Characterization of samhd1 Morphant Zebrafish Recapitulates Features of the Human Type I Interferonopathy Aicardi-Goutières Syndrome

Paul R. Kasher, Emma M. Jenkinson, Valérie Briolat, David Gent, Catherine Morrissey, Leo A. H. Zeef, Gillian I. Rice, Jean-Pierre Levraud and Yanick J. Crow

J Immunol 2015; 194:2819-2825; Prepublished online 11 February 2015; doi: 10.4049/jimmunol.1403157
http://www.jimmunol.org/content/194/6/2819

Supplementary Material http://www.jimmunol.org/content/suppl/2015/02/11/jimmunol.1403157.DCSupplemental

References This article cites 43 articles, 12 of which you can access for free at: http://www.jimmunol.org/content/194/6/2819.full#ref-list-1

Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription

Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
Characterization of samhd1 Morphant Zebrafish Recapitulates Features of the Human Type I Interferonopathy Aicardi-Goutières Syndrome

Paul R. Kasher,* Emma M. Jenkinson,* Valérie Briolat,†‡ David Gent,* Catherine Morrissey,* Leo A. H. Zeet,§ Gillian I. Rice,* Jean-Pierre Levraud,†‡ and Yanick J. Crow*¶

In humans, loss of function mutations in the SAMHD1 (AGS5) gene cause a severe form of Aicardi-Goutières syndrome (AGS), an inherited inflammatory-mediated encephalopathy characterized by increased type I IFN activity and upregulation of IFN-stimulated genes (ISGs). In particular, SAMHD1-related AGS is associated with a distinctive cerebrovascular pathology that commonly leads to stroke. Although inflammatory responses are observed in immune cells cultured from Samhd1 null mouse models, these mice are physically healthy, specifically lacking a brain phenotype. We have investigated the use of zebrafish as an alternative system for generating a clinically relevant model of SAMHD1-related AGS. Using temporal gene knockdown of zebrafish samhd1, we observe hindbrain ventricular swelling and brain hemorrhage. Furthermore, loss of samhd1 or of another AGS-associated gene, adar, leads to a significant upregulation of innate immune-related genes and an increase in the number of cells expressing the zebrafish type I IFN ifnphi1. To our knowledge, this is the first example of an in vivo model of AGS that recapitulates features of both the innate immune and neurological characteristics of the disease. The phenotypes associated with loss of samhd1 and adar suggest a function of these genes in controlling innate immune processes conserved to zebrafish, thereby also contributing to our understanding of antiviral signaling in this model organism. The Journal of Immunology, 2015, 194: 2819–2825.

© 2015 by The American Association of Immunologists, Inc. 0022-1767/15 $25.00

Abbreviations used in this article: AGS, Aicardi-Goutières syndrome; AGS5, SAMHD1-related AGS; ATG, translation start codon; dfp, d postfertilization; ISG, IFN-stimulated gene; IQR, interquartile range; MO, morpholino; QRT-PCR, quantitative real-time PCR; RQ, relative quantification; WT, wild type.

This work was supported by the Newlife Foundation, the Natalie Kate Moss Trust, the European Research Council (GA 309449: fellowship to Y.J.C.), and state subcontracting to the Future program bearing the reference ANR-10-IAHU-01 and the “Zebraflam” program bearing the reference ANR-10-MIDL-009.

Address correspondence and reprint requests to Dr. Paul R. Kasher, Manchester Centre for Genomic Medicine, Institute of Human Development, Faculty of Life Sciences and Human Sciences, 1st Floor Offices, A V Hill Building, University of Manchester, Oxford Road, Manchester M13 9PT, U.K. E-mail address: paul.kasher@manchester.ac.uk

The online version of this article contains supplemental material.

Received for publication December 19, 2014. Accepted for publication January 15, 2015.

The journal of Immunology, 2015, 194: 2819–2825.

© 2015 by The American Association of Immunologists, Inc. 0022-1767/15 $25.00

Abbreviations used in this article: AGS, Aicardi-Goutières syndrome; AGS5, SAMHD1-related AGS; ATG, translation start codon; dfp, d postfertilization; ISG, IFN-stimulated gene; IQR, interquartile range; MO, morpholino; QRT-PCR, quantitative real-time PCR; RQ, relative quantification; WT, wild type.

Copyright © 2015 by The American Association of Immunologists, Inc. 0022-1767/15 $25.00

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1403157

Copyright © 2015 by The American Association of Immunologists, Inc. 0022-1767/15 $25.00

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1403157

Downloaded from http://www.jimmunol.org/ by guest on April 20, 2017
We propose that zebrafish may represent a novel in vivo system for studying the relationship between IFN signaling and a loss of SAMHD1 activity.

Materials and Methods

Zebrafish

Adult and larval zebrafish husbandry was approved by The University of Manchester Ethical Review Board and all experiments were performed in accordance with U.K. Home Office regulations. Embryos generated from a wild type (WT) AB zebrafish cross were used for morpholino (MO) characterization and gene expression analyses. Brain hemorrhage analyses were performed on embryos harvested from a double transgenic (fltl:GFP)\(^+\)/ (gata1:DiRed)\(^{+\#}\) adult zebrafish cross (19, 20), hereafter referred to as fltl:GFP/gata1:DiRed. The (ifnph1/mcherry)\(^{+\#}\) transgenic reporter line was used for ifnph1 expression analyses (21). Fertilized embryos were collected and staged according to standard guidelines (22).

Morpholinos

Two MOs were designed and synthesized (Gene Tools, Philomath, OR) for inhibition of the samhd1 gene (samhd1 translation start codon [ATG], 5'-GCCGTTTAATCCGGTTCCTCCTAGGT-3'; samhd1 exon 4 splice donor, 5'-GCTTCTCCTCGTGTGAAGATCGCTGAGG-3'), as well as for the adar gene (adar ATG, 5'-ATTCCCCCCCTCTCCTGCTATC-3'; adar exon 4 splice donor, 5'-ACCGCCATTTACCGGCTGAA-3'). Fertilized embryos were injected with between 3.2 and 4.0 ng for both samhd1 MOs and 0.8 ng and 8.0 ng for the adar ATG and splice MO, respectively. The sequence and injection dosages for the ccecl ATG MO have been published elsewhere (23). Standard control MOs provided by Gene Tools were also used. MO microinjection was performed as described previously (24).

Reverse transcriptase PCR

To assess efficiency of the splice MOs, total RNA was extracted as described previously (24). cDNA was synthesized from 400 ng RNA using the High Capacity RNA to cDNA Kit (Life Technologies). RT-PCR was performed using primers designed to flank exon 4 of the samhd1 cDNA transcript (forward: 5'-CTGCGTGTGCTGTCAAGGTC-3'; reverse: 5'-GACATGCGCAATCCGGGATC-3') to generate a WT amplicon of 427 kb, and primers designed to flank exon 4 of the adar cDNA transcript (forward: 5'-AGATGGTCGACGTCCGGT-3'; reverse: 5'-CTCTTTCAGCCCTTCCCG-3') to generate a WT amplicon of 427 kb.

Western blotting

For zebrafish protein lysates, embryos were pooled into groups of n = 40–60, dechorionated and deyolked (deyolking buffer: 55 mM NaCl, 1.8 mM KCl, 1.25 mM NaHCO\(_3\)), and subsequently washed (postdeyolking wash buffer: 110 mM NaCl, 3.5 mM KCl, 2.7 mM CaCl\(_2\), 10 mM Tris-HCl, pH 8.5). Embryos were then homogenized and lysed in EDTA plus RIPA buffer containing protease inhibitors (Roche). Whole-cell lysates from control and SAMHD1 null AGS5 patient (c.1-6085_c.208+2691del hom) (2) lymphoblastoid cell lines were prepared as described previously (7). Western blotting was performed as described previously (7) using an anti-human SAMHD1 polyclonal Ab (Abcam; ab67820). An anti-human SAMHD1 cDNA had been previously cloned into a pGEM-T easy vector (5). The expression cassette was excised using EcoRI and subsequently ligated into pCS2+. In vitro transcription was performed using SP6 mMESSAGE mMACHINE (Life Technologies) following Not1 linearization. For the phenotypic rescue experiments, 100 pg of SAMHD1 mRNA was injected alone as a control, or in combination with the samhd1 ATG MO.

Tagman quantitative real-time PCR

Total RNA was extracted from n = 50–100 embryos at 4 dpf postfertilization (dpf) as described previously (24). cDNA was synthesized from 400 ng RNA using the High Capacity RNA to cDNA kit (Life Technologies). Quantitative real-time PCR (QRT-PCR) analysis was performed using the TaqMan Universal PCR Master Mix (Applied Biosystems). The relative abundance of target transcripts, measured using Taqman probes for cebpdb (dr03201503_s1), cxc46 (custom design; see Supplemental Fig. 1), irf7b (dr03151900_g1), irf7 (dr03081134_g1), isl1 (custom design; see Supplemental Fig. 1), samhd1 (dr03203565_s1), mmp9 (dr03139883_g1), socs3b (dr03203997_s1) and stat6 (dr03151121_m1), was normalized to the expression of hprt1 (dr03095131_g1). Gene expression fold changes were calculated using Applied Biosystems StepOne Software V2.1 and Applied Biosystems Data Assist Software V3.01. Fold change values for each gene were plotted against each morphant group using GraphPad Prism version 5.0 and defined as the relative quantification (RQ). Column statistics were used to generate the median RQ values for each morphant group for the nine target genes pooled together (7).

Flow cytometry

Morphant and control ifnph1:mCherry transgenic embryos and nontransgenic embryos were harvested at 4 dpf (n = 40–60 embryos). Whole embryos were enzymatically dissociated using a 10 X Tryple (Life Technologies) and collagenase–dispase (Roche) mixture. Samples were incubated for 1 h at 28.5˚C and triturated at regular intervals. Single-cell suspensions were analyzed using a BD Biosciences LSRFortessa cell analyzer running Diva 8.1 software. The samples were gated using FS-H Vs FS-A (forward scatter height versus forward scatter area) to select all cells and then on forward scatter versus side scatter to exclude debris. mCherry was excited using a 561-nm laser and the fluorescence measured using a 610/20-nm bandpass filter. Autofluorescence was determined using cells obtained from nontransgenic embryos using 488-nm excitation and auto2 using a 530/30-nm bandpass filter. The numbers of mCherry-positive cells were isolated by drawing a region on a two-parameter plot of mCherry versus autofluorescence just above the level of the auto-fluorescence. The number of mCherry-positive events was counted from 200,000 cells for each group. Experiments were performed in triplicate. The number of mCherry-positive cells was normalized to the uninjected group and the mean relative quantification was plotted.

Statistics

Statistical differences were evaluated using one-way ANOVA with the Newman–Keuls multiple comparison test. Statistics were calculated using GraphPad Prism version 5.0 software.

Results

Specific knockdown of zebrafish samhd1 causes a hindbrain-swelling phenotype

AGS5 is caused by loss-of-function mutations in the SAMHD1 gene (5). As mutant Samhd1 mice lack any overt physical phenotype (14, 15), we sought to investigate the use of zebrafish embryos as a possible alternative vertebrate disease model. A single samhd1 ortholog (ENSDARG00000071288) can be identified in the zebrafish reference genome (zv9, www.ensembl.org). Zebrafish Samhd1 protein (accession number NP_001153405, http://www.ncbi.nlm.nih.gov/protein/) is relatively well conserved, sharing 60% homology with the human ortholog (Supplemental Fig. 2). We performed samhd1 gene knockdown experiments in WT zebrafish embryos using an antisense MO strategy. We designed an MO to specifically target the translation start codon (ATG) of the zebrafish samhd1 transcript, which was predicted to inhibit protein synthesis. Using an anti-human SAMHD1 Ab, Western blot analyses confirmed a reduction in samhd1 protein expression in morphants in comparison with controls (Fig. 1A), thereby providing us with confidence that the MO was specifically limiting samhd1 translation in vivo. We next monitored the effects of loss of samhd1 during larval development. Following samhd1 knockdown, we observed a mild developmental delay that we perceived to relate possibly to a nonspecific MO effect (25). However, we also observed swelling within the fourth ventricle of the brain between 2 and 3 dpf, a phenotype not normally reported in previously (25). However, we also observed swelling within the fourth ventricle of the brain between 2 and 3 dpf, a phenotype not normally reported in

Statistics

Statistical differences were evaluated using one-way ANOVA with the Newman–Keuls multiple comparison test. Statistics were calculated using GraphPad Prism version 5.0 software.

Results

Specific knockdown of zebrafish samhd1 causes a hindbrain-swelling phenotype

AGS5 is caused by loss-of-function mutations in the SAMHD1 gene (5). As mutant Samhd1 mice lack any overt physical phenotype (14, 15), we sought to investigate the use of zebrafish embryos as a possible alternative vertebrate disease model. A single samhd1 ortholog (ENSDARG00000071288) can be identified in the zebrafish reference genome (zv9, www.ensembl.org). Zebrafish Samhd1 protein (accession number NP_001153405, http://www.ncbi.nlm.nih.gov/protein/) is relatively well conserved, sharing 60% homology with the human ortholog (Supplemental Fig. 2). We performed samhd1 gene knockdown experiments in WT zebrafish embryos using an antisense MO strategy. We designed an MO to specifically target the translation start codon (ATG) of the zebrafish samhd1 transcript, which was predicted to inhibit protein synthesis. Using an anti-human SAMHD1 Ab, Western blot analyses confirmed a reduction in samhd1 protein expression in morphants in comparison with controls (Fig. 1A), thereby providing us with confidence that the MO was specifically limiting samhd1 translation in vivo. We next monitored the effects of loss of samhd1 during larval development. Following samhd1 knockdown, we observed a mild developmental delay that we perceived to relate possibly to a nonspecific MO effect (25). However, we also observed swelling within the fourth ventricle of the brain between 2 and 3 dpf, a phenotype not normally reported with the use of MO technology. To account for variation in the severity of this phenotype, we classified swellings into four categories: normal, mild, moderate, and severe (Fig. 1B). Embryos were scored in n = 80–120 morphants and the same number of controls at 3 dpf; 94% of samhd1 morphants displayed a severe (50% of total) or moderate (44% of total) swelling phenotype (Fig. 1C). To confirm whether this could be specifically attributed to loss of samhd1, we next co-injected human WT SAMHD1 mRNA with the samhd1 ATG
Specific knockdown of zebrafish samhd1 is associated with hindbrain ventricular swelling. (A) Western blot analysis reveals a reduction in samhd1 protein level in samhd1 ATG (lane 5) morphants in comparison with uninjected (lane 3) and control MO (lane 4) embryos (n = 40–60 embryos per group). WT human (lane 1) and SAMHD1-null AGS5 patient (lane 2) lymphoblastoid cell line lysates were also loaded as a specificity control for the anti-human SAMHD1 Ab. An anti-ERK Ab was used as a loading control. (B) Four levels of severity were categorized based on the hindbrain (fourth ventricle) swelling (arrow) phenotype observed between 2 and 3 dpf: normal, mild, moderate, and severe. Original magnification ×32. (C) Almost 100% of control embryos (uninjected and RNA only [100 pg] groups) exhibited normal brain development. Conversely, ~45% and 50% of embryos demonstrated moderate and severe brain swelling phenotypes when injected with the samhd1 ATG MO (ATG 400 μM). The severity of this phenotype was reduced considerably when the samhd1 ATG MO was coinjected with human SAMHD1 RNA (ATG 400 μM plus RNA 100 pg; n = 40–80 embryos per group, repeated three times).

MO. Although, a generic developmental delay phenotype was retained, we recorded that only 2% of the coinjected embryos now exhibited severe swellings, whereas 24% and 49% displayed moderate and mild phenotypes, respectively (Fig. 1C). These rescue data suggest that the ventricular swelling observed is a direct result of specific knockdown of the samhd1 gene.

Loss of samhd1 is associated with a brain hemorrhage phenotype

To gain insight into the cause of the cerebral swelling seen in samhd1-MO treated embryos, and considering the observation of a cerebral vasculopathy in patients with SAMHD1 mutations (10–13), we next wanted to test whether there was any evidence that samhd1 knockdown was associated with brain hemorrhage. We injected samhd1 ATG MO into embryos derived from crossing a double transgenic fli1:GFP/gata1:DsRed reporter zebrafish line (19, 20). In these double-transgenic embryos, endothelial cells express GFP and erythrocytes express DsRed, allowing us to monitor the status of blood circulation by fluorescence stereomicroscopic examination of live animals. As a positive control, we examined cecr1 morphants, because mutations in the CECRI gene cause an early-onset vasculopathy and knockdown of the zebrafish homolog is associated with brain hemorrhage (23). Embryos were quantified in six independent experiments for the presence or absence of blood pools within brain or head regions between 2 and 3 dpf (Fig. 2A). Knockdown of cecr1 caused brain hemorrhage in 55.9% of injected embryos. Hemorrhages were observed in a comparable proportion of samhd1 morphant embryos (46.7%), significantly higher in comparison with either uninjected (16.3%) or control morphant (20.3%) embryos (Fig. 2B). Thus, samhd1 knockdown results in brain bleeding in zebrafish.

In addition, hindbrain swellings were quantified in triplicate experiments in samhd1, cecr1, control MO, and uninjected embryos at 2 dpf (Fig. 2C). Although a higher proportion of embryos displaying swellings were observed in cecr1 (11.7% ± 2.8; mean ± SEM) morphants in comparison with the control MO group (1.2% ± 0.5), this difference was not significant. In contrast, the proportion of embryos exhibiting swellings was significantly higher in the samhd1 morphant group (68.8% ± 7.7) compared with all other groups. This result suggests that the hindbrain swelling that we observed was specific for loss of samhd1, and not secondary to the disruption of cerebral vasculature.

Knockdown of samhd1 is associated with increased expression of genes involved in innate immune responses

Biochemically, AGS is characterized by a significant increase in ISG expression in peripheral blood (2). Recently, a transcriptional response has been described for larval zebrafish in response to infection from two different viruses (18). Although the repertoire of upregulated genes was distinct in response to the two infections, a degree of genetic overlap was shown to exist between both models. To assess whether the phenotype that we observed on knockdown of samhd1 might be associated with increased transcription of innate immune-related genes, we measured the expression levels of a number of genes considered to play a role in antiviral, innate immune mechanisms in our samhd1 morphant model. We established a panel of nine genes based on a combination of 1) preliminary samhd1 morphant microarray data (data
not shown), 2) genes described as upregulated in zebrafish models of viral infection (18), and 3) ISGs defined as overexpressed in the context of human AGS (2). We performed Taqman QRT-PCR using specific probes designed to target each of these genes on cDNA synthesized from RNA that we harvested from larvae per group at 4 dpf. We observed a significant increase in the expression of these genes in the samhd1 ATG morphants (median RQ = 7.15; interquartile range (IQR) = 4.97–11.57) in comparison with uninjected and control morphants. Brain hemorrhage was observed in a significantly higher proportion of cecr1 (55.9%) and samhd1 (46.7%) morphants, in comparison with uninjected (16.3%) and control morphants (20.3%; n = 30–80 embryos per group, repeated six times). The percentage of hindbrain swellings was quantified in uninjected, control MO, cecr1, and samhd1 ATG morphant embryos at 2 dpf. A significantly greater proportion of embryos exhibiting swellings were observed in the samhd1 morphant group in comparison with any other group (n = 80–120 embryos per group, repeated three times). *p < 0.05 using one-way ANOVA with Newman–Keuls multiple comparison test.

Characterization of genes that can be considered as bona fide antiviral “signature” genes has not been studied in zebrafish as extensively as in humans (26). Indeed, stimulus-dependent variations in the innate immune transcriptional response exist in zebrafish (18). As the panel of genes that we used was selected based on criteria relating to categories 1–3 described above, we next wanted to test the validity of this result using an alternative zebrafish model of disturbed innate immunity. Hypomorphic mutations in the ADAR gene cause AGS6, and they are associated with a substantial upregulation of ISG expression (7). Mice lacking the Adar gene die in utero and similarly demonstrate a marked overexpression of ISGs (27, 28). According to the current version of the zebrafish reference genome (zv9), zebrafish have a unique adar ortholog (ENSDARG00000012389), previously identified (29) but not studied functionally. Using ATG and splice-blocking (exon 4) MOs to target adar, we observed a severe developmental phenotype even at low concentrations of the ATG MO. Conversely, adar splice morphants appeared morphologically normal at high MO concentrations, although it targets an exon used in all known splice variants of adar. RT-PCR of adar splice morphant cDNA, using primers that flank exon 4, confirmed aberrant splicing of the adar transcript (Supplemental Fig. 3B). RNA was harvested from n = 50–100 adar morphant embryos, and cDNA was synthesized before performing Taqman QRT-PCR using the probe set described above. We observed a significant increase in the expression of the innate immune genes included in our panel in adar ATG morphants (median RQ = 9.99; IQR = 6.04–29.31) in comparison with cecr1 morphants and uninjected and control morphant embryos (Fig. 3). Overall, gene expression was not significantly altered in the adar splice morphants (median RQ = 2.37; IQR = 2.25–24.01) in comparison with controls, although expression of three of the nine genes was upregulated (irf7, isg15, and stat1b), suggesting that these embryos display a degree of innate immune gene activation, albeit milder in comparison with the adar ATG and the samhd1 morphants.

Ifnphi1 expression is enhanced in response to samhd1 inhibition

As well as a significant enhancement of ISG transcription, AGS is characterized molecularly by increased IFN-α activity in patient cerebrospinal fluid and serum (1, 2). In zebrafish, four type I IFNs are expressed (IFN-ϕ 1–4). However, only IFN-ϕ1 and IFN-ϕ3 are functional during larval development (30). We took advantage of...
FIGURE 3. Taqman QRT-PCR was performed on cDNA synthesized from total RNA harvested from uninjected, control MO, ccecr1, samhd1 ATG, samhd1 splice, and adar ATG and adar splice morphant embryos (n = 50–100 per group). The relative abundance (RQ) of target transcripts cebrbp, cxc46, ifn1b, ifn7, isg15, jumba, mmp9, socs3b, and stat1b was normalized to the expression of the housekeeping gene hprt1. Each PCR was performed three times in triplicate per cDNA sample (total of nine technical repeats per sample). Biological repeats were also performed showing comparable differences (data not shown). A significant increase in expression of the nine genes was observed when comparing both samhd1 ATG and splice morphants to controls and when comparing adar ATG morphants to controls, p < 0.05 using one-way ANOVA with Newman-Keuls multiple comparison test.

the transgenic ifnφ1:mCherry reporter line, embryos of which exhibit increased expression of mCherry in a subset of cells following viral infection, reflecting endogenous ifnφ1 expression (21). To determine whether the increase in expression of our putative immune gene panel in the samhd1 morphants was also associated with upregulation of ifnφ1 itself, we performed samhd1 knockdown experiments in zebrafish embryos harvested from the transgenic ifnφ1:mCherry reporter line. At 4 dpf, morphant embryos were analyzed by fluorescent microscopy and subsequently processed for flow cytometry and quantification of mCherry-positive cells. We observed significant increases in the number of mCherry-positive cells in both samhd1 ATG (RQ = 2.92 ± 0.5; mean ± SEM) and samhd1 splice morphants (RQ = 4.20 ± 0.1) in comparison with control morphants (RQ = 1.40 ± 0.2) and uninjected larvae (median RQ = 1; baseline reference; Fig. 4). Furthermore, we also recorded a significant increase in mCherry-positive cells in adar splice morphants (RQ = 2.44 ± 0.1), suggesting an increase in innate immune gene expression with upregulation of ifnφ1 in both models.

Discussion

Mice deficient in the genes associated with AGS1-7 exist. However, the suitability of these models to study the inflammatory and neurological aspects of AGS is restricted, either because of a lack of brain phenotype—such as Trex1 (31–33), Samhd1 (14, 15), or Ifih1 (34)—or because of embryonic lethality—such as Rnaseh2 (35, 36) and Adar (27, 28). To develop treatments for AGS patients, it is desirable to generate an animal model that reliably recapitulates the neurological characteristic aspects of the disease. In this study, we describe a novel in vivo model of AGS demonstrating, to our knowledge for the first time, inflammatory and brain phenotypes that may be relevant to the human condition.

Following knockdown of the samhd1 gene in zebrafish embryos, we observed hindbrain ventricular swellings and hemorrhages in the brain. In addition to the severe brain damage, likely occurring secondary to a microangiopathic process, which is common to all forms of AGS, SAMHD1 mutations also result in an apparently gene-specific cerebral vasculopathic phenotype frequently leading to intracerebral hemorrhage during early life (10–13). As with all subtypes of the disorder, AGS5 is associated with a significant upregulation of ISGs (2). Likewise, increased expression of ISGs was observed in spleen, fibroblasts, and macrophages harvested from mice lacking the Samhd1 gene (14, 15). However, these mice did not display any detectable brain, or any other, phenotype. Our data imply that zebrafish might be a better model for studying AGS5-related cerebrovascular defects, either because zebrafish samhd1 shares a greater degree of functionality with the human ortholog in comparison with the mouse protein, or, because of some form of compensatory genetic mechanism in mice, which is absent in zebrafish. Such conclusions are speculative at this point, in part because of differences between the models regarding transient gene knockdown versus germline mutation.

Loss of ccecr1 in zebrafish is associated with a brain hemorrhage phenotype (23). In contrast to samhd1 knockdown, however, we did not detect hindbrain ventricular swellings in this model. Brain hemorrhages and hindbrain ventricular swelling have been recorded together as a result of endothelial defects in zebrafish models of pak2a deficiency (37, 38). Further study is required to determine the cellular processes associated with the features seen in our samhd1 morphants.

The ISG response in humans is characterized by differences in the gene transcriptional profile induced according to the viral stimulus involved (26). The ISG innate immune transcriptional response to different viral stimulation in zebrafish is yet to be fully defined, although it is apparent that overlap exists with the human state (18). Of note, as in humans, it appears that the transcriptional response in fish is stimulus dependent (18, 30, 39). Against this background, we selected a panel of transcripts that might be relevant to a putative innate immune response as observed in humans secondary to AGS-related protein loss.

Using data obtained from a preliminary microarray expression analysis, in combination with knowledge of genes significantly upregulated in zebrafish models of viral infection (18) and in human AGS (2), we compiled a panel of innate immune genes to test in our zebrafish model. We observed significantly enhanced expression of these genes using two samhd1-targeting strategies. In addition, we recorded upregulation of these transcripts in adar morphants (AGS6),
which we performed to validate the selection of the genes in our panel. Taken together, these data suggest that, as for mammals, samhd1 and adar possess functions that involve regulation of innate immune responses in zebrafish.

The gene, isg15, was highlighted as significantly upregulated in our preliminary studies and subsequently confirmed following QRT-PCR. In humans, ISG15 dysregulation is associated with neuroinflammatory disease (2, 40). Zebrafish isg15 is also activated after viral stimulation (18), and it has been shown to be a key regulator of IFN-mediated antiviral responses (41). In addition, we observed upregulation of mmp9 and junbb, both of which are induced in zebrafish viral infection models (18). Functional knowledge of the zebrafish specific chemokine cxc46 is relatively poor. However, other CXC chemokine family members are upregulated in response to viral infection in zebrafish larvae (18), and increased expression of chemokines has been reported in AGS (42, 43). Increased expression of genes encoding the transcription factors irf1b, irf7, stat1b, and cebp, as observed in our morphants, has also been recorded following exposure to two viruses in zebrafish infection models (18), and significant upregulation of the human orthologs, STAT1 and IRF7 is seen in AGS (7). Although not implicated in AGS or zebrafish viral infection models, we deemed the socs3b gene worthy of further examination because of the known inflammatory-related functions of the suppressors of cytokines (SOCS) proteins, and the observation of increased socs3 expression in carp following infection with Spring viremia of carp virus (39). Importantly, consistent with an upregulation of ISGs and innate immune genes, we were also able to demonstrate increased expression of the zebrafish type I IFN, ifnphi1, following knockdown of samhd1 and adar.

In conclusion, we have observed that the loss of samhd1 in zebrafish is associated with features reminiscent of the cerebral hemorrhage phenotype in AGS5, and that both samhd1 and adar zebrafish knockdown recapitulate the IFN response seen in AGS. Even taking into account concerns over the use of MO technology in zebrafish (25), our data indicate that the analysis of stable mutants of samhd1 and adar in zebrafish is warranted to shed light on the nature of the innate immune stimulus in...
these disease states, and to extend our knowledge of antiviral responses in zebrafish more generally.

Acknowledgments

We thank Dr. Adam Hurlstone and Dr. Shane Herbert for sharing zebrafish strains and equipment and Mike Jackson at the University of Manchester Flow Cytometry Facility for technical support.

Disclosures

The authors have no financial conflicts of interest.

References

