Cutting Edge: Critical Role for C5aRs in the Development of Septic Lymphopenia in Mice

Jamison J. Grailer, Fatemeh Fattahi, Rachel S. Dick, Firas S. Zetoune and Peter A. Ward

J Immunol 2015; 194:868-872; Prepublished online 24 December 2014;
doi: 10.4049/jimmunol.1401193
http://www.jimmunol.org/content/194/3/868

Supplementary Material
http://www.jimmunol.org/content/suppl/2014/12/23/jimmunol.1401193.DC1Supplemental

References
This article cites 30 articles, 10 of which you can access for free at:
http://www.jimmunol.org/content/194/3/868.full#ref-list-1

Subscription
Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Cutting Edge: Critical Role for C5aRs in the Development of Septic Lymphopenia in Mice

Jamison J. Grailer, Fatemeh Fattahi, Rachel S. Dick, Firas S. Zetoune, and Peter A. Ward

In the early stages of sepsis, lymphocytes undergo apoptosis, resulting in lymphopenia and immunosuppression. The trigger for septic lymphopenia is unknown. Using the polymicrobial model of murine sepsis, we investigated the role of C5a receptors in septic lymphopenia. In wild-type mice, cecal ligation and puncture resulted in splenocyte apoptosis and significant lymphopenia after 3 d, which was not observed in C5aR1−/− or C5aR2−/− mice. Our data show that mouse neutrophils exposed to recombinant mouse C5a cause release of histones in a dose-dependent and time-dependent manner. Histone levels in spleen were significantly elevated following cecal ligation and puncture but were reduced by the absence of C5aR1. Histones induced significant lymphocyte apoptosis in vitro. Ab-mediated neutralization of histones prevented the development of lymphopenia in sepsis. Together, these results describe a new pathway of septic lymphopenia involving complement and extracellular histones. Targeting of this pathway may have therapeutic benefit for patients with sepsis or other serious illness. The Journal of Immunology, 2015, 194: 868–872.

Sepsis remains a significant clinical challenge, with >750,000 cases annually in the United States resulting in 20–30% mortality (1). Lymphocyte apoptosis has been recognized as an important pathophysiologic mechanism during sepsis and is known to contribute to the resulting immunocompromise of sepsis (2). Lymphocyte apoptosis was demonstrated in postmortem studies of septic humans (3), and lymphopenia is related to high mortality (4). Many researchers now believe that the development of immunosuppression, rather than prolonged inflammation, is the predominant factor determining morbidity and mortality during sepsis (2).

Because many septic patients are lymphopenic at the time of diagnosis, recent focus has been on the development of immunostimulant therapeutics to treat septic immunosuppression after the fact (5). As such, administration of immunostimulant cytokines (e.g., IL-7) or neutralization of inhibitory receptors (e.g., PD-1) was tested in rodent models, and they showed promise for restoring immunity postsepsis (6, 7). However, these strategies may not be clinically viable for all human patients as a result of their immunostimulant nature, because they have the potential to exacerbate the hyperinflammatory phase of sepsis if administered too early in disease progression; this could result in intensified multiorgan failure. Therefore, a more complete understanding of the genesis of lymphopenia during sepsis is needed, which may present therapeutic options for patients in early stages of sepsis.

Preceding an early therapeutic option is the fact that the initial stimulus for lymphocyte apoptosis during sepsis remains unknown. Lymphocyte apoptosis during sepsis is known to occur through both mitochondrial (intrinsic) and receptor-mediated (extrinsic) pathways (8). As described by Hotchkiss et al. (2), such findings suggest multiple pathways of lymphocyte apoptosis and lymphopenia during sepsis. The complement anaphylatoxin C5a, which is produced in large quantities during sepsis, is known to contribute to septic lethality (9). Previously, our group showed an important role for C5a in thymocyte apoptosis during sepsis (10). However, whether C5a contributes to mature peripheral lymphocyte apoptosis and the development of lymphopenia during sepsis is not known. In this report, we describe a novel mechanism of lymphocyte apoptosis and lymphopenia during sepsis involving complement and extracellular histones.

Materials and Methods

Animals

All procedures were performed within the U.S. National Institutes of Health guidelines and were approved by the University of Michigan Committee on the Use and Care of Animals. Male age-matched (8–9 wk old) C57BL/6 wild-type (WT) mice were purchased from The Jackson Laboratory (Bar Harbor, ME). C5aR1−/− and C5aR2−/− mice on the C57BL/6 background were bred in-house and were generated as described (11, 12).

Reagents

Mixed calf thymus histones (type II-A) were from Sigma-Aldrich (St. Louis, MO). Anti-histone Ab (clone BWA3) (13) was purified from ascites fluid by protein A/G chromatography.

The online version of this article contains supplemental material. Abbreviations used in this article: CLP, cecal ligation and puncture; DAMP, damage-associated molecular pattern; NET, neutrophil extracellular trap; WT, wild-type.

Copyright © 2015 by The American Association of Immunologists, Inc. 0022-1767/15/$25.00

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1401193

Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109

Received for publication May 15, 2014. Accepted for publication November 28, 2014.

This work was supported by the National Institutes of Health (Grants GM-29507 and GM-61656 to P.A.W. and NHLBI-T32-HL007517-29 to J.J.G.).

Address correspondence and reprint requests to Dr. Peter A. Ward, Department of Pathology, University of Michigan Medical School, 1301 Catherine Road, Ann Arbor, MI 48109. E-mail address: pward@umich.edu

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1401193
Cecal ligation and puncture

Midgrade cecal ligation and puncture (CLP; ∼50% survival after 7 d) was used for this study, as described previously (14). For histone-neutralization studies, mice received 400 μg BWA3 or control Ab (Jackson ImmunoResearch, West Grove, PA) i.v. at the time of CLP.

Blood and spleen collection

At time points after the induction of CLP, heparinized blood was collected by cardiac puncture. Leukocyte counts were determined on a hemocytometer. Differential counts were determined with blood smears. More than 200 cells were analyzed per blood sample.

Single-cell suspensions of spleens were prepared as described (15). Erythrocytes were lysed in a 0.1-M ammonium chloride solution. Cells were labeled with fluorochrome-conjugated Abs to detect CD4 and CD8 (both from eBioscience, San Diego, CA) and analyzed on a BD LSR II flow cytometer equipped with FACSDiva software (both from BD Biosciences, San Jose, CA).

TUNEL

Sections were labeled for TUNEL analysis, according to the manufacturer’s recommendations, using a commercially available kit (Promega, Madison, WI) and were mounted in ProLong Gold Anti-Fade reagent containing DAPI (Life Technologies, Carlsbad, CA). Images were acquired on a Nikon A-1 confocal system with Nikon Elements software. The average number of TUNEL+ cells per field was determined in a blinded fashion from ≥10 fields over several sections per spleen.

Apoptosis assays

Apoptosis was determined by PE-Annexin V and 7-aminoactinomycin D (both from BD Biosciences). Cells were analyzed by flow cytometry, as described above.

Results and Discussion

Role for C5a receptors in the development of septic lymphopenia

Three days following CLP, blood leukocyte numbers were significantly reduced compared with sham mice (Fig. 1A, far left panel). Leukocyte differential analyses revealed that PMN and monocyte numbers were not affected at this time point after CLP (Fig 1A, middle panels). In contrast, blood lymphocyte numbers in CLP mice were reduced by 57% compared with sham animals (Fig. 1A, far right panel).

Neutrophils and macrophages were harvested by peritoneal lavage at 4 h and 4 d, respectively, after i.p. administration of 2.4% thioglycollate.

Determination of tissue histone content and histone-release assays

Spleens were harvested and snap-frozen in liquid nitrogen following CLP. Tissues were mechanically homogenized in PBS containing protease inhibitors (Roche, Indianapolis, IN). Total protein estimations were determined using the BCA assay (Sigma-Aldrich). Histone ELISAs were from Roche. Purified mixed calf thymus histones were used to generate standard curves, as described (16). For histone-release assays, peritoneal neutrophils (3 x 10⁶/ml) were incubated with recombinant mouse C5a (R&D Systems, Minneapolis, MN) for the indicated time and dose at 37°C.

Statistical analysis

Data are expressed as mean ± SEM. Significant differences between sample means were determined by the Student t test or one-way ANOVA followed by the Tukey multiple-comparisons test, where appropriate. The p values < 0.05 were considered significant.
However, CLP did not cause reductions in blood lymphocyte numbers in C5aR1−/− and C5aR2−/− mice (Fig. 1A, far right panel). In the spleen, the numbers of splenocytes were modestly reduced following CLP, although this did not reach statistical significance (Fig. 1B, far left panel). Splenic CD4+ and CD8+ lymphocytes were reduced by 32 and 42%, respectively, in WT mice 3 d after CLP (Fig. 1B). However, CLP did not significantly reduce the numbers of CD4+ or CD8+ splenocytes in C5aR1−/− or C5aR2−/− mice (Fig. 1B, middle panels). Splenic B cell numbers were not affected 3 d after CLP (Fig. 1B, far right panel). Together, these results suggest a role for both C5a receptors in the development of T cell lymphopenia following CLP. Because C5aR1 and C5aR2 are known to act in concert in many inflammatory conditions (16–18), we focused on the role of C5aR1 in subsequent studies.

Lymphocyte apoptosis is a prominent feature of sepsis and is a significant factor in the development of septic lymphopenia (2). CLP induced significant splenic apoptosis in WT mice after 20 h, as measured by TUNEL labeling (Fig. 1C, 1D). Far fewer apoptotic cells were observed in C5aR1−/− mice at the same time point following CLP (Fig. 1C, 1D). These results suggest that C5aR1 contributes to splenocyte apoptosis following CLP sepsis.

C5a does not directly induce lymphocyte apoptosis

We hypothesized that C5a may directly induce lymphocyte apoptosis. Normal splenocytes or splenocytes harvested from septic mice (5 or 18 h after CLP) were exposed to various concentrations of C5a (125–1000 ng/ml), and cell viability was determined after 14 h. Results showed that C5a did not
induce significant cell death in vitro in any of the splenocyte preparations (Supplemental Fig. 1), thus ruling out a direct role for C5α in lymphocyte death.

Role for extracellular histones in septic lymphopenia

Evidence has accumulated that histones function as damage-associated molecular patterns (DAMPs) when present in the extracellular space (16, 19–21). High levels of extracellular histones in plasma are known to be present during sepsis in humans and animals (20, 22). Extracellular histones contribute to septic mortality, as evidenced by the observation that Ab-mediated neutralization of histones is protective during several models of sepsis in mice (20). C5α is known to induce the presence of extracellular histones during acute lung inflammation in vivo (16, 23) through direct effects on neutrophils via the release of neutrophil extracellular traps (NETs) (23). In the current study, levels of histones detected in spleen homogenates were dramatically elevated following CLP (Fig. 2A), suggesting that histones were accumulating in the spleen during sepsis. High histone levels in spleen following CLP were abolished in C5αR1−/− mice (Fig. 2B). Fig. 2C and 2D document histone release from neutrophils in vitro as a function of dose of C5α (10–1000 ng/ml) and of time (0–4 h). Extracellular histones are known to be cytotoxic for a variety of cell types, including lymphocytes (16, 19). In fact, extracellular histones recently were shown to directly induce lymphocyte apoptosis that was dependent on p38, mitochondrial injury, and caspase-3 activation (24). In our studies, treatment of splenocytes with extracellular histones in vitro resulted in apoptosis/necrosis in a dose-dependent manner (Fig. 2E, 2F, left panel). To determine whether these effects were lymphocyte specific, we treated enriched macrophage and neutrophil populations with histones under the same conditions in vitro. Results showed that histones did not induce significant levels of apoptosis in these populations (Fig. 2F, middle and right panels), suggesting that lymphocytes are especially susceptible to histone-induced apoptosis. Importantly, Ab-mediated neutralization of histones (H2A and H4) protected blood lymphocyte numbers 3 d after CLP (Fig. 2G), thus demonstrating an in vivo role for extracellular histones in septic lymphopenia. Taken together, these results suggest that C5αR1 promoted histone release and accumulation in spleen during CLP. Histones induced lymphocyte apoptosis/necrosis and promoted the development of septic lymphopenia.

Complement- and extracellular histone–dependent septic lymphopenia

Both receptor-mediated (extrinsic) and mitochondrial-mediated (intrinsic) pathways of apoptosis are known to occur in lymphocytes from septic patients and from rodents after CLP (8, 25). In the current study, C5α was an important inducer of septic lymphopenia via extracellular histones. Extracellular histones are known to induce lymphocyte apoptosis through the mitochondrial pathway (24). However, other pathways of C5α-induced apoptosis (i.e., receptor mediated) are not ruled out by the current study. Indeed, although C5αR1 deficiency or histone neutralization was protective, it failed to fully return levels to sham controls in many cases (e.g., Figs. 1B, 1D, 2G), although the differences were not statistically significant. Ultimately, further study is needed to identify the drivers of receptor-mediated apoptosis during sepsis.

We observed dramatically increased levels of histones in spleen as soon as 4 h after CLP (Fig. 2A). The exact source of extracellular histones during sepsis is unknown, but we recently showed that cell-associated (NETs) and cell-free (supernatant) histones are released by neutrophils in response to C5α (23). Intravascular NETs are known to be present 4 h after i.p. LPS administration in mice (26). It may be that the presence of histones in spleen following CLP is the result of their release by intravascular neutrophils/NETs, with passive accumulation in the spleen. In the current study, we demonstrated histone release from neutrophils in a dose- and time-dependent manner. However, the exact mechanism of histone release and splenic accumulation of histones during sepsis remain to be determined.

It is likely that a potential drug therapy targeting the generation of lymphopenia will not be effective for many septic patients, because most are lymphopenic prior to diagnosis and admission to the hospital. However, targeting C5α or extracellular histones may be useful for a subset of patients who have benefitted from an early diagnosis. Additionally, lymphocyte apoptosis and lymphopenia can result during other serious conditions, such as severe trauma, ischemia/reperfusion injury, or hemorrhagic shock (27, 28). Indeed, robust complement activation and the presence of extracellular histones in plasma were described in these conditions (29, 30). Such patients may have the opportunity to receive drug treatment to prevent lymphopenia as opposed to after the fact strategies to restore immunity.

Acknowledgments

We thank the University of Michigan Medical School Department of Pathology flow cytometry core facility for support and Sue Scott for excellent support in the preparation of this manuscript.

Disclosures

The authors have no financial conflicts of interest.

References

