount of EdU incorporation by flow cytometry (Fig. 2C). This method enumerates the proportion of cells progressing through the cell cycle during the short pulse labeling and therefore overcomes confounders such as cell death (37). We found that the proportion of EdU⁺ cells was significantly reduced in TREX1 shRNA-transduced cells (p < 0.05, Fig. 2D). Moreover, to evaluate a possible cell cycle defect in knockdown cells, we determined the proportion of cells in each phase of the cycle in asynchronous endothelial cell cultures (Fig. 2E). However,
quantitative FACS analysis revealed only a minor reduction in the proportion of TREX1 shRNA-transduced cells in M/G2 phase compared with control cells (Fig. 2F).

AGS genes are not essential for in vitro vasculogenesis

Endothelial cell migration and tube formation in Matrigel are widely used as in vitro assays for angiogenesis (38). To show the involvement of AGS gene silencing in capillary morphogenesis, endothelial knockdown cells were seeded on a Matrigel matrix (Fig. 3A). We analyzed the tube formation by measuring the length of the tubules (Fig. 3B) and the number of rings (Fig. 3C) formed by the cells on the matrix. We observed no differences in the knockdown cells compared with controls, demonstrating that silencing AGS genes does not affect the tubulogenic capacity of endothelial cells in vitro.

FIGURE 1. Effect of knockdown on ihNSC-derived astrocytes. (A) Immunostaining of cells against the astrocytic markers GFAP (in green) and S100B (in magenta). Nuclei are counterstained with Hoechst (in blue). Phase-contrast images are from cells transduced with AGS shRNAs. (B) Representative immunoblots from cell lysates confirm the knockdown of TREX1, SAMHD1, RNASEH2A, and ADAR1, respectively. Cell lysates from cells overexpressing the respective recombinant human protein were loaded as a positive control (+). Actin was detected as loading control. (C) First column of images corresponds to endogenous fluorescence of cells expressing GFP (in green) after transduction with the positive control SHC003-TurboGFP. Panels show immunostainings of transduced astrocytes against GFAP (in red) with increasing MOI (range, 1–50). (D) Graph shows quantification of number of cells per field after transduction with the different shRNAs (n = 3). Data represent means ± SEM. **p < 0.01. (E) Immunostaining of NT- and TREX1 shRNA-transduced cells against GFAP (in white) and cleaved caspase-3 (in green). Nuclei are counterstained with Hoechst (in purple). Caspase-3+ cells are indicated by arrowheads. Scale bars, 100 μm.
Interestingly, shRNA silencing of TREX1 in endothelial cells resulted in a reduced migration of those cells compared with control cells (Fig. 3D, 3E) after 24 h ($p < 0.05$) and 48 h ($p < 0.001$). TREX1 shRNA-transduced cells also showed a reduced migration capacity compared with other shRNA-treated cells after 48 h ($p < 0.001$).

Silencing AGS genes activates the expression of ISGs

Increasing evidence exists that IFN-α is not only a potent biomarker in AGS, but also a key player in AGS pathogenesis. We therefore studied the production of IFN-α and the ISGs in astrocytes and endothelial cells after silencing AGS genes. IFN-α expression was induced in astrocytes after silencing of TREX1 ($p < 0.05$, Fig. 4A) but not after knocking down the expression of the other AGS genes. Likewise, the expression of MHC I (HLA-C), which is known to be induced by IFN-α, was increased only in TREX1 knockdown cells ($p < 0.05$, Fig. 4B). In contrast, endothelial cells showed no induction of either IFN-α or HLA-C upon silencing of any AGS gene (Fig. 4C, 4D).

When the expression of a panel of ISGs was studied, we observed increased OAS1 expression in astrocytes after silencing TREX1, SAMHD1, or ADAR1, but not after silencing RNASEH2A (Fig. 4E). Also, the overall IFN score was not increased in astrocytes compared with control shRNA-transduced cultures (Fig. 4F). The IFN score was calculated with the median fold changes of seven ISGs, as indicated in Materials and Methods, and represents the responsiveness to IFN. In contrast, we observed a significant increase in the mRNA expression of IFIT1 ($p < 0.05$), IFIT2 ($p < 0.05$), IFIT3 ($p < 0.05$), IRF9 ($p < 0.01$), OASI ($p < 0.05$), IFIT7 ($p < 0.05$), and RSAD2 ($p < 0.05$) in TREX1 knockdown endothelial cells (Fig. 4G). SAMHD1 knockdown endothelial cells also showed an increased expression of transcripts for IFIT2 ($p < 0.01$), IFIT3 ($p < 0.05$), and IRF9 ($p < 0.05$). No effects, however, were seen in the case of ADAR1 or RNASEH2A silencing on endothelial cells. The overall IFN score for TREX1-depleted cells was higher than that for NT shRNA control cells (Fig. 4H).

Silencing of TREX1 results in an increased production of proinflammatory and chemotactic cytokines

In addition to IFN-α, the chemokine CXCL10 has also been described to be elevated in CSF and plasma from AGS patients. CXCL10 expression is highly induced in astrocytes after silencing of TREX1 ($p < 0.01$), SAMHD1 ($p < 0.001$), and ADAR1 ($p < 0.05$; Fig. 5A). However, the induction of CXCL10 after silencing of RNASEH2A was much weaker compared with all other genotypes. Noticeably, only the ablation of TREX1 resulted in a clear induction of CXCL10 expression in endothelial cells ($p < 0.05$; Fig. 5B).

We also measured the cytokines and chemokines released by astrocytic and endothelial cell cultures after 21 and 7 d, respectively. In astrocytes, silencing of TREX1 resulted in a moderate release of the cytokine IL-6 ($p < 0.05$), as well as a substantial release in the chemokines CXCL10 ($p < 0.05$) and CCL5 ($p < 0.05$; Fig. 5C). These results are similar to those found in endothelial cells (Fig. 5D). Silencing of SAMHD1 only produced an increased release of CXCL10 ($p < 0.01$) and CCL5 ($p < 0.01$) in astrocyte cultures but not in endothelial cells. Silencing of ADAR1 or RNASEH2A did not induce any obvious increase in the production of cytokines in these cultures.
Silencing of TREX1 impairs the growth of primary human astrocytes in vitro and activates the expression of ISGs

To confirm the significance of AGS genes in the astrocyte homeostasis, the different AGS genes were knocked down in human primary astrocytes (Fig. 6A). The expression of TREX1, SAMHD1, RNASEH2A, and ADAR1 was examined and found to be reduced as compared with NT shRNA-transduced cells (Fig. 6B). As observed previously in the ihNSC-derived astrocytes, the final number of TREX1 shRNA-transduced human primary astrocytes cells was severely decreased compared with the NT shRNA control (p < 0.05, Fig. 6C).

Additionally, we measured the expression of IFN-α and other ISGs. IFN-α expression was induced in primary astrocytes only after silencing of TREX1 (p < 0.05, Fig. 6D). When we studied the expression of a panel of ISGs, we only observed increased IFIT2 expression after silencing SAMHD1 (p < 0.05, Fig. 6E).

Discussion

An important and fundamental aspect that remains to be clarified in AGS pathogenesis is the relationship between innate immune response, vasculopathy, and demyelination. It is unknown why a genetically heterogeneous disorder with mutations in at least six different, ubiquitously expressed genes leads to a syndrome with similar clinical manifestations and tropism for the CNS. Although the clinical picture of AGS patients may be alike in some features, these different mutations produce a diverse spectrum of phenotypes, in particular disease progression, with certain genotype/phenotype correlations. Patients carrying TREX1 mutations present a more severe clinical picture (presenting with abnormal neurology already in the neonatal period) and higher mortality rate compared with patients carrying an RNASEH2B mutation (2). In another study, researchers described a distinctive CSF lymphocytes gene expression signature in AGS patients bearing different gene mutations (39), and again in the present study, patients with mutations in TREX1 had the most severe and the earliest symptom onset. Furthermore, it has been shown that patients with SAMHD1 mutations have a later disease onset and a generally milder phenotype (24–26).

Our study clearly shows that silencing TREX1 resulted in a reduced viability of both ihNSC-derived astrocytes and primary
human astrocytes, as well as a reduced proliferation of endothelial cells. Silencing of any of the other AGS-causative genes did not parallel the strong TREX1-related effects. The most severe effect was observed after silencing TREX1 in astrocytes and, to our knowledge, this is the first time that TREX1 deficiency has been linked to cell death. Previous data on silencing TREX1 in murine

![Figure 4](http://www.jimmunol.org/)

FIGURE 4. ISG signature activation on transduced cells. Bar graphs show IFN-α (A and C) and HLA-C (B and D) transcript levels in AGS gene shRNA-transduced astrocytes (n = 7, in black) and endothelial cells (n = 5, in gray). Normalized values are presented as fold over NT shRNA controls. (E) Quantitative PCR analysis of ISG mRNA expression in transduced astrocytes. Results are presented as fold over control (dashed line) and represent means ± SEM (n = 7). (F) IFN score was calculated from the median fold change from six ISGs. (G) Quantitative PCR analysis of ISG mRNA expression in transduced endothelial cells. Results are presented as fold over control (dashed line) and represent means ± SEM (n = 5). (H) TREX1 knockdown cells show an increased IFN score. *p < 0.05, **p < 0.01, ***p < 0.001.
and human fibroblasts reported an impaired G1/S cell cycle transition provoking a cell cycle arrest but not apoptosis (8). Increased apoptosis has never been reported in vivo in Trex1-null mutant mice (9) or in their cells cultured ex vivo (10, 40). It is also intriguing why we observe this effect so dramatically in human astrocytes and not in endothelial cells. We do describe a reduced proliferation in human TREX1 shRNA-transduced endothelial cells. This is in line with a previous study reporting that TREX1-null mutant fibroblasts showed a chronic DNA damage checkpoint activation and a cell cycle arrest (8). Importantly, note that endothelial cells showed a reduced proliferation even though they are immortalized.

Other investigations have shown that also other AGS gene defects can affect proliferation. SAMHD1-null mutant fibroblasts have been shown to exhibit a cell cycle arrest (41). Another investigation also revealed a delayed cell cycle progression after transient knockdown of SAMHD1 in HeLa cells using small interfering RNA (42). Alternatively, transient knockdown of ADAR1 in HeLa cells did not alter the cell growth (43). Hence, the effect of AGS gene deficiency seems to be both tissue and cell specific.

During the last few years, it has become clear that vasculopathy is an essential feature of AGS pathophysiology. From our results, we can conclude that AGS gene mutations have only a limited effect on the normal angiogenic, vasculogenic, and proliferative capacity of cerebral endothelial cells. This means that the vascular alterations observed previously by our group (21) and others (22) are most likely not intrinsically caused by the effect of the mutations in endothelial cells, but rather are caused by the environment. There are abundant data supporting this idea. First, AGS patients present substantial high levels of circulating IFN-α (11). IFN-α is a well-known potent antiangiogenic factor and is therefore used as adjuvant therapy in different types of cancer (44). Second, the levels of IFN-α remain sustainably high for years in both serum and CSF (12, 45). Third, a general downregulation of angiogenesis-related genes has been described for AGS patients carrying different genotypes (46). Fourth, we have previously shown that IFN-α inhibits the production proangiogenic factors such as VEGF and IL-1 by astrocytes (21), the only VEGF-producing cells in the adult brain (47). Finally, we confirmed the downregulation of VEGF and IL-1 in AGS brain specimens (21). Taken together, these data suggest that the sustained alteration of the pool of pro- and antiangiogenic factors may lead to an abnormal vessel formation and proliferation profile in the brain of AGS patients.

Our data also show an induction of IFN-α specifically in TREX1-null mutant astrocytes and not in any other shRNA-treated cells. In fact, endothelial cells did not produce IFN-α after transduction with any of the shRNA particles. In endothelial cells, the expression of many ISGs is induced independently of IFN-α. Many ISGs
(e.g., IFIT1) can be easily activated by IRF proteins independently of IFN-α (48), and independent activation of ISGs has also been demonstrated most recently in Trex1-null mutant and Trex1 knockdown mouse embryonic fibroblasts (49). Our data clearly demonstrate that the knockdown of AGS genes differentially affects distinct cell types. Our findings support the unexplained findings in AGS patients, where the induction of ISGs such as IFIT1, IFIT2, IFIT3, IRF3, and RSAD2 was detected in TREX1-mutated fibroblasts and not in SAMHD1- and RNASEH2C-mutated cells (49). In contrast, the same measurement in whole blood cells from AGS patients showed many ISGs independent of the genotype (14). In this latter study, only a few patients carrying mutations in RNASEH2B gene appeared negative for the IFN response signature. Our data confirm the minor induction of ISGs in astrocytes and endothelial cells after silencing RNASEH2A. However, it remains unexplained why the ISG-activation signature is stronger in TREX1-null mutant cells in comparison with the other genotypes.

Even though IFN-α is considered to be a key biomarker for AGS, the chemokine CXCL10 has also been persistently demonstrated to have an elevated expression in AGS patients (12, 13). Consistent with this, our study shows that silencing AGS genes results in an increased expression and release of CXCL10 mainly in astrocytes. Furthermore, our work has also provided insight into the differential profile of cytokines in the different AGS genotypes. Also in the present study, TREX1-null mutant cells were producing the highest levels of cytokines. Collectively, the cytokine profiles seamlessly paralleled the ISG expression. Our data have shed some light on the functional implications of an ISG activation in the context of AGS. TREX1-null mutant cells present a more robust induction of ISGs that is translated into a higher expression and release of inflammatory cytokines and chemoattractants.

It has been suggested before that an IFN genetic signature may correlate with the phenotypic observations and clinical status in patients (14). We propose a model that links the chronic activation of ISGs with the cerebral autoimmune presentations observed in AGS, in which cytokines play a central role. First, patients carrying AGS gene mutations present an induction of ISGs and a sustained secretion of cytokines and chemokines. This continuous response stimulates the activation of the vasculature and facilitates the transmigration of inflammatory cells into the cerebral parenchyma. The persistent activation of the inflammatory cells might initiate demyelination. Additionally, the inflammatory disturbance of the brain vasculature may lead to prothrombotic phenomena and hypoperfusion that can contribute to demyelination. The disease severity may be reflected by higher ISG induction and cytokine secretion, with the worst prognosis in patients with a TREX1 mutation (2, 14). Future studies to confirm this hypothesis are needed.

In summary, we describe the effect of silencing AGS genes in astrocytes and endothelial cells, two major cell types forming the gliovascular junction. Knockdown of AGS genes, especially TREX1, results in an activation of ISG signaling as well as a substantial release of both proinflammatory cytokines and chemokines. Our findings provide insight into how cell-differential activation of the antiviral status leads to cerebral autoimmune pathology in AGS, and they suggest a link between proinflammatory mediators and disease severity.
Acknowledgments

We thank Dr. Tomas Lindahl (Clare Hall Laboratories, Cancer Research UK London Research Institute) for providing the anti-TREX1 Ab. We also thank John L. van Damme and Thijs Boosman (Institute for Experimental Immunology, Academic Medical Center) for providing the plasmids used as positive controls for SAMHD1 and ADAR1 Western blots. We are also grateful to Roselin R. Klever and Dr. Arn van den Maagdenberg (Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands) for providing the plasmids used as positive control for TREX1 Western blots. We also thank L. Naldini (Institute for Cancer Research, University of Turin Medical School, Turin, Italy) for providing the lentiviral plasmids. We thank Dr. Carlyn Martina-Mamber for valuable help in editing the manuscript. The authors acknowledge the Netherlands Brain Bank and Dr. M. van Strien for providing the brain material donor for the isolation of primary astrocytes.

Disclosures

The authors have no financial conflicts of interest.

References

42. Kretschmer, S., C. Wolf, N. Konig, W. Staroske, J. Guck, M. Hausler, H. Laksch,
 L. A. Nguyen, B. Kim, D. Alexopoulou, et al. 2015. SAMHD1 prevents auto-
43. Li, Z., K. C. Wolff, and C. E. Samuel. 2010. RNA adenosine deaminase ADAR1
deficiency leads to increased activation of protein kinase PKR and reduced vesicular
Semin. Oncol. 29(3, Suppl. 7)18–26.
discussion A55–A58, A77–A86.
46. Izzotti, A., E. Fazzi, S. Orcesi, C. Cartiglia, M. Longobardi, V. Capra, P. Lebon,
A. Cama, A. Pulliero, R. La Piana, and G. Lanzi. 2008. Brain damage as detected
by cDNA-microarray in the spinal fluid of patients with Aicardi-Goutières
47. Yang, S.-Z., L.-M. Zhang, Y.-L. Huang, and F.-Y. Sun. 2003. Distribution of
pathway essential for the immediate-early, interferon-independent antiviral re-
49. Hasan, M., J. Koch, D. Rakheja, A. K. Pattnaik, J. Brugarolas, I. Dozmorov,
lysosomal biogenesis and interferon-independent activation of antiviral genes.