Antibody-Mediated Response of NKG2C bright NK Cells against Human Cytomegalovirus

Marcel Costa-Garcia, Andrea Vera, Manuela Moraru, Carlos Vilches, Miguel López-Botet and Aura Muntasell

J Immunol 2015; 194:2715-2724; Prepublished online 9 February 2015;
doi: 10.4049/jimmunol.1402281
http://www.jimmunol.org/content/194/6/2715
Antibody-Mediated Response of NKG2Cbright NK Cells against Human Cytomegalovirus

Marcel Costa-Garcia,* Andrea Vera,* Manuela Moraru,† Carlos Vilches,† Miguel López-Botet,§‡,* and Aura Muntasell†,*

Human CMV (HCMV) infection promotes a variable and persistent expansion of functionally mature NKG2Cbright NK cells. We analyzed NKG2Cbright NK cell responses triggered by Abs from HCMV* sera against HCMV-infected MRC5 fibroblasts. Specific Abs promoted the degranulation (i.e., CD107a expression) and the production of cytokines (TNF-α and IFN-γ) by a significant fraction of NK cells, exceeding the low natural cytotoxicity against HCMV-infected targets. NK cell-mediated Ab-dependent cell-mediated cytolysis was limited by viral Ag availability and HLA class I expression on infected cells early postinfection and increased at late stages, overcoming viral immune evasion strategies. Moreover, the presence of specific IgG triggered the activation of NK cells against Ab-opsonized cell-free HCMV virions. As compared with NKG2A+ NK cells, a significant proportion of NKG2Cbright NK cells was FcγRγ-chain defective and highly responsive to Ab-driven activation, being particularly efficient in the production of antiviral cytokines, mainly TNF-α. Remarkably, the expansion of NKG2Cbright NK cells in HCMV* subjects was related to the overall magnitude of TNF-α and IFN-γ cytokine secretion upon Ab-dependent and -independent activation. We show the power and sensitivity of the anti-HCMV response resulting from the cooperation between specific Abs and the NKG2Cbright NK-cell subset. Furthermore, we disclose the proinflammatory potential of NKG2Cbright NK cells, a variable that could influence the individual responses to other pathogens and tumors. The Journal of Immunology, 2015, 194: 2715–2724.
Currently, the participation of NKG2C^{bright} NK cells on the anti-HCMV response is circumstantially supported by the observation of a NKG2C⁺ NK cell lymphocytosis concomitant to the reduction of viremia during acute infection of a T cell–immunodeficient infant (27). In vitro, NKG2C^{bright} NK cells display a moderate response against HCMV-infected cells, although a recent study disclosed their possible role as Ab-dependent effectors (28, 29), in close resemblance with FcεR-chain–deficient NK cells (19).

The CD16A (FcγRIIIA) receptor, present on most CD56^{dim} NK cells is, together with NKG2D, preserved upon NKG2C^{bright} NK cell differentiation (30). CD16 interacts with the Fc portion of a cell-bound IgG molecule, promoting target cell killing and cytokine production by resting NK cells, in contrast with the simultaneous coengagement of at least two receptors required by other activating NKRs (31, 32). Information on NK cell–mediated Ab-dependent cell-mediated cytotoxicity (ADCC) in HCMV infection is scarce. In this study, we have systemically characterized the contribution of NKG2C^{bright} NK cells and HCMV-specific Abs to the recognition of infected cells and virions. Our results reveal the power and sensitivity of this antiviral mechanism resulting from the synergism between both arms of the immune system, and uncover the contribution of NKG2C^{bright} NK cells to Ab-mediated anti-HCMV responses by secreting proinflammatory cytokines.

Materials and Methods

Ethics statement

PBMCs, NK cells, and serum samples used in this study were obtained from volunteer healthy adults. Written informed consent was obtained from every donor, and the study protocol was approved by the local ethics committee (Clinical Research Ethics Committee, Parc de Salut Mar n’2010/376/It).

Abs and flow-cytometry analysis

FACS analysis was performed using mAbs specific for the following surface molecules: CD56–allophycocyanin, TNF-α–FITC (eBioscience, San Diego, CA), NKG2C–PE (clone 134591) and unlabeled NKG2C (clone MAB1381, R&D Systems, Minneapolis, MN), CD94/NKG2A–PE (Beckman Coulter), CD3–PerCP, IFN-γ–PE, Perforin–FITC, and CD107a–FITC (BD Biosciences Pharmingen, San Diego, CA), anti-FcεR1 Ab, γ subunit–FITC (Merck, Millipore). mAb anti-CD16 (clone KDI) and anti–HLA-I (clone W6/32), anti-NKG2A (clone Z199), anti-KIR2DL2/SL3/L3 (clone CHL, kindly provided by Dr. S. Ferrini, National Institute for Cancer Research, Genova, Italy), and anti-KIR3DL1 (clone DX9, kindly provided by Dr. L.L. Lanier, University of California, San Francisco, CA) were produced in the laboratory and indirectly labeled. mAb anti-KIR2DL1 (clone DM-1) was produced and characterized in our laboratory. Cells were pretreated with human aggregated IgG (10 μg/ml) to block FcRs and were subsequently labeled with specific Abs. For indirect immunostaining, samples were incubated with unlabeled Abs followed by PE-conjugated F(ab′)2, polyclonal rabbit anti-mouse IgG+IgM (Jackson ImmunoResearch, West Grove, PA) or PE-Cy7–conjugated F(ab′)2 polyclonal goat antiamouse IgG (Biolgend, San Diego, CA).

Depending on the assays, samples were analyzed in a FACS Calibur or LSR II flow cytometer (BD Biosciences), and data were analyzed with FlowJo software (TreeStar). For blocking experiments, the anti–HLA-I A6/136 (kindly provided by Prof. A. Moretta, University of Genova, Genova, Italy) was used at saturating concentrations.

HCMV stock preparation and MRC5 infection

MRC5 fetal human lung fibroblasts cell line (HLA-A^{*2}, B^{*29}, HLA-C^{*07}, *44, HLA-C^{*05}, *07) was obtained from the American Type Culture Collection (Manassas, VA) and grown in DMEM supplemented with 10% FCS, 2 mM l-glutamine, penicillin, and streptomycin.

Purified stocks of HCMV AD169 strain and HBS-derived mutant HB5-ΔU52-11 (15) were prepared by infecting MRC5 cells at 0.1 multiplicity of infection (MOI) and harvesting supernatants when maximum cytopathic effect was reached. Cells and debris were removed from virus containing supernatant by centrifugation and stored at −80°C. Viral stocks were titrated by plaque assays on MRC5 cells analyzed by detection of the viral IE-1/IE-2 Ag with a mouse anti-CMV mAb (clone mab810; Millipore) by immunofluorescence. Inactivation of viral stocks was achieved by UV light using a UV cross-linker (Biorad GS genelinker UV chamber) at 300 mJ for 10 m.

MRC5 cells were incubated alone (mock), with AD169 or HB5-ΔU52-11 strains (MOI 0.7), or with the same concentration of UV-inactivated virus for 2 h and then washed with PBS and maintained in DMEM supplemented

![FIGURE 1](http://www.jimmunol.org/). Phenotypic comparison of ADCC-related features of NKG2C^{bright} and NKG2A⁺ NK cell subsets. Expression of FcεR γ chain, CD16, granzyme B, Perforin, KIR2DL1, KIR2DL2/L3, and KIR3DL1 was analyzed in NKG2C⁺ and NKG2A⁺ NK cells by multiparametric flow cytometry on PBMCs from HCMV⁺ healthy donors with NKG2C^{bright} expansions. (A) Coexpression of both lectin-like NKRs with FcεR γ chain in CD56^{dim} cells from two representative donors. (B) Frequency of FcεR γ chain–deficient NKG2C⁺ and NKG2A⁺ CD56^{dim} NK cells. (C and D) Mean fluorescence index for CD16 surface expression (n = 10), intracellular granzyme B, and Perforin (n = 5) in NKG2C⁺ and NKG2A⁺ CD56^{dim} NK cells. (E) Frequencies of KIR2DL1⁺, KIR2DL2/L3/S2⁺, and KIR3DL1⁺ NK cells according to NKG2C⁺ or NKG2A⁺ coexpression (n = 10). Data correspond to the mean ± SEM. Statistical significance was calculated by paired Student t test (*p < 0.05, **p < 0.01, ***p < 0.001).
with 3% FBS. If not specified, infected MRC5 cells were cultured for 48 h until used in functional assays.

For the labeling of viral Ags, HCMV-infected or UV-HCMV–treated MRC5 cells were pretreated with rabbit serum (30 μl) to block FcRs, and incubated with affinity purified human IgG for 30 min at 4°C followed, after washing, by PE-conjugated anti-human Ig (Jackson Immunoresearch Laboratories).

NK cell functional assays

PBMCs were obtained from heparinized blood samples by separation on Ficoll-Hypaque gradient (Lymphoprep; Axis- Shield PoC AS, Oslo, Norway). Serum samples were collected and heat-inactivated before storage at −20°C. Standard clinical diagnostic tests were used to analyze serum samples for circulating IgG Abs against HCMV. Unless noted in the Results, PBMCs were always kept overnight with complete RPMI 1640 medium supplemented with IL-2 (200 U/ml) before functional assays. In some experiments, PBMCs were left untreated or incubated with IL-15 (10 ng/ml) overnight. NK cell purification was performed by negative selection using EasySep Human NK Cell Enrichment kit (StemCell Technologies, Grenoble, France) according to the manufacturer’s recommendations. Unless noted in the text, all functional assays were performed with NK cell samples from HCMV-seropositive blood donors with NKG2Cbright NK cell expansions (described in Supplemental Table 1).

NK cell degranulation was monitored by the CD107a mobilization assay. Purified NK cells were incubated alone or together with HCMV-infected, or UV-HCMV–treated MRC5 cells (4:1 E:T ratio) for 4 h at 37°C in the presence of monensin (5 μg/ml; Sigma-Aldrich) and CD107a-FITC. In some conditions, 2–10% of heat-inactivated sera from HCMV-seropositive or seronegative donors were added to the coculture. Cells were then stained with anti–CD56-allophycocyanin, anti–NKG2C-PE, or anti–NKG2A-PE, and analyzed by flow cytometry. Rituximab-coated 721.221 cells, a HLA-I–deficient B lymphoblastoid cell line, were used as positive control. For intracellular cytokine staining, PBMCs or purified NK cells were cultured alone or with target cells in the same conditions described earlier in the presence of monensin (5 μg/ml; Sigma-Aldrich) and brefeldin A (10 μg/ml; Sigma-Aldrich) for 4 or 18 h. Subsequently, cells were indirectly stained with anti-NKG2C and PE-Cy7–conjugated Frab1 or polyclonal goat anti-mouse IgG followed by anti–CD3–PerCP and anti–CD56–allophycocyanin. Cells were fixed and permeabilized with fixation/permeabilization kit (BD Biosciences), stained with anti–TNF–α–FITC and anti–IFN–γ–PE, and analyzed by flow cytometry. In some experiments, purified NK cells were treated with PMA (2 ng/ml) and ionomycin (0.5 μg/ml).

For virion sensing experiments, PBMCs or purified NK cells were incubated with HCMV virions (1–2.5 infective particles/cell) in the presence of sera from seropositive or seronegative donors for 4 or 18 h at 37°C. NK cell TNF-α and IFN-γ secretion was measured by ELISA (eBioscience). Purified NK cells were cultured alone or with rituximab-coated 721.221 for 24 h. Cell-free culture supernatants were harvested, and IFN-γ and TNF-α concentrations were measured by ELISA as recommended by the manufacturer.

FCGR3A genotyping

FCGR3A 158V/F polymorphisms was determined using a PCR with confronting two-primer pairs, as previously described (33).

Results

Phenotypic features of NKG2Cbright NK cells in relation to ADCC function

Recent studies have proposed the specialization of HCMV-induced FcεR γ-chain–deficient and NKG2C+ NK cells as Ab-dependent effectors (19, 29). To address the possible relationship between both NK cell subsets, we characterized the expression of CD16, FcεR γ-chain, granzyme B, Perforin, and HLA-C– and HLA-B–specific inhibitory KIR (KIR2DL1, KIR2DL2/S2/L3, KIR3DL1) in NKG2C+ and NKG2A+ CD56dim NK cells by multiparametric flow cytometry, in a cohort of HCMV+ healthy volunteers displaying significant expansions of HCMV-induced NKG2Cbright NK cells (donor description is shown in Supplemental Table 1).

According to the definition of NKG2Cbright NK cells, all donors presented a discrete NK cell subpopulation displaying increased surface levels of NKG2C in the absence of NKG2A (Fig. 1A)

![Figure 2](http://www.jimmunol.org/) **FIGURE 2.** NK cell degranulation against HCMV-infected fibroblasts in the presence of HCMV+ sera. NK cell degranulation against mock-treated and HCMV-infected MRC5 fibroblasts (48 h postinfection) in the presence or absence of HCMV+ or HCMV− sera was analyzed as described in Materials and Methods. NK cell subsets were obtained from HCMV+ individuals with expanded NKG2Cbright NK cells. (A) CD107a detection in CD56dim NK cell subsets according to NKG2C expression. Data correspond to a representative donor out of eight analyzed. The proportions of CD107a+ cells referred to total NKG2C+ or NKG2A+ NK cells as Ab-dependent effectors (19, 29). To address the possible relationship between both NK cell subsets, we characterized the expression of CD16, FcεR γ-chain, granzyme B, Perforin, and HLA-C– and HLA-B–specific inhibitory KIR (KIR2DL1, KIR2DL2/S2/L3, KIR3DL1) in NKG2C+ and NKG2A+ CD56dim NK cells by multiparametric flow cytometry, in a cohort of HCMV+ healthy volunteers displaying significant expansions of HCMV-induced NKG2Cbright NK cells (donor description is shown in Supplemental Table 1).

According to the definition of NKG2Cbright NK cells, all donors presented a discrete NK cell subpopulation displaying increased surface levels of NKG2C in the absence of NKG2A (Fig. 1A)
Expression of CD16 (FcγRIIIA) was similar in all CD56^{dim} NK cells, whereas the expression of the FcεγR-chain was decreased in a variable proportion of NKG2C^{bright} NK cells (Fig. 1A–C). NKG2C^{bright} NK cells showed comparable perforin and greater granzyme B levels compared with NKG2A⁺ NK cells (Fig. 1D). In agreement with previous studies, an elevated proportion of NKG2C⁺ NK cells coexpressed inhibitory KIR2D specific for self–HLA-C and lacked the HLA-B–specific KIR3DL1 (Fig. 1E and Supplemental Table I) (16, 21). Thus, the NKG2C^{bright} NK cell subset included FcεγR-chain–defective NK cells and gathered unique features that might influence their effector potential upon Ab-driven activation.

NKG2C^{bright} NK cells display enhanced responsiveness and lead the cytokine response triggered by Ab-opsonized, HCMV-infected cells

We compared the direct and IgG-mediated responses of purified primary NK cells against HCMV-infected MRC5 cells 48 h postinfection. NK cell samples were obtained from HCMV-seropositive blood donors with NKG2C^{bright} NK cell expansions (donor description in Supplemental Table I). Compared with the low NK cell response against mock-treated and HCMV-infected MRC5, the addition of immune serum triggered the degranulation of a significant fraction of CD56^{dim} NK cells. The degranulation of NKG2C⁺ and NKG2A⁺ NK cell subsets in the presence of serum was comparable on average (Fig. 2A–C), although some variability among different donors was noticed (data not shown). Nonetheless, normalization of Ab-dependent versus direct degranulation showed enhanced responsiveness of NKG2C⁺ NK cells to CD16 activation (Fig. 2D). The presence of serum also triggered the production of TNF-α, already detected after 4 h of stimulation (Fig. 3A, 3B), and of IFN-γ at later stages (Fig. 3C–E). Remarkably, greater proportions of TNF-α⁺ and IFN-γ⁺ NKG2C^{bright} NK cells were consistently detected in all donors in comparison with NKG2C[−] NK cells (Fig. 3B, 3D, 3E) or the NKG2A⁺ subset (data not shown).

NK cells were left untreated or cultured overnight with IL-2 or IL-15 before measuring cytokine production in response to mock or HCMV-infected MRC5 and specific sera, to address the possible influence of cytokines such as IL-2 and IL-15. Ab-mediated activation of resting primary NK cells triggered the production of TNF-α. Pretreatment with either IL-2 or IL-15 increased the frequency of NK cells secreting TNF-α and promoted the production of IFN-γ. NKG2C⁺ NK cells always displayed a greater cytokine production in response to Ab-mediated recognition of HCMV-infected cells, regardless of prior cytokine exposure (Supplemental Fig. 1).

NKG2C^{bright} NK cell–mediated ADCC to HCMV-infected cells is modulated by viral Ag availability and HLA-I expression

Immune mechanisms efficiently targeting early steps of HCMV replication are essential for limiting viral dissemination. We performed time-course experiments evaluating the capacity of HCMV-specific Abs to trigger NK cell responses at different times postinfection. NK cell samples were obtained from HCMV⁺ individuals described in Supplemental Table I to monitor the contribution of NKG2C^{bright} NK cells. MRC5 cells were cultured with either infective or UV-inactivated virus, and NK cell degranulation was analyzed at 12 or 72 h postinfection in the presence or absence of immune sera (Fig. 4). Direct NK cell degranulation against HCMV-infected MRC5 was similarly low at 12 and 72 h postinfection. Of note, the addition of immune sera elicited NK cell degranulation against HCMV-infected MRC5 as early as 12 h.
significantly increasing at 72 h postinfection. The lack of response to MRC5 cells treated with UV-inactivated virus indicated the requirement of an active infection to sustain NK cell–mediated ADCC responses at both time points (Fig. 4A). NKG2C+ NK cell degranulation toward HCMV-infected MRC5 in the presence of immune serum was comparable with that of NKG2A+ NK cells; however, NKG2C+ cells displayed an enhanced Ab-dependent degranulation as indicated by the fold difference in CD107a expression comparing the response against infected MRC5 in the presence or absence of immune serum (Fig. 4B, 4C).

We analyzed in parallel surface HLA-I expression and the binding of IgG purified from immune serum to the infected cell surface by flow cytometry. Binding of HCMV-specific IgG to MRC5 cells was detected at 72 h postinfection, whereas binding to early-infected fibroblasts (12 h) was undistinguishable from the staining with IgG from HCMV- sera (Fig. 4D). In agreement with previous studies, the progressive downregulation of surface HLA-I on MRC5 cells was minimally detected at 12 h and evident at 72 h post HCMV infection (Fig. 4E).

CD16-triggered NK cell activation can be regulated by inhibitory receptor coengagement (34). We evaluated the influence of HLA-I in the regulation of ADCC responses against HCMV-infected cells. Blockade of surface HLA-I by a specific mAb (A6/136) increased the basal NK cell degranulation against mock MRC5 and facilitated the Ab-dependent recognition of early infected MRC5 by the NKG2Cbright subset (12 h postinfection; Fig. 5A, 5B). A parallel increase in the frequency of NKG2Cbright TNF-α+ cells was also noticed (data not shown). We next addressed the capacity of HLA-I to regulate anti-HCMV ADCC late responses (48 h postinfection) by using a mutant virus defective for US2, US3, US6, and US11 immunoevasins (HB5-ΔUS2-11), which inhibit HLA-I expression. The efficiency of MRC5 infection between ΔUS2-11 and wild type HCMV was comparable (70–80%) according to IE-1/2 immunostaining (data not shown). As expected, HLA-I surface expression was preserved in MRC5 cells at 48 h postinfection with ΔUS2-11 HCMV as compared with cells infected with wild type HCMV (Fig. 5C). Regardless of HLA-I expression levels, HCMV-specific Abs activated a similar NK cell response against infected MRC5 cells (Fig. 5D). Both the percentages and the distribution of NK subsets participating in the cytotoxic response were comparable at 48 (Fig. 5D, 5E) and 72 h postinfection (data not shown).

Altogether, these data show the capacity of HCMV-specific IgG to trigger NK cell responses against newly synthesized viral Ags on infected cells providing the host with a mechanism to control early HCMV reactivation. Surface HLA-I expression hampered Ab-induced NKG2Cbright NK cell activation early postinfection, coinciding with a limited viral Ag expression recognized by immune sera. Progression through the viral cycle led to an enhanced Ab recognition of infected cells capable of overcoming HLA-I expression and viral immunoevasion strategies.

FIGURE 4. NK cell–mediated ADCC against HCMV-infected MRC5 cells at different times postinfection: relationship with HCMV-specific Ab recognition and HLA-I expression. NK cell degranulation against mock-treated, UV-HCMV-treated, or HCMV-infected MRC5 fibroblasts at 12 and 72 h postinfection by the CD107a mobilization assay in the presence of HCMV+ sera. NK cell samples were obtained from HCMV+ individuals. (A) Mean percentage ± SEM of CD107a+ CD56dim NK cells or (B) in relation to NKG2C or NKG2A expression (n = 6); (C) CD107a expression fold difference in NKG2C+ and NKG2A+ NK cells upon coculture with HCMV-infected MRC5 in the presence or absence of immune sera. Statistical significance was calculated using the Student t test between conditions and the paired Student t test between NK cell subsets (t < 0.05, **p < 0.01, ***p < 0.001). (D) Surface labeling of mock- and HCMV-infected MRC5 at 12 and 72 h postinfection by indirect immunofluorescence with purified IgG from immune (bold line, open histograms) or HCMV+ sera (dotted thin lines, open histograms); control including only the secondary Ab (gray profiles). Results of a representative experiment of three performed are shown. (E) Surface HLA-I expression analyzed by indirect immunochemistry on mock- and HCMV-infected or UV-HCMV–treated MRC5 cells at 12 and 72 h posttreatment. Results of a representative experiment of four performed are shown.
NKG2C^{bright} NK cells recognize Ab–CMV immunocomplexes

CD16⁺ γδ T cells have been shown to produce IFN-γ when incubated with IgG-opsonized HCMV virions (35). We assessed whether NKG2C^{bright} NK cells could also respond to viral particles in the presence of specific IgG. Incubation of purified NK cells with HCMV virions (1–2.5 infective viral particles/cell) in the presence of immune sera triggered the production of TNF-α by NKG2C^{bright} NK cells (Fig. 6 and Supplemental Fig. 2). The percentage of CD107a⁺ and IFN-γ⁺ NK cells induced by Ab-virion immune complexes were lower as compared with the proportions of TNF-α⁺ cells and with the responses against HCMV-infected MRC5 fibroblasts (Figs. 2 and 3).

We did not detect the expression of HCMV immediate early protein IE1/2 in NK cells upon their coculture with viral particles (data not shown), confirming the established resistance of lymphocytes to HCMV infection (36, 37). Virus titration experiments showed a dose-dependent NK cell activation, with TNF-α produced in response to as few as 0.08 infective viral particles/cell (Supplemental Fig. 2A). Assays performed in the absence of cytokine priming showed the capacity of nonstimulated NKG2C^{bright} NK cells to become activated upon recognition of IgG-coated HCMV virions (Supplemental Fig. 2B). Overall, these data revealed a previously unappreciated role for NKG2C^{bright} NK cells together with Abs in the recognition of HCMV virions.

NKG2C^{bright} NK cells influence the overall Ab-dependent TNF-α and IFN-γ secretion in HCMV⁺ individuals

Our previous results highlight the intrinsic capacity of NKG2C^{bright} NK cells to produce greater TNF-α and IFN-γ levels upon CD16 activation compared with NKG2C⁻ or NKG2A⁺ NK cell subsets. We addressed whether the presence of the NKG2C^{bright} NK cell subset would condition the overall magnitude of the Ab-induced NK cell cytokine production. For that purpose, we selected two groups of four HCMV⁺ donors displaying or not NKG2C^{bright} NK cells and compared the cytokine response induced by rituximab-coated 721.221 cells. The average frequency rate of NKG2C^{bright} NKG2A⁻ NK cells in the four donors displaying NKG2C^{bright} NK cell expansions was 48% (range 34–61%). HCMV⁺ donors lacking NKG2C^{bright} expansion had an average of 13% undifferentiated NKG2C dim NK cells (range 6–16%; Fig. 7A, 7B) (30).

Samples from HCMV⁺ individuals with NKG2C^{bright} NK cell expansions secreted larger amounts of TNF-α and IFN-γ in response to rituximab-coated 721.221 cells than those from HCMV⁺ subjects lacking this cell population (Fig. 7C). Intracellular cytokine analysis confirmed the larger frequency of TNF-α⁺ and IFN-γ⁺ NK cells in samples displaying NKG2C^{bright} NK cell expansions (Fig. 7D), as well as the predominance of this NK cell subset in the rituximab-dependent response against 721.221 cells (Fig. 7E). Notably, NKG2C^{bright} NK cells also displayed enhanced TNF-α and IFN-γ responses upon CD16-independent stimulation with PMA and ionomycin. As a consequence, the overall cytokine secretion was greater in NK cell samples from donors with expanded NKG2C^{bright} NK cells (Supplemental Fig. 3).

Thus, the expansion of NKG2C^{bright} NK cells in HCMV⁺ subjects determined the magnitude of the proinflammatory cytokine response upon Ab-dependent and -independent NK cell activation.
Discussion

The association between HCMV infection/reactivation and the expansion of NKG2C bright NK cells is well established; however, key questions such as the mechanisms governing their differentiation and their contribution to the antiviral response remain unanswered. Recently, the possible role of NKG2C+ NK cells as Ab-dependent effectors was outlined (29). We have used primary polyclonal NK cells from healthy HCMV+ volunteers displaying NKG2C bright NK cell expansions to characterize their response (i.e., CD107a, TNF-α, and IFN-γ) upon Ab-dependent recognition of HCMV-infected MRC5 fibroblasts. Our data reveal three complementary and relevant aspects of the HCMV-specific Ab-mediated NK cell response: 1) the robustness and sensitivity of this antiviral mechanism capable of recognizing HCMV-infected cells from early to late stages of the HCMV replicative cycle, overcoming the inhibition mediated by self–HLA-I expression and viral immunoevasion strategies; 2) the intrinsic capacity of NKG2C bright NK cells to efficiently secrete TNF-α and IFN-γ upon Ab-dependent activation, influencing the overall proinflammatory and antiviral response in HCMV+ individuals; and 3) the ability of NK cells, particularly the NKG2C bright subset, to recognize and respond to cell-free HCMV particles in the presence of specific Abs.

NK cell–mediated, Ab-dependent, anti-HCMV responses

Few studies have evaluated the capacity of Abs produced along the anti-HCMV immune response to prevent viral replication by triggering NK cell–mediated recognition of HCMV-infected cells (38, 39), despite previous evidences showing the contribution of NK cell–mediated ADCC to the control of other viruses (e.g., HIV and influenza) (40–44). Our study demonstrates that anti-HCMV Abs in immune sera can trigger an effective NK cell activation exceeding the low natural cytotoxicity levels against infected MRC5 cells. HCMV-specific Abs were capable of triggering NK cell–mediated ADCC against fibroblast infected with a low MOI (0.7) as early as 12 h postinfection and progressively increased along the HCMV cycle. Thus, this constitutes a sensitive antiviral mechanism potentially important for detecting early reactivation and limiting viral dissemination.

It is worth mentioning that NK cell–mediated recognition of autologous HCMV-infected monocyte-derived dendritic cells (moDCs) was also superior in the presence of Abs. However, the requirement of using a high MOI resulted in the detection of HCMV Ags on the DC surface independently of the infectious process, as supported by the comparable staining and the elevated Ab-mediated NK cell degranulation induced by immune sera toward HCMV-infected or UV-HCMV–treated moDCs (data not shown). This fact precluded using autologous moDCs for the analysis of NK cell–mediated ADCCs against newly synthesized viral Ags in the infected cell.

Our data indicate that NK cell–mediated ADCC responses are capable of overcoming HCMV evasion strategies. Early postinfection, the blockade of HLA-I by an mAb capable of interfering with HLA-I–KIR interaction enhanced NKG2C bright NK cell degranulation, indicating that KIR2DL could negatively regulate CD16-dependent NK cell activation in situations of limited stimulation. Yet, as indicated by experiments infecting with ΔUS2-11 HCMV, surface HLA-I had no influence on the Ab-
induced NK cell response against infected MRC5 at later times postinfection (48–72 h), coinciding with an enhanced recognition of infected cells by IgG in immune sera. In this regard, the HLA-C*07:02 allele expressed in MRC5 has been shown to be refractory to the action of gpUS2 and gpUS11, remaining at the infected cell surface for prolonged times postinfection and precluding direct KIR2DL2/3+ NK cell responses against HCMV-infected MRC5 (45).

The majority of viral evasion molecules devoted to avoid NK cell recognition of HCMV-infected cells are expressed with late kinetics in the HCMV replicative cycle (46). According to our data, the effect of these immunoevasins was bypassed by Ab-mediated NK cell activation, yet we did not directly address their capacity to influence ADCC. Moreover, in our experimental system, immune sera were capable of triggering NK cell activation against infected cells despite the possible interference by gp34 and gp68 HCMV Fc-binding proteins (47, 48). Coincident results are seen using cells infected with HSV-1, also encoding a decoy FcγR (M. Moraru, L.E. Black, A. Muntasell, F. Portero, M. López-Botet, H.T. Reyburn, J.P. Pandey, and C. Vilches, manuscript in preparation).

Identification of the viral Ags targeted by the humoral response on the infected cell surface at different time points remains an unmet goal that could provide information to rationally improve vaccination strategies. Whether and to what extent antigenic breadth, relative Ab titers, and dominance of particular isotypes are NK cell–extrinsic factors influencing the magnitude and quality of Ab-mediated NK cell responses, and thus the benefits of passive anti-HCMV Ig treatments, deserve attention.

Differentiation of NKG2C^bright NK cells as cytokine producers and Ab-dependent effectors

The monitorization of several NK cell effector functions showed the ability of NKG2C^bright NK cells to degranulate and particularly to dominate the production of TNF-α and IFN-γ in response to Ab-mediated stimulation. Remarkably, NKG2C^bright NK cells not only showed greater Ab-driven cytokine secretion, but also produced higher levels of TNF-α and IFN-γ upon CD16-independent activation. Thus, NKG2C^bright NK cells appeared particularly suited for cytokine production upon activation. Indeed, recent studies have pointed toward epigenetic imprinting in HCMV-differentiated and functionally competent NK cells as a mechanism regulating their proinflammatory cytokine program (49, 50).

In contrast, the average degranulation of NKG2C^bright NK cells against HCMV-infected targets in the presence of specific Abs was comparable with the proportion of degranulating NKG2A^+ NK cells, despite their greater responsiveness to CD16-dependent activation and the accumulation of FcγR γ-chain–deficient cells (51). Accordingly, the cytolytic potential of NK cell samples from donors containing or not NKG2C^bright NK cell expansions against rituximab-coated 721.221 cells was comparable as assessed by the calcein-AM release method (data not shown). Yet, it cannot be ruled out that their different granzyme B levels might determine more subtle differences in NKG2C^bright killing capacity.

FIGURE 7. Comparison of Ab-induced TNF-α and IFN-γ secretion by NK cells from HCMV+ individuals in relation to the presence of NKG2C^bright NK cell expansions. Purified NK cells from HCMV+ donors with or without NKG2C^bright NK cell expansions were incubated overnight with rituximab-coated 721.221 cells. (A and B) Distribution of the NK cell repertoire according to NKG2C and NKG2A expression in donors with (NKG2C^bright) or without (NKG2C^dim) expanded NKG2C^bright NK cells. (C) Secreted TNF-α and IFN-γ measured by ELISA in samples from donors with (+) or without (−) NKG2C^bright NK cell expansions. Bar graphs (D) and dot plots (E), respectively, display the mean proportions of TNF-α⁺ and IFN-γ⁺ cells by ICCS analyzed by flow cytometry. Insets indicate the percentages of NKG2C⁺ and NKG2C⁻ cells positive for each cytokine. Bar graphs display the mean ± SEM values summarizing data from four donors. Statistical significance was calculated by Student t test (⁎p < 0.05, ⁎⁎p < 0.01).
Thus, two separate mechanisms may account for NKG2Cbright NK cell functional specialization: 1) differentiation-driven epigenetic modifications on cytokine loci as regulators of their effector function; and 2) downregulation of NCR surface expression and CD3\textgamma-preferential coupling to CD16, associated to FcR \gamma-chain loss. Certain heterogeneity in the differentiation of the NKG2Cbright NK cell subset is illustrated by the variable expression of CD57 or LILRB1 (16, 30). Further studies are required to delineate the sequence of events leading to cytokine-producing NKG2Cbright NK cells and the relation with FcR \gamma-chain loss.

Of note, NKG2Cbright NK cell expansions, as well as their dominance in the Ab-dependent cytokine response, was observed in individuals with different CD16 (158V/F) genotypes regardless of their reported influence on Ab binding and Ab-mediated ADCC (52, 53). Whether the frequency of NKG2Cbright NK cells, not appreciated through genetic analysis, could explain the controversial data in studies addressing the impact of those polygenic factors on cytokine secretion in HCMV-seropositive adults in controversial data in studies addressing the impact of those polygenic factors on cytokine secretion in HCMV-seropositive adults in controversial data.

IFN-\gamma (21), through their cytotoxic potential and the production of TNF-\alpha (22), contributes to HCMV control of developmentally distinct subset, contributing to HCMV control. We previously reported that NK cells may directly induce viral effector mechanism. NKG2Cbright NK cells appear as a developmentally distinct subset, contributing to HCMV control through their cytotoxic potential and the production of TNF-\alpha and IFN-\gamma upon Ab-mediated stimuli.

Acknowledgments

We are grateful to Esther Menoyo for collaborating in obtaining blood samples, Dr. Oscar Fornas for advice in flow cytometry, and volunteer blood donors for participation.

Disclosures

The authors have no financial conflicts of interest.

References

